К. т. н. А. А. Бирюкова (🖂), Т. А. Тихонова, А. В. Боронина

АО ЦНЗМО, Алматы, Республика Казахстан

УДК 666.762.453.017:620.169.1]:669.43

ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ И КОРРОЗИИ ПЕРИКЛАЗОХРОМИТОВЫХ ОГНЕУПОРОВ ПРИ ЭЛЕКТРОТЕРМИЧЕСКОЙ ПЕРЕРАБОТКЕ СВИНЕЦСОДЕРЖАЩИХ ПРОДУКТОВ

Изучены особенности эксплуатации периклазохромитовой футеровки электротермической установки при переработке свинец- и цинксодержащих продуктов. Установлено, что огнеупорная футеровка в процессе эксплуатации подвергается эрозионно-коррозионному износу. Характер и степень разрушения огнеупора зависят от места его нахождения в элементах электротермической установки. Наиболее сильному износу подвергается огнеупорная футеровка в своде и шлаковом поясе плавильной печи.

Ключевые слова: футеровка, огнеупор, серебристая пена, электропечь, конденсатор, свод, шлаковый пояс, фаза, периклаз, хромшпинелид, силикаты, цинк, свинец.

введение

Основными способами переработки свинцового сырья в цветной металлургии Казахстана являются пирометаллургические: шахтная восстановительная плавка агломерата, реакционная плавка в горнах, восстановительно-реакционная плавка в электротермических печах. Особое место среди способов переработки свинцового сырья занимает восстановительно-реакционная плавка в электротермических установках. Таким способом перерабатываются свинцовые концентраты, медные шликеры, металлургические пыли, и в том числе серебристая пена [1–4].

Цель данной работы — изучение особенностей службы и коррозии периклазохромитовых огнеупоров в электротермической установке по переработке серебристой пены на свинцовом заводе АО «Казцинк».

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Электротермическая установка, перерабатывающая серебристую пену, состоит из отдельных элементов: плавильной печи, конденсатора цинковых паров и пылеулавливающих устройств (рис. 1). Главный элемент электротермической схемы переработки серебристой пены — трехэлектродная печь круглой конструкции. Внутренние элементы электропечи (свод, стены, подина) и конденсатора футерованы огнеупорами периклазохромитового состава. Пыль и газы конденсатора поступают в инерционный пылеулавливатель, снабженный взрывобезопасным

> 🖂 A. А. Бирюкова E-mail: biryuk.silikat@mail.ru

клапаном, и далее в рукавные фильтры. Печь и конденсатор работают под давлением, регулируемым автоматически.

Процесс плавки серебристой пены ведут в электропечи в восстановительной среде при 1000-1200 °C. Температура парогазовой смеси под сводом 1100-1250 °C, в коротком газоходе — 950 °C, в конденсаторе — 650-700 °C.

Переработка серебристой пены заключается в дистилляции цинка с конденсацией его в жидкий металл и получении серебросодержащего свинца. По окончании плавки серебристый свинец выпускают через сифон в изложницы и направляют на купеляцию.

Шлак по мере накопления примесей загустевает, и его заменяют новым. Вместе с разогревом печи разогревают конденсатор отходящими газами с температурой 700 °С. По мере наплавления цинковой ванны жидким цинком в конденсатор устанавливают мешалку для разбрызгивания металла. Частота вращения мешалки 500-950 об/мин. Температура цинка в сифонной чаше

Рис. 1. Электротермическая установка, перерабатывающая серебристую пену: 1 — плавильная печь; 2 — конденсатор; 3 — пылеулавливающие устройства

550-600 °C. Цинк отливают в блоки и отправляют на рафинирование свинца в плавильный цех.

Таким образом, внутренняя поверхность огнеупорной футеровки находится в контакте с агрессивным металлошлаковым расплавом под воздействием высоких температур и восстановительной среды. Причем условия службы отдельных элементов кладки значительно отличаются друг от друга и зависят от места нахождения огнеупора. Наибольшее разрушение огнеупоров наблюдается в шлаковом поясе и своде электропечи вблизи электродов, замену футеровки которых приходится проводить через каждые 1,5-2 мес, что дестабилизирует работу установки в целом.

