ЭВОЛЮЦИЯ ОГНЕУПОРНЫХ МАТЕРИАЛОВ ЗОНЫ СПЕКАНИЯ ВРАЩАЮЩЕЙСЯ ЦЕМЕНТНОЙ ПЕЧИ


https://doi.org/10.17073/1683-4518-2017-8-31-39

Полный текст:




Аннотация

Показано развитие огнеупорных материалов для футеровки высокотемпературной зоны вращающейся печи цементной промышленности ― второго по величине потребителя огнеупорных материалов. Показана история использования огнеупорных материалов в этой зоне печи, начиная с алюмосиликатных и заканчивая специально разработанными материалами на основе периклаза, используемыми в настоящее время. Рассмотрены преимущества и недостатки этих материалов. Приведены также основные сведения о производстве цементного клинкера для учета возможных химических реакций между сырьевой массой цементной печи и компонентами огнеупорного материала.

Об авторах

Я. Щерба
AGH «Научно-технический университет», факультет материаловедения и керамики.
Польша

доктор технических наук.

Краков.



Э. Снежек
AGH «Научно-технический университет», факультет материаловедения и керамики.
Польша
Краков.


В. Антонович
Вильнюсский технический университет им. Гедиминаса.
Литва

доктор технических наук.

Вильнюс.



Список литературы

1. Outlook for refractory end markets to 2020. [Электронный ресурс]. ― Режим доступа : https://roskill.com/news/outlook-for-refractory-end-markets-to-2020/

2. Chattopadhyay, A. K. Political & economic challenges facing indian refractory industry / A. K. Chattopadhyay, A. Dasgupta // Proceedings UNITECR 2015. ― 2015. ― Proceeding 125.

3. European Commission. Reference document on the best available techniques in the cement and lime manufacturing industries. BAT Reference Document (BREF). European IPPC Bureau, Seville, Spain ― 2001.

4. Best available techniques for the cement industry. General description of the cement production process. ― Brussels : CEMBUREAU 1999. ― P. 15‒43.

5. Szczerba, J. Mechanisms of wear of the refractory lining of rotary kilns. Part I. Mechanical and thermal factors / J. Szczerba, J. Piech, Z. Janik // Ceram. Mater. ― 1993. ― Vol. 1. ― P. 17‒22 (in Polish).

6. Szczerba, J. Mechanisms of wear of the refractory lining of rotary kilns. Part II. Chemical factors / J. Szczerba, J. Piech, Z. Janik // Ceramic Materials. ― 1993. ― Vol. 2. ― P. 11‒15 (in Polish).

7. Szczerba, J. Refractory materials in rotary kilns of cement industry / J. Szczerba, J. Piech // Cement-LimeGypsum. ― 1995. ― Vol. 1. ― P. 22 (in Polish).

8. Rahman, A. Recent development on the uses of alternative fuels in cement manufacturing process / A. Rahman, M. G. Rasul, M. M. K. Khan, S. Sharma // Fuel. ― 2005. ― Vol. 145. ― P. 84‒99.

9. Mokrzycki, E. Alternative fuels for the cement industry / E. Mokrzycki, A. Uliasz-Bocheńczyk // Applied Energy. ― 2003. ― Vol. 74. ― P. 95‒100.

10. Jenkins, B. G. Fuelling the demand for alternatives / B. G. Jenkins, S. B. Mather // The Cement Environmental Yearbook. ― 1997. ― P. 90‒97.

11. Pizant, J. Burning alternative fuels in rotary kilns / J. Pizant, J. C. Gauthier // World Cement. ― 1997. ― Vol. 9. ― P. 64‒75.

12. Aramaki, S. Revised equilibrium diagram for the system Al2O3‒SiO2 / S. Aramaki, R. Roy // Nature. ― 1959. ― Vol. 184. ― P. 631‒632.

13. Osborn, E. F. Phase Equilibrium Diagrams of Oxide Systems / E. F. Osborn, A. Muan // Plate 1, published by the American Ceramic Society and the Edward Orton, Jr., Ceramic Foundation ― 1960.

14. Szczerba, J. Aluminosilicate refractories ― their quality and resistance to corrosive agents in cement and lime kilns / J. Szczerba // Cement-Lime-Gypsum. ― 1993. ― Vol. 2. ― P. 64 (in Polish).

15. Refractories handbook ; ed. by C. A. Schacht. ― New York : Marcel Dekker, 2004.

16. Pocket manual refractory materials: basicsstructures-properties ; ed. by G. Routschka. ― Essen : Vulkan-Verlag, 2004.

17. Jastrzębska, I. An experimental study on hydration of various magnesia raw materials / I. Jastrzębska, J. Szczerba, R. Prorok, E. Śnieżek // Ceram. Silik. ― 2015. ― Vol. 59. ― P. 48‒58.

18. Ceramics science and technology. Volume 2. Materials and properties ; ed. by R. Riedel, I. W. Chen. ― Weinheim : Wiley-VCH, 2010.

