Д. т. н. **О. А. Аверкова**, д. т. н. **И. Н. Логачёв**, д. т. н. **К. И. Логачёв** (), **И. В. Крюков**

ФГБОУ ВО «Белгородский государственный технологический университет им. В. Г. Шухова», г. Белгород, Россия

УДК 533.6:628.5

МЕТОДИКА РАСЧЕТА НЕОБХОДИМОГО РАСХОДА АСПИРИРУЕМОГО ВОЗДУХА ПРИ ПЕРЕГРУЗКЕ СЫПУЧЕГО МАТЕРИАЛА НА ТЕЛЕСКОПИЧЕСКИХ СТАНЦИЯХ

На основе гидродинамических уравнений эжектируемого и рециркулируемого воздушных потоков воздуха в системе загрузочная телескопическая труба – байпасная камера разработана методика определения расхода воздуха, увлекаемого сыпучим материалом, и необходимого расхода аспирируемого воздуха. Показано, что энергоемкость аспирационно-технологических установок телескопических станций можно существенно снизить путем применения коаксиально расположенных загрузочных телескопических желобов и расположенных вокруг них гофрированных непроницаемых стенок, а также герметизацией верхних и нижних укрытий, примыкающих к ним.

Ключевые слова: системы аспирации, обеспыливающая вентиляция, перегрузка сыпучих материалов, телескопические погрузчики, эжекция воздуха потоком сыпучего материала.

введение

Наиболее распространенная конвейерная перегрузка пылящих материалов обычными закрытыми желобами характерна тем, что гравитационные потоки частиц при падении создают эжекционные струи запыленного воздуха, которые поступают в укрытия места падения — места загрузки нижних конвейеров или питателей, бункеров, дробилок, грохотов и другого технологического оборудования.

Для исключения выбивания запыленного воздуха из этих укрытий в окружающую атмосферу осуществляется их максимально возможное уплотнение и отсос воздуха для создания разрежения воздуха в полостях не только нижних укрытий, но и других, аэродинамически связанных с аспириуемыми укрытиями. Необходимый объем отсасываемого воздуха Q_a (объем аспирации) для простейшего случая перегрузки с конвейера на конвейер определяется суммой расходов воздуха, поступающего в укрытие через неплотности, Q_n и воздуха, поступающего по желобу, Q_q , где $Q_n = \mu F_a \sqrt{2P_y} / \rho_o$ зависит от площади неплотности F_a, м², и величины разрежения, поддерживаемого в укрытии, Р_v, Па, для исключения истечения запыленного воздуха, $\mu = 1/\sqrt{\zeta}$ — коэффициент расхода, связанный с

> ⊠ К. И. Логачёв E-mail: kilogachev@mail.ru

коэффициентом местных сопротивлений неплотности (для малых отверстий ζ = 2,4 и потому μ = 0,65); ρ₀ — плотность окружающего воздуха. Снижению Q_n посвящены работы [1–3].

Намного сложнее определяется величина Q_g , часто называемая расходом эжектируемого воздуха. Развитие компьютерной техники позволило от эмпирических формул [4–6] перейти к фундаментальным исследованиям нагнетания воздуха по желобам или в свободных струях на основе использования классической теории механики двухкомпонентных потоков и значительных объемов экспериментальных исследований аэродинамики равноускоренного потока в желобах и струях дискретных частиц [7–13].

Значительно усложняется расчет эжектируемого воздуха в желобах загрузочных телескопических станций. Загрузочные станции небольшой объемной производительности (до 250 м³/ч) типа ТЗС 500 ЈЕТРАСК, как и телескопические погрузчики значительной производительности (до 1500 м³/ч) типа ПУ-700, получившие применение в морских терминалах, отличаются тем, что имеют не только переменную высоту загрузки, но и состоят из двух соосных труб. Причем полость внутренней трубы, по которой перемещается загружаемый материал, аэродинамически связана с полостью, ограниченной непроницаемой наружной стенкой внешней трубы и внутренней «проницаемой» стенкой. Это обстоятельство способствует появлению рециркуляции эжектируемого воздуха и влечет за собой изменение объема воздуха, нагнетаемого в нижнее укрытие (приемную емкость), по сравнению с объемом воздуха, поступающего по желобу, имеющему непроницаемые стенки.

На настоящий момент методика расчета эжекции воздуха в проницаемых желобах не разработана. Только в 2015 г. вышла монография [8], в которой рассмотрены методические вопросы эжектирования при переменной скорости частиц и воздуха в проницаемых желобах и теоретически доказана энергоэффективность рецикла воздуха, позволяющего заметно снизить оптимальную производительность аспирационной системы.

Цель настоящей работы — создание методики расчета расхода воздуха, увлекаемого потоком сыпучего материала, в системе загрузочный проницаемый канал – байпасная камера.

МЕТОДИКА РАСЧЕТА

В основу методики положены полученные в монографии [8] линеаризованные уравнения динамики эжектируемого и рециркулируемого воздуха (рис. 1) с одним кольцом рецикла воздуха в проницаемом желобе при обычном (схема *a*) и комбинированном байпасировании (схема *б*), т. е. с рециклом воздуха по двум кольцам циркуляции, при котором эжектируемый по центральному каналу воздух разделяется в нижней части телескопического желоба и поступает в байпасную камеру (внутренний рецикл).

Транзитный поток воздуха при выходе из желоба разделяется, в свою очередь, на две ветви. Часть воздуха поднимается вверх по байпасной камере 4 (см. рис. 1) в верхнее укрытие, а оставшаяся часть с расходом Q_g поступает через герметизирующие фартуки в аспирируемую камеру, откуда удаляется аспирационным патрубком. Общая производительность патрубков определяется суммой

$Q_a = Q_n + Q_g,$

где Q_n — расход воздуха, поступающего через неплотности внешних уплотняющих фартуков за счет разрежения P_y , создаваемого вентилятором аспирационной системы.