На момент отбора проб кладка футеровки электротермической установки, перерабатывающей серебристую пену, была выполнена из периклазохромитовых огнеупоров со следующими показателями свойств: предел прочности при сжатии 21–23 МПа, открытая пористость 22–25 %, температура начала деформации под нагрузкой 1530 °C, термостойкость 2–3 теплосмены, содержание Cr₂O₃ 25,8 %, MgO 44,7 %, SiO₂ 6,6 %.

Химический и минеральный составы периклазохромитовых огнеупоров из футеровки электротермической установки исследовали с применением химического, микроскопического и рентгеноструктурного методов анализа (табл. 1, 2).

Основными минералами огнеупора до службы являются периклаз и хромшпинелид с характерным для них набором линий на дифрактограмме (периклаз — (2,43, 2,11, 1,49) · 10⁻¹ нм; хромшпинелид — (4,84, 2,61, 2,51, 2,08) · 10⁻¹ нм) и обычными оптическими свойствами. В структуре огнеупора до службы присутствуют также вторичные шпинели сложного состава и силикаты (мервинит, форстерит). Агрегаты, сформированные из зерен основных фаз периклаза и хромшпинелида, сце-

Таблица 1. Химический состав огнеупоров после службы в электротермической установке, мас. %

Место отбора	Зона	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃	Cr ₂ O ₃	CaO	MgO	Na ₂ O	Pb	Zn
Огнеупор до службы		6,50	8,10	11,90	26,90	1,80	44,80	—	_	_
Свод печи	Рабочая	8,32	7,24	10,45	23,40	4,86	36,41	2,87	0,40	5,45
	Переходная	7,56	8,96	11,63	23,84	3,42	37,98	2,75	0,32	3,74
	Малоизмненная	8,58	7,42	12,00	25,22	1,45	40,82	0,68	0,22	3,41
Шлаковый пояс печи	Рабочая корочка	10,38	3,37	8,04	23,84	16,71	21,34	7,55	4,32	4,45
	Рабочая	13,36	6,85	8,48	19,37	15,74	20,42	7,37	4,25	4,16
	Переходная	8,22	5,90	10,70	20,64	8,55	34,25	5,37	1,52	4,90
	Малоизмененная	7,15	7,69	11,20	24,70	6,27	34.33	3,50	1,10	4,13
Конденсатор	Рабочая	5,16	5,25	9,12	16,62	2,28	38,82	1,12	0,72	23,91
	Переходная	5,50	2,47	9,08	14,67	1,71	42,50	1,75	1,27	21,05
	Малоизмененная	5,81	7,53	10,34	25,70	1,53	43,81	0,35	0,52	7,45

Таблица 2. Структура и фазовый состав проб периклазохромитового огнеупора после службы в электротермической установке

