Relationship between the synthesis and structure of ceramic precursors of the TiO 2‒CeO 2‒ZrO2 system
https://doi.org/10.17073/1683-4518-2020-2-59-64
Abstract
About the Authors
O. Yu. KurapovaRussian Federation
S. N. Golubev
Russian Federation
A. G. Glukharev
Russian Federation
V. G. Konakov
Russian Federation
References
1. Hardwicke, C. U. Advances in thermal spray coatings for gas turbines and energy generation: a review / C. U. Hardwicke, Y. C. Lau // J. Therm. Spray Technol. ― 2015. ― Vol. 22. ― P. 564‒576. https://dx.doi.org/10.1007/s11666-013-9904-0.
2. Miller, R. A. Thermal barrier coatings for aircraft engines: history and directions / R. A. Miller // Journal of thermal spray technology. ― 1997. ― Vol. 6, № 1. ― P. 35‒42. https://doi.org/10.1007/BF02646310.
3. Kumar, V. Progress update on failure mechanisms of advanced thermal barrier coatings: A review / V. Kumar, K. Balasubramanian // Progress in Organic Coatings. ― 2016. ― Vol. 90. ― P. 54‒82. https://doi.org/10.1016/j.porgcoat.2015.09.019.
4. Padture, N. P. Thermal barrier coatings for gasturbine engine applications / N. P. Padture, M. Gell, E. H. Jordan // Science. ― 2002. ― Vol. 296, № 5566. ― P. 280‒284. https://dx.doi.org/10.1126/science.1068609.
5. Jamali, H. Fabrication and evaluation of plasmasprayed nanostructured and conventional YSZ thermal barrier coatings / H. Jamali, R. Mozafarinia, R. ShojaRazavi [et al.] // Current Nanoscience. ― 2012. ― Vol. 8, № 3. ― P. 402‒409.
6. Lima, R. S. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects / R. S. Lima, B. R. Marple // Materials Science and Engineering: A. ― 2008. ― Vol. 485, № 1/2. ― P. 182‒193.
7. Rezanka, S. Improved thermal cycling durability of thermal barrier coatings manufactured by PS-PVD / S. Rezanka, G. Mauer, R. Vaßen // Journal of Thermal Spray Technology. ― 2014. ― Vol. 23, № 1/2. ― P. 182‒189.
8. Hongming, Z. Effect of rare earth doping on thermophysical properties of lanthanum zirconate ceramic for thermal barrier coatings / Z. Hongming, Y. Danqing // Journal of Rare Earths. ― 2008. ― Vol. 26, № 6. ― P. 770‒774.
9. Mahade, S. Erosion performance of gadolinium zirconate-based thermal barrier coatings processed by suspension plasma spray / S. Mahade, N. Curry, S. Björklund [et al.] // Journal of Thermal Spray Technology. ― 2017. ― Vol. 26, № 1/2. ― P. 108‒115.
10. Zhang, J. Lanthanum zirconate based thermal barrier coatings: A review / J. Zhang, X. Guo, Y. G. Jung, L. Li, J. Knapp // Surface and Coatings Technology. ― 2017. ― Vol. 323. ― P. 18‒29.
11. Ejaz, N. Thermo-physical properties measurement of advanced TBC materials with pyrochlore and perovskite structures / L. Ali, A. Ahmad, M. Mansoor [et al.] // Key Engineering Materials. ― Trans. Tech. Publications. ― 2018. ― Vol. 778. ― P. 236‒244.
12. Vassen, R. Zirconates as new materials for thermal barrier coatings / R. Vassen, X. Cao, F. Tietz [et al.] // J. Am. Ceram. Soc. ― 2000. ― Vol. 83, № 8. ― P. 2023‒2028.
13. Zhao, M. Effect of lattice defects on thermal conductivity of Ti-doped, Y2O3-stabilized ZrO2 / M. Zhao, W. Pan // Acta Mater. ― 2013. ― Vol. 61, № 14. ― P. 5496‒5503.
14. Pitek, F. M. Opportunities for TBCs in the ZrO2‒YO1,5‒ TaO2,5 system / F. M. Pitek, C. G. Levi // Surface and Coatings Technology. ― 2007. ― Vol. 201, № 12. ― P. 6044‒6050.
15. Kim, D. J. Effect of tetravalent dopants on Raman spectra of tetragonal zirconia / D. J. Kim, J. W. Jang, H. L. Lee // J. Am. Ceram. Soc. ― 1997. ― Vol. 80, № 6. ― P. 1453‒1461.
16. Wang, J. Phase stability and thermo-physical properties of ZrO2‒CeO2‒TiO2 ceramics for thermal barrier coatings / J. Wang, J. Sun, Q. Jing [et al.] // J. Eur. Ceram. Soc. ― 2018. ― Vol. 38, № 7. ― P. 2841‒2850.
17. Shannon, R. D. T. Effective ionic radii in oxides and fluorides / R. D. T. Shannon, C. T. Prewitt // Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. ― 1969. ― Vol. 25, № 5. ― P. 925‒946.
18. Han, Z. A comparison of thermal shock behavior between currently plasma spray and supersonic plasma spray CeO2‒Y2O3‒ZrO2 graded thermal barrier coatings / Z. Han, B. Xu, H. Wang, S. Zhou // Surface and Coatings Technology. ― 2007. ― Vol. 201, № 9‒11. ― P. 5253‒5256.
19. Pandolfelli, V. C. Sintering and microstructural studies in the system ZrO2‒TiO2‒CeO2 / V. C. Pandolfelli, M. Rainforth, R. Stevens // Journal of Materials Science. ― 1990. ― Vol. 25, № 4. ― P. 2233‒2244.
20. Krogstad, J. A. Opportunities for improved TBC durability in the CeO2‒TiO2‒ZrO2 system / J. A. Krogstad, M. Lepple, C. G. Levi // Surface and Coatings Technology. ― 2013. ― Vol. 221. ― P. 44‒52.
21. Картотека порошкограмм (powder diffraction file, PDF-2). Release 2007.
22. Kurapova, O. Y. Thermal evolution of the microstructure of calcia stabilized zirconia precursors manufactured by cryochemical technique / O. Y. Kurapova, D. V. Nechaeva, A. V. Ivanov, S. N. Golubev, V. M. Ushakov, V. G. Konakov // Reviews on Advanced Materials Science. ― 2016. ― Vol. 47. ― P. 95‒104.
Supplementary files
For citation: Kurapova O.Y., Golubev S.N., Glukharev A.G., Konakov V.G. Relationship between the synthesis and structure of ceramic precursors of the TiO 2‒CeO 2‒ZrO2 system. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(2):59-64. https://doi.org/10.17073/1683-4518-2020-2-59-64
Refbacks
- There are currently no refbacks.