19. Alper, A. M. Phase equilibria in the system MgO‒ MgCr2O4 / A. M. Alper, R. N. McNally, R. C. Doman, F. G. Keihn // J. Am. Ceram. Soc. ― 1964. ― Vol. 47. ― P. 30‒33.

20. Bray, D. J. Toxicity of chromium compounds formed in refractories / D. J. Bray // Am. Ceram. Soc. Bull. ― 1985. ― Vol. 64. ― P. 1012‒1016.

21. Szczerba, J. The effect of magnesia-chrome materials reaction with portland clinker on hexavalent chromium in these materials / J. Szczerba // Cement-Lime-Gypsum. ― 1990. ― Vol. 4/5. ― P. 79 (in Polish).

22. Mao, H. H. A reevaluation of the liquid phases in the CaO‒Al2O3 and MgO‒Al2O3 systems / H. H. Mao, M. Selleby, B. Sundman // CALPHAD. ― 2004. ― Vol. 28. ― P. 307‒312.

23. Liu, G. Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln / G. Liu, N. Li, W. Yan, G. Gao, W. Zhou, Y. Li // Ceram. Int. ― 2014. ― Vol. 40. ― P. 8149‒8155.

24. Szczerba, J. Influence of raw materials morphology on properties of magnesia-spinel refractories / J. Szczerba, Z. Pędzich, M. Nikiel, D. Kapuścińska // J. Eur. Ceram. Soc. ― 2007. ― Vol. 27. ― P. 1683‒1689.

25. Szczerba, J. Chemical corrosion of basic refractories by cement kiln materials / J. Szczerba // Ceram. Int. ― 2010. ― Vol. 36. ― P. 877‒1885.

26. Szczerba, J. Effect of oxide additives on properties of magnesia-spinel refractories / J. Szczerba, Z. Pędzich, M. Nikiel // Proceedings UNITECR 2005. ― 2005 ― P. 702‒706.

27. Kitaguchi, D. Y. New chrome free brick for the burning zone of cement rotary kilns / D. Y. Kitaguchi, M. Ono, Y. Tsuchiya, E. Nakajima, Y. Kajita // Proceedings UNITECR 2011. ― 2011. ― 2-B2-3.

28. Chandra, D. New generation Mg-alumina spinel refractories for cement rotary kiln / D. Chandra, S. Swain, J. N. Tiwari, B. Mishra, N. Sahoo // Proceedings UNITECR 2011. ― 2011. ― 2-B2-2.

29. Szczerba, J. Causes of application changes and development of spinel products for cement kilns / J. Szczerba // Refractory Materials. ― 1997. ― Vol. 2. ― P. 59 (in Polish).

30. Szczerba, J. Application of magnesia-spinel products in the cement industry / J. Szczerba, J. Piech // CementLime-Gypsum. ― 1995. ― Vol. 2. ― P. 57 (in Polish).

31. Grasset-Bourdel, R. Influence of thermal damage occurrence at microstructural scale on the thermomechanical behaviour of magnesia-spinel refractories / R. Grasset-Bourdel, A. Alzina, M. Huger [et al.] // J. Eur. Ceram. Soc. ― 2012. ― Vol. 32. ― P. 989, 999.

32. Ghosh, A. Effect of spinel content on the properties of magnesia-spinel composite refractory / A. Ghosh, R. Sarkar, B. Mukherjee, S. K. Das // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 2079‒2085.

33. Aksel, C. Fracture behaviour of magnesia and magnesia–spinel composites before and after thermal shock / C. Aksel, P. D. Warren, F. L. Riley // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 2407‒2416.

34. Aksel, C. Mechanical properties of magnesia-spinel composites / C. Aksel, B. Rand, F. L. Riley, P. D. Warren // J. Eur. Ceram. Soc. ― 2002. ― Vol. 22. ― P. 745‒754.

35. Aksel, C. Thermal shock behaviour of magnesia– spinel composites / C. Aksel, B. Rand, F. L. Riley, P. D. Warren // J. Eurор. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 2839‒2845.

36. Aksel, C. Thermal shock parameters [R, R’’’ and R’’’’] of magnesia-spinel composites / C. Aksel, P. D. Warren // J. Europ. Ceram. Soc. ― 2003. ― Vol. 23. ― P. 301‒308.

37. Aksel, C. Work of fracture and fracture surface energy of magnesia-spinel composites / C. Aksel, P. D. Warren // Compos. Sci. Technol. ― 2003. ― Vol. 63. ― P. 1433‒1440.

38. Aksel, C. Magnesia–spinel microcomposites / C. Aksel, P. D. Warren, F. L. Riley // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 3119‒3128.

39. Fischer, W. A. Das Zustandsschaubild EisenoxydulAluminiumoxyd / W. A. Fischer, A. Hoffmann // Arch. Eisenhuettenwes. ― 1956. ― Vol. 27. ― P. 343‒346.