Зона	Макроструктура пробы огнеупора по зонам	Фазовый состав пробы по данным микроскопиче- ского и рентгенофазового анализов							
Огнеупор до службы	Образец темно-коричневого цвета, разнозернистой структуры	Периклаз, хромшпинелид, вторичные шпинели, форстерит, мервинит							
Свод электропечи									
Рабочая	Толщина — 15 мм, коричневого цвета, трещиноватая, разнозернистая, крупнокристаллической структуры	Хромшпинелид, периклаз, вторичные шпинели, CaMgSiO ₄ , Na ₂ O·2MgO·6SiO ₂ , стекло и металлический цинк							
Переходная	Толщина — 30 мм, коричневого цвета, разнозернистой структуры	Хромшпинелид, периклаз с выделениями вторичной шпинели, Fe ₃ O ₄ , Na ₂ O·2MgO·6SiO ₂							
Малоизмененная	Внешне не отличается от огнеупора до службы, коричневого цвета, разнозернистой структуры	Периклаз, хромшпинелид, вторичные шпинели, форстерит, браунмиллерит							
Шлаковый пояс									
Рабочая с корочкой	Толщина 5–15 мм, черного цвета, структура раз- нозернистая, наблюдается образование сосулек	Хромшпинелид, (Mg,Zn)O, ZnO, β-Ca ₂ SiO ₄ , металличе- ские Zn и Pb, шлаковые минералы — Na ₂ O·CaO·SiO ₂							
Переходная	Темно-коричневого цвета, полукристаллической структуры	Хромшпинелид, периклаз, вторичные шпинели, ZnAl ₂ O4, CaMgSiO4, ZnO, металлические Zn и Pb							
Малоизмененная	Темно-коричневого цвета, полукристаллической структуры	Хромшпинелид, периклаз, вторичные шпинели, ZnAl ₂ O4, CaMgSiO4, ZnO, металлический Zn							
Конденсатор									
Рабочая	Зона составляет 10 мм, с поверхности на 2–3 мм зона имеет желтоватый оттенок	Хромшпинелид, периклаз, вторичные шпинели, Mg ₂ SiO ₄ , CaMgSiO ₄ , ZnO (много), Fe ₃ O ₄ , металлический Zn							
Переходная	Зона составляет 15–20 мм, коричневого цвета, структура разнозернистая	Хромшпинелид, периклаз, вторичные шпинели (немного)							

ментированы мелкозернистой массой сложного состава. Структура огнеупора разнозернистая, достаточно пористая (рис. 2).

Для изучения особенностей износа периклазохромитовых огнеупоров были отобраны пробы из разных элементов электротермической установки: плавильной печи (свод и шлаковый пояс) и конденсатора. Пробы периклазохромитового огнеупора после службы были изучены также с помощью химического, микроскопического и рентгеноструктурного методов анализа. Химический состав и структурно-фазовые изменения, происходящие в периклазохромитовом огнеупоре после службы, приведены в табл. 1 и 2.

Результаты исследований показали, что огнеупоры в процессе службы претерпевают значительные химико-минералогические изменения. В их состав привносится большое количество цветных металлов и шлаковых компонентов, взаимодействующих избирательно с огнеупорными минералами с образованием новых фаз, что ведет к коррозионно-эрозионному разрушению футеровки.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Особенности структурно-фазовых изменений периклазохромитовых огнеупоров после службы в электропечи

Свод электропечи

Проба отобрана в месте непосредственного контакта свода с электродами. Вследствие воздействия высоких температур и появления значительных термонапряжений в огнеупорной футеровке на отобранном кирпиче после службы отмечено образование трещины. Наблюдается четкое зонообразование. Визуально в огнеупоре после службы в своде печи выделены три зоны: рабочая, переходная и малоизмененная.

Рабочая зона. Толщина ~15 мм, окраска темно-коричневая, структура плотная, открытая пористость 8 %. Уплотнение структуры огнеупора после службы происходит вследствие воздействия высоких температур нагревателей и дополнительного спекания массы огнеупора.

В зоне наблюдаются значительные фазовые изменения, вызванные действием высокой температуры и газообразного СО. В результате миграции 3-валентных катионов из состава хромшпинелида уменьшается количество этих элементов в рабочей зоне (см. табл. 1). Основную массу огнеупора представляют агрегаты из периклаза и разрушенных зерен хромшпинелида, сцементированных силикатной связкой, состоящей из форстерита, монтичеллита и вторичных шпинелей сложного состава (Mg,Fe)O·Al₂O₃, образованных взаимодействием периклаза с компонентами хромшпинелида (рис. 3). Показатель светопреломления установленных вторичных шпинелей примерно 1,8. Отмечены единичные

Рис. 2. Микроструктура периклазохромитового огнеупора до службы: 1— периклаз; 2— хромшпинелид; 3 силикаты; темное — поры. Свет отраженный. ×150

