THE DEVELOPMENT OF THE REFRACTORY MATERIALS FOR THE ROTARY CEMENT KILN'S SINTERING ZONE


https://doi.org/10.17073/1683-4518-2017-8-31-39

Full Text:




Abstract

The development of the refractory materials for the hightemperature zone of the rotary kilns used in the cement industry which is the second-largest refractory materials consumer was represented in the article. The history of the refractory materials using in this high-temperature zone of rotary kilns was traced from the alumina-silicate materials down to the purposely designed periclase-based materials which are used at the present time. The advantages and drawbacks of these materials application are regarded. The basic facts are given on the cement clinker production in order to take into account the possible chemical reactions between the raw batch mixture inside the kiln and the refractory materials components. Ill. 10. Ref. 56. Tab. 1.

About the Authors

Ya. Shcherba
AGH «Научно-технический университет», факультет материаловедения и керамики.
Poland


E. Snezhek
AGH «Научно-технический университет», факультет материаловедения и керамики.
Poland


V. Antonovich
Вильнюсский технический университет им. Гедиминаса.
Lithuania


References

1. Outlook for refractory end markets to 2020. [Электронный ресурс]. ― Режим доступа : https://roskill.com/news/outlook-for-refractory-end-markets-to-2020/

2. Chattopadhyay, A. K. Political & economic challenges facing indian refractory industry / A. K. Chattopadhyay, A. Dasgupta // Proceedings UNITECR 2015. ― 2015. ― Proceeding 125.

3. European Commission. Reference document on the best available techniques in the cement and lime manufacturing industries. BAT Reference Document (BREF). European IPPC Bureau, Seville, Spain ― 2001.

4. Best available techniques for the cement industry. General description of the cement production process. ― Brussels : CEMBUREAU 1999. ― P. 15‒43.

5. Szczerba, J. Mechanisms of wear of the refractory lining of rotary kilns. Part I. Mechanical and thermal factors / J. Szczerba, J. Piech, Z. Janik // Ceram. Mater. ― 1993. ― Vol. 1. ― P. 17‒22 (in Polish).

6. Szczerba, J. Mechanisms of wear of the refractory lining of rotary kilns. Part II. Chemical factors / J. Szczerba, J. Piech, Z. Janik // Ceramic Materials. ― 1993. ― Vol. 2. ― P. 11‒15 (in Polish).

7. Szczerba, J. Refractory materials in rotary kilns of cement industry / J. Szczerba, J. Piech // Cement-LimeGypsum. ― 1995. ― Vol. 1. ― P. 22 (in Polish).

8. Rahman, A. Recent development on the uses of alternative fuels in cement manufacturing process / A. Rahman, M. G. Rasul, M. M. K. Khan, S. Sharma // Fuel. ― 2005. ― Vol. 145. ― P. 84‒99.

9. Mokrzycki, E. Alternative fuels for the cement industry / E. Mokrzycki, A. Uliasz-Bocheńczyk // Applied Energy. ― 2003. ― Vol. 74. ― P. 95‒100.

10. Jenkins, B. G. Fuelling the demand for alternatives / B. G. Jenkins, S. B. Mather // The Cement Environmental Yearbook. ― 1997. ― P. 90‒97.

11. Pizant, J. Burning alternative fuels in rotary kilns / J. Pizant, J. C. Gauthier // World Cement. ― 1997. ― Vol. 9. ― P. 64‒75.

12. Aramaki, S. Revised equilibrium diagram for the system Al2O3‒SiO2 / S. Aramaki, R. Roy // Nature. ― 1959. ― Vol. 184. ― P. 631‒632.

13. Osborn, E. F. Phase Equilibrium Diagrams of Oxide Systems / E. F. Osborn, A. Muan // Plate 1, published by the American Ceramic Society and the Edward Orton, Jr., Ceramic Foundation ― 1960.

14. Szczerba, J. Aluminosilicate refractories ― their quality and resistance to corrosive agents in cement and lime kilns / J. Szczerba // Cement-Lime-Gypsum. ― 1993. ― Vol. 2. ― P. 64 (in Polish).

15. Refractories handbook ; ed. by C. A. Schacht. ― New York : Marcel Dekker, 2004.

16. Pocket manual refractory materials: basicsstructures-properties ; ed. by G. Routschka. ― Essen : Vulkan-Verlag, 2004.

17. Jastrzębska, I. An experimental study on hydration of various magnesia raw materials / I. Jastrzębska, J. Szczerba, R. Prorok, E. Śnieżek // Ceram. Silik. ― 2015. ― Vol. 59. ― P. 48‒58.

18. Ceramics science and technology. Volume 2. Materials and properties ; ed. by R. Riedel, I. W. Chen. ― Weinheim : Wiley-VCH, 2010.

