Высокотемпературное сдвиговое деформирование материалов на основе ZrO2‒Y2O3‒ZrB2‒ZrC
https://doi.org/10.17073/1683-4518-2025-4-33-37
Аннотация
Об авторах
А. П. ЧижиковРоссия
к. т. н.
г. Черноголовка Московской обл., Россия
А. С. Константинов
Россия
к. т. н.
г. Черноголовка Московской обл., Россия
М. С. Антипов
Россия
г. Черноголовка Московской обл., Россия
Список литературы
1. Nazari, K. Advanced manufacturing methods for ceramic and bioinspired ceramic composites: a review / K. Nazari, P. Tran, P. Tan [et al.] // Open Ceram. ― 2023. ― Vol. 15. ― Article 100399. https://doi.org/10.1016/j.oceram.2023.100399.
2. Zhong, Y. Insight into tuning of ZrO2 distribution and mechanical properties of directionally solidified Al2O3/(5Re0.2)AG/ZrO2 eutectic ceramic composites / Y. Zhong, Z. Li, X. Wang // Compos. B: Eng. ― 2023. ― Vol. 266. ― Article 111016. https://doi.org/10.1016/j.compositesb.2023.111016.
3. Zhang, W. Preparation and properties of a porous ZrO2/SiZrBOC ceramic matrix composite with high temperature resistance and low thermal conductivity / W. Zhang, F. Shi, J. Wang [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44. ― P. 2329‒2337. https://doi.org/10.1016/j.jeurceramsoc.2023.11.007.
4. Wang, Y. Microstructure and properties of SrTiO3/ZrO2 ceramic composites prepared through pressureless sintering / Y. Wang, J. Ye, J. Li [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 1908‒1917. https://doi.org/10.1016/j.ceramint.2023.10.293.
5. Cao, W. Research on the drying kinetics for the microwave drying of Y2O3‒ZrO2 ceramic powder / W. Cao, J. Zhou, C. Ren [et al.] // JMR&T. ― 2023. ― Vol. 26. ― P. 4563‒4580. https://doi.org/10.1016/j.jmrt.2023.08.183.
6. Zhang, K. Broadening the microstructure regime of Al2O3‒ZrO2 hypereutectic ceramic fabricated via laser powder bed fusion / K. Zhang, S. Li, T. Liu [et al.] // Smart Mater. Manuf. ― 2024. ― Vol. 2. ― Article 100048. https://doi.org/10.1016/j.smmf.2024.100048.
7. Hu, D. Effects of air plasma flame on the ZrB2-based UHTC coatings: Microstructure, phase evolution and ablation resistance / D. Hu, Q. Fu, L. Zhou [et al.] // JMST. ― 2023. ― Vol. 158. ― P. 194‒206. https://doi.org/10.1016/j.jmst.2023.01.013.
8. Zamora, V. In situ formation of ZrB2‒ZrO2 ultra-hightemperature ceramic composites from high-energy ballmilled ZrB2 powders / V. Zamora, A. L. Ortiz, F. Guiberteau [et al.] // J. Alloys Compd. ― 2021. ― Vol. 518. ― P. 38‒43. https://doi.org/10.1016/j.jallcom.2011.12.102.
9. Tian, Y. Synthesis of ZrB2‒ZrC hybrid powders via boro-carbothermal reduction of ZrO2 by B4C and carbon black / Y. Tian, W. Sun // Ceram. Int. ― 2022. ― Vol. 48. ― P. 26499‒26507. https://doi.org/10.1016/j.ceramint.2022.05.346.
10. Jyoti, М. The microstructural and mechanical behavior of in-situ synthesized ZrB2‒ZrC and ZrB2‒SiC‒ZrC composites: а comparative study / М. Jyoti, А. Tiwari, A. Singh [et al.] // Vacuum. ― 2023. ― Vol. 214. ― Article 112199. https://doi.org/10.1016/j.vacuum.2023.112199.
11. Chengwan, Y. Flexible ZrO2/ZrB2/C nanofiber felt with enhanced microwave absorption and ultralow thermal conductivity / Y. Chengwan, L. Kewei, H. Mengen [et al.] // J. Materiomics. ― 2025. ― Vol. 11. ― Article 100988. https://doi.org/10.1016/j.jmat.2024.100988.
12. Asl, M. S. Toughening of ZrB2-based composites with in-situ synthesized ZrC from ZrO2 and graphite precursors / M. S. Asl, B. Nayebi, S. Parvizi [et al.] // J. Sci. Adv. Mater. Dev. ― 2021. ― Vol. 6. ― P. 42‒48. https://doi.org/10.1016/j.jsamd.2020.09.014.