зерна Na₂O·2MgO·6SiO₂ и металлического цинка. Переходная зона представлена образцом серовато-коричневого цвета. Структурными элементами являются агрегаты из крупных трещиноватых зерен хромшпинелида и периклаза, насыщенного выделениями вторичной шпинели сложного состава. В зернах хромшпинелида присутствуют включения с яркой отражательной способностью, обладающие магнитными свойствами и отнесенные к магнетиту Fe₃O₄. Роль связки выполняют мелкие зерна периклаза и силикаты: Mg₂SiO₄ — анизотропная бесцветная фаза, оптически двуосная, отрицательная с N_g = = 1,670; N_p = 1,640 и Na₂O·2MgO·6SiO₂ — бесцветная, моноклинная с N_{cp} = 1,56.

Малоизмененная зона макроскопически представлена кусочком темного цвета с коричневатым оттенком и пористостью 20 %, которая несколько ниже, чем у огнеупора до службы, что является результатом некоторого уплотнения структуры огнеупора вследствие спекания под воздействием температуры и восстановительной среды.

Фазовый состав представлен минералами огнеупора до службы. Примерно в равных количествах присутствуют периклаз и хромшпинелид.

Рис. 3. Микроструктура рабочей зоны огнеупора после эксплуатации в своде электропечи: 1 — периклаз; 2 измененный хромшпинелид; 3 — вторичные шпинели; темное — поры. Свет отраженный. ×210

Зерна хромшпинелида крупные (≤ 1 мм), трещиноватые, претерпевшие некоторые изменения. Связка, скрепляющая периклаз и хромшпинелид, имеет сложный состав. Она представлена форстеритом Mg₂SiO₄, вторичной шпинелью зеленовато-бурого цвета с $N = 1,84 \div 1,85$, незначительным количеством браунмиллерита Ca₄Al₂Fe₂O₁₀ коричневато-красной окраски с отчетливым плеохроизмом и N = 2.

Шлаковый пояс электропечи

Проба огнеупора отобрана в месте непосредственного контакта шлака с футеровкой. Визуально в огнеупоре выделены 4 зоны: рабочая корочка, рабочая, переходная и малоизмененная (рис. 4).

Рабочая корочка представлена образцом темного цвета величиной 5–15 мм с разнозернистой плотной структурой, открытая пористость этой зоны огнеупора составила 4 %. Местами наблюдаются образования сосулек. Основной фазой корочки является шлаковый компонент, наличие которого подтверждается набором характерных для него линий на дифрактограмме Na₂O·CaO·SiO₂ ((3,70, 2,65, 2,16, 1,88, 1,53) · 10⁻¹ нм). Это бесцветная фаза с показателем преломления $N \approx 1,600 \div 1,615$ (рис. 4, *a*). Периклаз представлен твердым раствором (Mg,Zn)O ((2,169, 1,49) · 10⁻¹ нм), содержание его в пробе 20-25 % (рис. 4, *a*). Хромшпинелид распределен в структуре пробы не равномерно, а сконцентрирован отдельными участками. Зерна пористые, трещиноватые, крупные (до 800 мкм). В незначительном количестве присутствуют ZnO, β-Ca₂SiO₄ и металлические фазы — цинк и свинец (см. табл. 2).

Рабочая зона темного цвета с разнозернистой плотной структурой и открытой пористостью 10 %. Основную массу составляют трещиноватые зерна хромшпинелида размером ~1 мм (рис. 4, б). В пробе присутствует около 20 % периклаза в виде твердого раствора с цинком. Эти две фазы сцементированы силикатной связкой из ларнита β-Ca₂SiO₄ с характерным для него набором линий на дифрактограмме ((3,83, 2,87, 2,78, 2,74, 2,60, 2,28) · 10⁻¹ нм) и стекла. Установлено присутствие включений оксида цинка, вторичной шпинели и металлического свинца.