19. Alper, A. M. Phase equilibria in the system MgO‒ MgCr2O4 / A. M. Alper, R. N. McNally, R. C. Doman, F. G. Keihn // J. Am. Ceram. Soc. ― 1964. ― Vol. 47. ― P. 30‒33.

20. Bray, D. J. Toxicity of chromium compounds formed in refractories / D. J. Bray // Am. Ceram. Soc. Bull. ― 1985. ― Vol. 64. ― P. 1012‒1016.

21. Szczerba, J. The effect of magnesia-chrome materials reaction with portland clinker on hexavalent chromium in these materials / J. Szczerba // Cement-Lime-Gypsum. ― 1990. ― Vol. 4/5. ― P. 79 (in Polish).

22. Mao, H. H. A reevaluation of the liquid phases in the CaO‒Al2O3 and MgO‒Al2O3 systems / H. H. Mao, M. Selleby, B. Sundman // CALPHAD. ― 2004. ― Vol. 28. ― P. 307‒312.

23. Liu, G. Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln / G. Liu, N. Li, W. Yan, G. Gao, W. Zhou, Y. Li // Ceram. Int. ― 2014. ― Vol. 40. ― P. 8149‒8155.

24. Szczerba, J. Influence of raw materials morphology on properties of magnesia-spinel refractories / J. Szczerba, Z. Pędzich, M. Nikiel, D. Kapuścińska // J. Eur. Ceram. Soc. ― 2007. ― Vol. 27. ― P. 1683‒1689.

25. Szczerba, J. Chemical corrosion of basic refractories by cement kiln materials / J. Szczerba // Ceram. Int. ― 2010. ― Vol. 36. ― P. 877‒1885.

26. Szczerba, J. Effect of oxide additives on properties of magnesia-spinel refractories / J. Szczerba, Z. Pędzich, M. Nikiel // Proceedings UNITECR 2005. ― 2005 ― P. 702‒706.

27. Kitaguchi, D. Y. New chrome free brick for the burning zone of cement rotary kilns / D. Y. Kitaguchi, M. Ono, Y. Tsuchiya, E. Nakajima, Y. Kajita // Proceedings UNITECR 2011. ― 2011. ― 2-B2-3.

28. Chandra, D. New generation Mg-alumina spinel refractories for cement rotary kiln / D. Chandra, S. Swain, J. N. Tiwari, B. Mishra, N. Sahoo // Proceedings UNITECR 2011. ― 2011. ― 2-B2-2.

29. Szczerba, J. Causes of application changes and development of spinel products for cement kilns / J. Szczerba // Refractory Materials. ― 1997. ― Vol. 2. ― P. 59 (in Polish).

30. Szczerba, J. Application of magnesia-spinel products in the cement industry / J. Szczerba, J. Piech // CementLime-Gypsum. ― 1995. ― Vol. 2. ― P. 57 (in Polish).

31. Grasset-Bourdel, R. Influence of thermal damage occurrence at microstructural scale on the thermomechanical behaviour of magnesia-spinel refractories / R. Grasset-Bourdel, A. Alzina, M. Huger [et al.] // J. Eur. Ceram. Soc. ― 2012. ― Vol. 32. ― P. 989, 999.

32. Ghosh, A. Effect of spinel content on the properties of magnesia-spinel composite refractory / A. Ghosh, R. Sarkar, B. Mukherjee, S. K. Das // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 2079‒2085.

33. Aksel, C. Fracture behaviour of magnesia and magnesia–spinel composites before and after thermal shock / C. Aksel, P. D. Warren, F. L. Riley // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 2407‒2416.

34. Aksel, C. Mechanical properties of magnesia-spinel composites / C. Aksel, B. Rand, F. L. Riley, P. D. Warren // J. Eur. Ceram. Soc. ― 2002. ― Vol. 22. ― P. 745‒754.

35. Aksel, C. Thermal shock behaviour of magnesia– spinel composites / C. Aksel, B. Rand, F. L. Riley, P. D. Warren // J. Eurор. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 2839‒2845.

36. Aksel, C. Thermal shock parameters [R, R’’’ and R’’’’] of magnesia-spinel composites / C. Aksel, P. D. Warren // J. Europ. Ceram. Soc. ― 2003. ― Vol. 23. ― P. 301‒308.

37. Aksel, C. Work of fracture and fracture surface energy of magnesia-spinel composites / C. Aksel, P. D. Warren // Compos. Sci. Technol. ― 2003. ― Vol. 63. ― P. 1433‒1440.

38. Aksel, C. Magnesia–spinel microcomposites / C. Aksel, P. D. Warren, F. L. Riley // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 3119‒3128.