13. Qian, W. Flexible ZrO2/ZrC/ZrB2 ceramic nanofiber mats by electrospinning with broadband electromagnetic absorption and high-temperature oxidation resistance / Q. Wang, L. Qi, Y. Jia [et al.] // Mater. Lett. ― 2024. ― Vol. 365. ― Article 136442. https://doi.org/10.1016/j.matlet.2024.136442.
14. Tian, Y. Synthesis of ZrB2‒ZrC hybrid powders via boro-carbothermal reduction of ZrO2 by B4C and carbon black / Y. Tian, W. Sun // Ceram. Int. ― 2022. ― Vol. 48. ― P. 26499‒26507. https://doi.org/10.1016/j.ceramint.2022.05.346.
15. Liu, C. Preparation of ZrB2‒ZrC‒SiC‒ZrO2 nanopowders with in-situ grown homogeneously dispersed SiC nanowires / C. Liu, L. Zhang, X. Yuan [et al.] // Mater. Des. ― 2020. ― Vol. 196. ― Article 109186. https://doi.org/10.1016/j.matdes.2020.109186.
16. Jing, Q. Preparation of near fully dense (LaO1.5)x(ErO1.5)x(YO1.5)0.03‒0.5x(ZrO2)0.97‒x ceramics with restricted grain growth and high surface residual stress by hot pressing sintering at 950 °C / Q. Jing, J. Xing, S. Cui [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 5796‒5805. https://doi.org/10.1016/j.ceramint.2023.11.385.
17. Lee, J. Mechanical properties of TiC reinforced MgO‒ZrO2 composites via spark plasma sintering / J. Lee, K.-B. Jang, S. Lee [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 17255‒17260. https://doi.org/10.1016/j.ceramint.2023.02.091.
18. Chen, Y. Effect of sintering temperature on the microstructures and mechanical properties of ZrO2 ceramics fabricated by additive manufacturing / Y. Chen, J. Tan, J. Sun [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 11392‒11399. https://doi.org/10.1016/j.ceramint.2024.01.039.
19. Bazhin, P. Titanium-titanium boride matrix composites prepared in-situ under conditions combining combustion processes and high-temperature shear deformation / P. Bazhin, A. Chizhikov, A. Bazhina [et al.] // Mater. Sci. Eng. A. ― 2023. ― Vol. 874. ― Article 145093. https://doi.org/10.1016/j.msea.2023.145093.
20. Bazhin, P. Ceramic Ti‒B composites synthesized by combustion followed by high-temperature deformation / P. Bazhin, A. Stolin, A. Konstantinov [et al.] // Materials. ― 2016. ― Vol. 9. ― Article 1027. https://doi.org/10.3390/ma9121027.
21. Antipov, M. Formability, phase composition, and microstructure of TiC‒(5‒50 wt. %) NiCr-based materials obtained by free SHS compression / M. Antipov, P. Bazhin, A. Chizhikov [et al.] // Russ. J. Inorg. Chem. ― 2022. ― Vol. 67. ― P. 1658‒1664. https://doi.org/10.1134/S0036023622100564.
22. Prokopets, A. Structure and mechanical characteristics of a laminated Ti3AlC2 MAX phase-based composite material prepared by a free self-propagating high-temperature synthesis compression method / A. Prokopets, P. Bazhin, A. Konstantinov [et al.] // Inorg. Mater. ― 2021. ― Vol. 57. ― P. 937‒941. https://doi.org/10.1134/S0020168521090132.
23. Chizhikov, A. P. Self-propagating high-temperature synthesis of ZrO2‒ZrB2‒ZrC composite material / A. P. Chizhikov, A. O. Zhodovich, N. Yu. Khomenko [et al.] // Inorg. Mater. Appl. Res. ― 2025. ― Vol. 16. ― P. 500‒507. https://doi.org/10.1134/S2075113324701934.
Дополнительные файлы
Для цитирования: Чижиков А.П., Константинов А.С., Антипов М.С. Высокотемпературное сдвиговое деформирование материалов на основе ZrO2‒Y2O3‒ZrB2‒ZrC. Новые огнеупоры. 2025;(4):33-37. https://doi.org/10.17073/1683-4518-2025-4-33-37
For citation: Chizhikov A.P., Konstantinov A.S., Antipov M.S. High temperature shear deformation of materials based on ZrO2‒Y2O3‒ZrB2‒ZrC. NOVYE OGNEUPORY (NEW REFRACTORIES). 2025;(4):33-37. (In Russ.) https://doi.org/10.17073/1683-4518-2025-4-33-37
Обратные ссылки
- Обратные ссылки не определены.












.png)
.png)