Очевидно, значительный износ футеровки на контакте со шлаковым расплавом можно объяснить его проникновением по порам связки вглубь огнеупора, где происходит взаимодействие шлаковых компонентов (Na₂O, CaO,

Рис. 4. Микроструктура огнеупора после службы в шлаковом поясе. Зона: *а* — рабочая корочка; *б* — рабочая; *в* — переходная; *г* — малоизмененная; *1* — периклаз; *2* — измененный хромшпинелид; *3* — вторичная шпинель; *4* — Na₂O·CaO·SiO₂; *5* — твердый раствор (Mg,Zn)O; *6* — Zn; *7* — Pb; *8* — ганит ZnAl₂O₄; темное — поры. Свет отраженный. ×210

SiO₂) с огнеупорными минералами (периклазом и хромшпинелидом) с образованием легкоплавких соединений, переходящих вновь в состав расплава, увеличивая его вязкость. При этом в огнеупоре остается более тугоплавкая новообразованная фаза Ca₂SiO₄.

Доказательством протекания таких процессов может служить уменьшение содержания MgO и Cr₂O₃ и увеличение количества SiO₂ и CaO в пробах (см. табл. 1).

Переходная зона — проба темного цвета, разнозернистой структуры, с открытой пористостью ~8 %. Основными структурными элементами являются агрегаты, состоящие из зерен трещиноватых хромшпинелида и периклаза с повышенным показателем преломления $N \approx$ ≈ 1.835÷1.840 вследствие вхождения в его состав цинка (рис. 4, в). Количество такого периклаза в пробе 25-30 %. Присутствует также незначительное количество исходного бесцветного периклаза с обычными оптическими константами. Кроме того, в пробе переходной зоны имеются монтичеллит, шпинельная фаза ганит ZnAl₂O₄ ((2,86, 2,44, 1,43) · 10⁻¹ нм) кубической сингонии, кристаллы октаэдрического облика и изотропные с $N \approx 1,8$, вторичная шпинель ($N \approx 2$), стекло, металлические цинк и свинец.

Малоизмененная зона темного цвета, более пористая, чем предыдущие, открытая пористость 12 %. Основными фазами являются растрескавшиеся, деформированные зерна хромшпинелида и периклаза (рис. 4, г). В проходящем свете установлено присутствие двух видов шпинелей — желтовато-бурого ($N \approx 2$) и синеватого цвета ($N \approx 1,8$), отнесенных к ганиту — ZnAl₂O₄ ((2,86, 2,44, 1,43) · 10⁻¹ нм). Установлено присутствие периклаза с включениями металлического цинка от точечных до корольков размером до 30 мкм. В пробе до 3–5 % монтичеллита и немного стекла.

Особенности структурно-фазовых изменений периклазохромитовых огнеупоров после службы в конденсаторе Конденсатор

Проба, отобранная из кладки свода конденсатора представлена образцом темного цвета с желтоватым оттенком на поверхности. В нем выделены две зоны — рабочая и переходная с малоизмененной.

Рабочая зона, являющаяся результатом контакта огнеупора с парами цинка, имеет открытую пористость ~ 18 %. По результатам химического анализа в ней отмечено значительное количество (до 23 %) цинка. При изучении аншлифа в отраженном свете микроскопа установлено, что основными фазами являются периклаз неправильной, реже округлой формы и крупные зерна хромшпинелида (рис. 5, а), сцементированные связующей массой, которая состоит из ZnO ((2,82, 2,60, 2,48) · 10⁻¹ нм) гексагональной сингонии. стекла с N ≈ 1.510÷1.515. шпинели красновато-бурого цвета и единичных зерен форстерита. Обнаружено также 5-7 % металлического цинка. Иногда в зернах хромшпинелида можно наблюдать включения магнетита Fe₃O₄ (рис. 5, б).