39. Fischer, W. A. Das Zustandsschaubild EisenoxydulAluminiumoxyd / W. A. Fischer, A. Hoffmann // Arch. Eisenhuettenwes. ― 1956. ― Vol. 27. ― P. 343‒346.

40. Liu, M. Effects of atmosphere on the periclasehercynite brick / M. Liu, Y. Li, S. L. Ma [et al.] // Adv. Mater. Res. ― 2012. ― Vol. 476‒478. ― P. 1523‒1528.

41. Buchebner, G. Magnesia-hercynite bricks, an innovative burnt basic refractory / G. Buchebner, T. Molinaria, H. Harmuth // Proceedings UNITECR 1999. ― 1999. ― P. 201‒203.

42. Chen, J. The kiln coating formation mechanism of MgO‒FeAl2O4 brick / J. Chen, M. Yan, J. Su [et al.] // Ceram. Int. ― 2016. ― Vol. 42. ― P. 569‒575.

43. Nievoll, J. Performance of magnesia hercynite bricks in large Chinese cement rotary kilns / J. Nievoll, Z. Guo, S. Shi // RHI Bulletin. ― 2006. ― Vol. 3. ― P. 15‒17.

44. Contreras, J. E. Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures / J. E. Contreras, G. A. Castillo, E. A. Rodríguez [et al.] // Mater. Charact. ― 2005. ― Vol. 54. ― P. 354‒359.

45. Rodríguez, E. Effect of hercynite spinel content on the properties of magnesia–calcium zirconate dense refractory composite / E. Rodríguez, A. K. Limones, J. E. Contreras [et al.] // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35. ― P. 2631‒2639.

46. Ding, X. Effect of hercynite content on the properties of magnesia-spinel composite refractories sintered in different atmospheres / X. Ding, H. Zhao, Z. Xiang [et al.] // Ceram. Int. ― 2016. ― Vol. 42. ― P. 19067‒19071.

47. Szczerba, J. The effect of natural dolomite admixtures on calcium zirconate-periclase materials microstructure evolution / J. Szczerba, Z. Pędzich // Ceram. Int. ― 2010. ― Vol. 36. ― P. 535‒547.

48. Szczerba, J. Modified magnesia refractory materials / J. Szczerba // Ceramics. ― 2007. ― Vol. 99. (in Polish).

49. DeAza S. Compatibility relationships of periclase in the system CaO‒MgO‒ZrO2‒SiO2 / S. DeAza, C. Richmond, J. White // Trans. J. Br. Ceram. Soc. ― 1974. ― Vol. 73 ― P. 109‒116.

50. Szczerba, J. Aluminates influence on evolution of the thermomechanical properties of refractory materials from the CaO‒MgO‒Al2O3‒ZrO2 system / J. Szczerba, M. Szymaszek, E. Śnieżek [et al.] // Proceedings UNITECR 2013. ― 2013. ― P. 268‒273.

51. Rodríguez, E. Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO‒CaZrO3 refractory brick for the cement industry / E. Rodríguez, G-Alan Castillo, J. Contreras [et al.] // Ceram. Int. ― 2012. ― Vol. 38. ― P. 6769‒6775.

52. Rodríguez, E. A. MgAl2O4 spinel as an effective ceramic bonding in a MgO‒CaZrO3 refractory / E. A. Rodríguez, G. A. Castillo, T. K. Das [et al.] // J. Eur. Ceram. Soc. ― 2013. ― Vol. 33. ― P. 2767‒2774.

53. Yuan, L. Spinel and lanthanum zirconate composite for cement kiln / L. Yuan, S. L. Chen, X. F. Chen [et al.] // Applied Mechanics and Materials. ― 2011. ― Vol. 66‒68. ― P. 1179‒1186.

54. Ghanbarnezhad, S. New development of spinel bonded chrome-free basic brick / S. Ghanbarnezhad, A. Nemati, M. Bavand-Vandchali, R. Naghizadeh // J. Chem. Eng. Mater. Sci. ― 2013. ― Vol. 4. ― P. 7‒12.

55. Wirsing, H. Magnesia bricks containing iron spinel troubleshooters for thermomechanically stressed kilns / H. Wirsing, H. J. Klischat, C. Vellmer // Proceeding UNITECR 2015. ― 2015. ― P. 266.

56. Bartha, P. The cement rotary kiln and its refractory lining / P. Bartha // Interceram. Refractories Manual. ― 2004. ― P. 14‒17.


Supplementary files

For citation: Shcherba Y., Snezhek E., Antonovich V. THE DEVELOPMENT OF THE REFRACTORY MATERIALS FOR THE ROTARY CEMENT KILN'S SINTERING ZONE. NOVYE OGNEUPORY (NEW REFRACTORIES). 2017;(8):31-39. https://doi.org/10.17073/1683-4518-2017-8-31-39

Views: 495

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)