Взаимосвязь синтеза и структуры керамических прекурсоров системы TiO2‒CeO2‒ZrO2


https://doi.org/10.17073/1683-4518-2020-2-59-64

Полный текст:




Аннотация

Получены тетрагональные твердые растворы на основе системы TiO2‒CeO2‒ZrO2, стабильные до 1350 °С. Методом pH-метрического титрования смеси исходных солей исследованы конкурентные процессы гидролиза и осаждения в трехкомпонентной системе. Исследованы микроструктура и удельная поверхность прекурсоров после синтеза. Методами СТА, РФА и лазерной седиментографии проведено детальное исследование фазообразования в прекурсорах в интервале 600‒1350 °С. Для всех исследованных составов показано, что при повышении температуры до 1100 °С имеет место конкурентное фазообразование, которое сопровождается деагломерацией в системе до 1000 °С.

Об авторах

О. Ю. Курапова
ФГБОУ ВО «Санкт-Петербургский государственный университет»; ФГАОУ ВО «Санкт-Петербургский государственный политехнический университет Петра Великого»
Россия
К. х. н.


С. Н. Голубев
ООО «НТЦ Стекло и Керамика»
Россия
к. х. н.


А. Г. Глухарев
ФГБОУ ВО «Санкт-Петербургский государственный университет»; ФГАОУ ВО «Санкт-Петербургский государственный политехнический университет Петра Великого»
Россия


В. Г. Конаков
ФГБОУ ВО «Санкт-Петербургский государственный университет»; ФГАОУ ВО «Санкт-Петербургский государственный политехнический университет Петра Великого»
Россия
д. х. н.


Список литературы

1. Hardwicke, C. U. Advances in thermal spray coatings for gas turbines and energy generation: a review / C. U. Hardwicke, Y. C. Lau // J. Therm. Spray Technol. ― 2015. ― Vol. 22. ― P. 564‒576. https://dx.doi.org/10.1007/s11666-013-9904-0.

2. Miller, R. A. Thermal barrier coatings for aircraft engines: history and directions / R. A. Miller // Journal of thermal spray technology. ― 1997. ― Vol. 6, № 1. ― P. 35‒42. https://doi.org/10.1007/BF02646310.

3. Kumar, V. Progress update on failure mechanisms of advanced thermal barrier coatings: A review / V. Kumar, K. Balasubramanian // Progress in Organic Coatings. ― 2016. ― Vol. 90. ― P. 54‒82. https://doi.org/10.1016/j.porgcoat.2015.09.019.

4. Padture, N. P. Thermal barrier coatings for gasturbine engine applications / N. P. Padture, M. Gell, E. H. Jordan // Science. ― 2002. ― Vol. 296, № 5566. ― P. 280‒284. https://dx.doi.org/10.1126/science.1068609.

5. Jamali, H. Fabrication and evaluation of plasmasprayed nanostructured and conventional YSZ thermal barrier coatings / H. Jamali, R. Mozafarinia, R. ShojaRazavi [et al.] // Current Nanoscience. ― 2012. ― Vol. 8, № 3. ― P. 402‒409.

6. Lima, R. S. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects / R. S. Lima, B. R. Marple // Materials Science and Engineering: A. ― 2008. ― Vol. 485, № 1/2. ― P. 182‒193.

7. Rezanka, S. Improved thermal cycling durability of thermal barrier coatings manufactured by PS-PVD / S. Rezanka, G. Mauer, R. Vaßen // Journal of Thermal Spray Technology. ― 2014. ― Vol. 23, № 1/2. ― P. 182‒189.

8. Hongming, Z. Effect of rare earth doping on thermophysical properties of lanthanum zirconate ceramic for thermal barrier coatings / Z. Hongming, Y. Danqing // Journal of Rare Earths. ― 2008. ― Vol. 26, № 6. ― P. 770‒774.

9. Mahade, S. Erosion performance of gadolinium zirconate-based thermal barrier coatings processed by suspension plasma spray / S. Mahade, N. Curry, S. Björklund [et al.] // Journal of Thermal Spray Technology. ― 2017. ― Vol. 26, № 1/2. ― P. 108‒115.