40. Liu, M. Effects of atmosphere on the periclasehercynite brick / M. Liu, Y. Li, S. L. Ma [et al.] // Adv. Mater. Res. ― 2012. ― Vol. 476‒478. ― P. 1523‒1528.

41. Buchebner, G. Magnesia-hercynite bricks, an innovative burnt basic refractory / G. Buchebner, T. Molinaria, H. Harmuth // Proceedings UNITECR 1999. ― 1999. ― P. 201‒203.

42. Chen, J. The kiln coating formation mechanism of MgO‒FeAl2O4 brick / J. Chen, M. Yan, J. Su [et al.] // Ceram. Int. ― 2016. ― Vol. 42. ― P. 569‒575.

43. Nievoll, J. Performance of magnesia hercynite bricks in large Chinese cement rotary kilns / J. Nievoll, Z. Guo, S. Shi // RHI Bulletin. ― 2006. ― Vol. 3. ― P. 15‒17.

44. Contreras, J. E. Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures / J. E. Contreras, G. A. Castillo, E. A. Rodríguez [et al.] // Mater. Charact. ― 2005. ― Vol. 54. ― P. 354‒359.

45. Rodríguez, E. Effect of hercynite spinel content on the properties of magnesia–calcium zirconate dense refractory composite / E. Rodríguez, A. K. Limones, J. E. Contreras [et al.] // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35. ― P. 2631‒2639.

46. Ding, X. Effect of hercynite content on the properties of magnesia-spinel composite refractories sintered in different atmospheres / X. Ding, H. Zhao, Z. Xiang [et al.] // Ceram. Int. ― 2016. ― Vol. 42. ― P. 19067‒19071.

47. Szczerba, J. The effect of natural dolomite admixtures on calcium zirconate-periclase materials microstructure evolution / J. Szczerba, Z. Pędzich // Ceram. Int. ― 2010. ― Vol. 36. ― P. 535‒547.

48. Szczerba, J. Modified magnesia refractory materials / J. Szczerba // Ceramics. ― 2007. ― Vol. 99. (in Polish).

49. DeAza S. Compatibility relationships of periclase in the system CaO‒MgO‒ZrO2‒SiO2 / S. DeAza, C. Richmond, J. White // Trans. J. Br. Ceram. Soc. ― 1974. ― Vol. 73 ― P. 109‒116.

50. Szczerba, J. Aluminates influence on evolution of the thermomechanical properties of refractory materials from the CaO‒MgO‒Al2O3‒ZrO2 system / J. Szczerba, M. Szymaszek, E. Śnieżek [et al.] // Proceedings UNITECR 2013. ― 2013. ― P. 268‒273.

51. Rodríguez, E. Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO‒CaZrO3 refractory brick for the cement industry / E. Rodríguez, G-Alan Castillo, J. Contreras [et al.] // Ceram. Int. ― 2012. ― Vol. 38. ― P. 6769‒6775.

52. Rodríguez, E. A. MgAl2O4 spinel as an effective ceramic bonding in a MgO‒CaZrO3 refractory / E. A. Rodríguez, G. A. Castillo, T. K. Das [et al.] // J. Eur. Ceram. Soc. ― 2013. ― Vol. 33. ― P. 2767‒2774.

53. Yuan, L. Spinel and lanthanum zirconate composite for cement kiln / L. Yuan, S. L. Chen, X. F. Chen [et al.] // Applied Mechanics and Materials. ― 2011. ― Vol. 66‒68. ― P. 1179‒1186.

54. Ghanbarnezhad, S. New development of spinel bonded chrome-free basic brick / S. Ghanbarnezhad, A. Nemati, M. Bavand-Vandchali, R. Naghizadeh // J. Chem. Eng. Mater. Sci. ― 2013. ― Vol. 4. ― P. 7‒12.

55. Wirsing, H. Magnesia bricks containing iron spinel troubleshooters for thermomechanically stressed kilns / H. Wirsing, H. J. Klischat, C. Vellmer // Proceeding UNITECR 2015. ― 2015. ― P. 266.

56. Bartha, P. The cement rotary kiln and its refractory lining / P. Bartha // Interceram. Refractories Manual. ― 2004. ― P. 14‒17.


Дополнительные файлы

Для цитирования: Щерба Я., Снежек Э., Антонович В. ЭВОЛЮЦИЯ ОГНЕУПОРНЫХ МАТЕРИАЛОВ ЗОНЫ СПЕКАНИЯ ВРАЩАЮЩЕЙСЯ ЦЕМЕНТНОЙ ПЕЧИ. Новые огнеупоры. 2017;(8):31-39. https://doi.org/10.17073/1683-4518-2017-8-31-39

For citation: Shcherba Y., Snezhek E., Antonovich V. THE DEVELOPMENT OF THE REFRACTORY MATERIALS FOR THE ROTARY CEMENT KILN'S SINTERING ZONE. NOVYE OGNEUPORY (NEW REFRACTORIES). 2017;(8):31-39. (In Russ.) https://doi.org/10.17073/1683-4518-2017-8-31-39

Просмотров: 387

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)