Переходная и малоизмененная зоны. Макроскопически проба представлена твердым кусочком черного цвета с металлическими включениями. Как и в предыдущей пробе, основными минералами являются периклаз и крупные зерна трещиноватого хромшпинелида с пониженными показателями преломления — результат диффузии части катионов железа из хромита с образованием Fe₃O₄, заполняющего трещины в его кристаллах.

В пробе имеется как бесцветный, так и буроватого оттенка периклаз с вкрапленностью вторичной шпинели. Металлический цинк ас-

Рис. 5. Микроструктура огнеупора после службы в конденсаторе: *a* — рабочая; *б* — переходная с малоизмененной зоной: *1* — периклаз; *2* — измененный хромшпинелид; *3* — ZnO; *4* — Zn; *5* — Fe₃O₄; темное — поры. Свет отраженный. ×210

социирует с магнетитом (рис. 5, б). Наблюдается незначительное количество форстерита с обычными для него показателями преломления, красновато-бурой шпинели и стеклофазы (N ≈ ≈ 1,510÷1,515).

ЗАКЛЮЧЕНИЕ

Периклазохромитовые огнеупоры в процессе службы в электротермической установке, перерабатывающей серебристую пену, претерпевают значительную деградацию. Степень и вид разрушения огнеупора зависят от места его пребывания в металлургическом агрегате.

В своде электропечи наибольший износ огнеупора происходит в районе контакта с электродами, что связано с возникновением высоких термонапряжений и химического взаимодействия огнеупорных фаз с агрессивными свинцовоцинковыми и шлаковыми возгонами и газами.

Интенсивный коррозионно-эрозионный износ огнеупора наблюдается в шлаковом поясе

Библиографический список

1. Полывянный, И. Р. Кислород и природный газ в металлургии свинца / И. Р. Полывянный. — Алма-Ата : Наука, 1976. — 374 с.

2. Бирюкова, А. А. Влияние газовой среды на структурно-фазовые превращения, происходящие в системе огнеупор - Pb(PbO) / А. А. Бирюкова, Т. А. Тихонова, А. В. Боронина // Энерготехнологии и ресурсосбережение. — 2009. — № 6. — С. 41-46.

3. Бирюкова, А. А. Процессы минералообразования в системе огнеупор – Pb(PbO) / А. А. Бирюкова, Т. А. электропечи вследствие механического и химического воздействия металлошлакового расплава на футеровку. Компоненты шлака взаимодействуют с минералами огнеупора хромшпинелидом и периклазом — с образованием легкоплавких соединений, вымывающихся из состава огнеупора потоком расплава. Металлические цинк и свинец по порам связки проникают вглубь огнеупора, образуя твердый раствор (Mg,Zn)O, или находятся в виде металлических включений Zn и Pb. Эти процессы ослабляют общую структуру изделий, что интенсифицирует разрушение огнеупорной кладки.

Наименьший износ огнеупорной футеровки установлен в конденсаторе электротермической установки. Износ происходит в основном вследствие проникновения паров цинка по порам связки вглубь огнеупора с образованием (Mg,Zn)O. Накопление цинка в структуре огнеупора приводит к постепенному зарастанию огнеупорной футеровки.

Тихонова, А. В. Боронина // Комплексное использование минерального сырья. — 2008. — № 2. — С. 78-85. 4. Бирюкова, А. А. Процессы минералообразования в системе огнеупор — Zn(ZnO) / А. А. Бирюкова, Т. А. Тихонова, А. В. Боронина // Комплексное использование минерального сырья. — 2008. — № 4. — C. 63–69. ■

> Получено 11.03.15 © А. А. Бирюкова, Т. А. Тихонова, А. В. Боронина, 2015 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

-11th September 2015 BITEC | Bangkok | Thailand

Southeast Asia's international exhibition of machinery, technology and materials for manufacturing whiteware, heavy clay and advanced ceramics.

9-11 сентября 2015 г.

Южноазиатская международная выставка по керамике — **ASEAN Ceramics 2015**

г. Бангкок, Таиланд

http://aseanceramics.com/