10. Zhang, J. Lanthanum zirconate based thermal barrier coatings: A review / J. Zhang, X. Guo, Y. G. Jung, L. Li, J. Knapp // Surface and Coatings Technology. ― 2017. ― Vol. 323. ― P. 18‒29.

11. Ejaz, N. Thermo-physical properties measurement of advanced TBC materials with pyrochlore and perovskite structures / L. Ali, A. Ahmad, M. Mansoor [et al.] // Key Engineering Materials. ― Trans. Tech. Publications. ― 2018. ― Vol. 778. ― P. 236‒244.

12. Vassen, R. Zirconates as new materials for thermal barrier coatings / R. Vassen, X. Cao, F. Tietz [et al.] // J. Am. Ceram. Soc. ― 2000. ― Vol. 83, № 8. ― P. 2023‒2028.

13. Zhao, M. Effect of lattice defects on thermal conductivity of Ti-doped, Y2O3-stabilized ZrO2 / M. Zhao, W. Pan // Acta Mater. ― 2013. ― Vol. 61, № 14. ― P. 5496‒5503.

14. Pitek, F. M. Opportunities for TBCs in the ZrO2‒YO1,5‒ TaO2,5 system / F. M. Pitek, C. G. Levi // Surface and Coatings Technology. ― 2007. ― Vol. 201, № 12. ― P. 6044‒6050.

15. Kim, D. J. Effect of tetravalent dopants on Raman spectra of tetragonal zirconia / D. J. Kim, J. W. Jang, H. L. Lee // J. Am. Ceram. Soc. ― 1997. ― Vol. 80, № 6. ― P. 1453‒1461.

16. Wang, J. Phase stability and thermo-physical properties of ZrO2‒CeO2‒TiO2 ceramics for thermal barrier coatings / J. Wang, J. Sun, Q. Jing [et al.] // J. Eur. Ceram. Soc. ― 2018. ― Vol. 38, № 7. ― P. 2841‒2850.

17. Shannon, R. D. T. Effective ionic radii in oxides and fluorides / R. D. T. Shannon, C. T. Prewitt // Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. ― 1969. ― Vol. 25, № 5. ― P. 925‒946.

18. Han, Z. A comparison of thermal shock behavior between currently plasma spray and supersonic plasma spray CeO2‒Y2O3‒ZrO2 graded thermal barrier coatings / Z. Han, B. Xu, H. Wang, S. Zhou // Surface and Coatings Technology. ― 2007. ― Vol. 201, № 9‒11. ― P. 5253‒5256.

19. Pandolfelli, V. C. Sintering and microstructural studies in the system ZrO2‒TiO2‒CeO2 / V. C. Pandolfelli, M. Rainforth, R. Stevens // Journal of Materials Science. ― 1990. ― Vol. 25, № 4. ― P. 2233‒2244.

20. Krogstad, J. A. Opportunities for improved TBC durability in the CeO2‒TiO2‒ZrO2 system / J. A. Krogstad, M. Lepple, C. G. Levi // Surface and Coatings Technology. ― 2013. ― Vol. 221. ― P. 44‒52.

21. Картотека порошкограмм (powder diffraction file, PDF-2). Release 2007.

22. Kurapova, O. Y. Thermal evolution of the microstructure of calcia stabilized zirconia precursors manufactured by cryochemical technique / O. Y. Kurapova, D. V. Nechaeva, A. V. Ivanov, S. N. Golubev, V. M. Ushakov, V. G. Konakov // Reviews on Advanced Materials Science. ― 2016. ― Vol. 47. ― P. 95‒104.


Дополнительные файлы

Для цитирования: Курапова О.Ю., Голубев С.Н., Глухарев А.Г., Конаков В.Г. Взаимосвязь синтеза и структуры керамических прекурсоров системы TiO2‒CeO2‒ZrO2. Новые огнеупоры. 2020;(2):59-64. https://doi.org/10.17073/1683-4518-2020-2-59-64

For citation: Kurapova O.Y., Golubev S.N., Glukharev A.G., Konakov V.G. Relationship between the synthesis and structure of ceramic precursors of the TiO 2‒CeO 2‒ZrO2 system. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(2):59-64. (In Russ.) https://doi.org/10.17073/1683-4518-2020-2-59-64

Просмотров: 263

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)