Необходимо определить главное слагаемое балансового уравнения Q_g .

Исходные данные для расчета: G_m — массовый расход перегружаемого материала, кг/с; H_1 — высота желоба, м; d_1 — диаметр верхнего основания секции телескопической трубы, м; d_2 — диаметр нижнего ($d_2 < d_1$) основания этой секции, м; диаметр наружного рукава желоба $D_{\rm H}$, м; z_c — средний зазор между смежными секциями желоба, $z_c = (d_1 - d_2)/2$, м; D_1 — условный диаметр желоба, м, $D_1 = (d_1 + d_2)/2$; S_g — площадь поперечного сечения желоба, M^2 , $S_g = \pi D_1^2 / 4$; f_{zo} — условная площадь живого сечения одного зазора, м², $f_{zo} = \pi D_1 z_c$; N_g — число секций в телескопической трубе; S_z — суммарная площадь всех зазоров, м², $S_{\omega} = \pi (D_n^2 - D_1^2)/4$; $r = S_{\omega} / S_g$; e_s — относительная

Рис. 1. Расчетная схема аспирации загрузки закрытого транспортного средства при помощи T3C 1000 JETRAPACK: 1 — загрузочный шнек; 2 — телескопическая труба (желоб); 3 — гофрированная внешняя непроницаемая труба; 4 — байпасная камера с закрытыми (схема *a*) верхним и нижним днищами и с открытыми (схема *б*) днищами; 5 — аспирационное укрытие; 6_н — нижний аспирационный патрубок; 6_в — верхний аспирационный патрубок; 7 — штабель зернистого перегружаемого материала; 8 — закрытая емкость; 9 — загрузочная горловина; АТУ — аспирационно-технологическая установка

степень проницаемости, $e_s = S_z / S_g$; $\zeta_0 - \kappa$. м. с. (коэффициент местного сопротивления) отверстия зазора; $\zeta_m - \kappa$. м. с. отверстий неплотностей наружной стенки аспирационного укрытия; E — степень перетекания воздуха через рефорационные отверстия желоба, $E = e_s / \sqrt{\zeta_o}$; S_{nw} — площадь неплотностей верхнего укрытия, M^2 ; S_{nk} — площадь неплотностей нижнего укрытия (приемной камеры), M^2 ; ζ_{nw} — коэффициент местных сопротивлений входу воздуха через неплотности верхнего укрытия, $\zeta_{nw} = 2,4(S_g / S_{nw})^2$; ζ_{nk} — коэффициент местных сопротивлений входу воздуха через неплотности нижнего укрытия, $\zeta_{nk} = 2,4(S_g / S_{nk})^2; P_y$ — разрежение в аспирируемой камере нижнего укрытия, Па; *F_a* — площадь неплотностей наружной стенки аспирируемой камеры; ψ_0 — коэффициент лобового сопротивления одиночной частицы; ρ_m — плотность частиц, кг/м³; ρ_a — плотность воздуха в желобе, кг/м³; ρ_w — плотность наружного воздуха, кг/м³; d_e — эквивалентный диаметр частиц, мм; Н₀ — высота падения частиц, м; v_n — скорость частиц при входе в желоб, м/с, $v_n = \sqrt{2gH_0}$; v_k — скорость частиц при выходе из желоба, м/с, $v_k = \sqrt{2g(H_1 + H_0)}; n - ot$ ношение скоростей падения частиц, $n = v_n / v_k$; *p*_v — безразмерное разрежение в аспирируемой камере нижнего укрытия, $p_v = 2P_v/(\rho_a v_k^2)$.

После формирования исходных данных расчет проводится в следующей последовательности.

1. Определяется объемная концентрация падающих частиц в конце телескопического желоба: $\beta_k = \frac{G_m}{v_k \rho_m S_g}$ и посередине этого желоба: $\beta_y = \frac{2G_m}{v_k (1+n) \rho_m S_g}$.

2. Вычисляется средний коэффициент лобового сопротивления падающих частиц по формуле: $\psi = \psi_0 \exp[-56, 92\sqrt{\beta_v}/d_e]$.

3. Определяется параметр эжекции: Le = $\frac{\psi \beta_k H_1 \cdot 1500}{d_e}$.

4. Вычисляется усредненная скорость падения частиц в телескопической трубе:

$$v_s = b_0 + \frac{1}{2}b_1 + \frac{1}{6}b_{2r}$$

где коэффициенты определяются по формулам $b_0 = n; \ b_1 = \sqrt{8(1+n^2)} - 3n - 1; \ b_2 = 4(1+n-\sqrt{2(1+n^2)}), n = v_n / v_k.$

5. Осредненные скорости эжектируемого воздуха в телескопическом желобе u_s , скорости восходящего рециркулируемого воздуха в байпасной камере ω_s и скорости воздуха, перетекаемого из желоба через отверстия боковой стенки камеры, w_s выражаются через неизвестный параметр u_n :

$$u_{s} = v_{s} - \sqrt{\frac{v_{s}(\zeta_{p}u_{n}^{2} - p_{y})}{\text{Le}}}, w_{s} = u_{n}\sqrt{\frac{0, 25 + \zeta_{n} + |0, 25 - \zeta_{k}|}{3\zeta_{0}}},$$
$$\omega_{s} = \frac{u_{s} - u_{n}}{r},$$

где $\zeta_p = \zeta_n + \zeta_k$, $\zeta_n = \zeta_{nw} + 0.5$, $\zeta_k = \zeta_{nk} + 1$.

6. Через записанные на предыдущем этапе величины вводятся функции, параметры, коэффициенты:

$$A = 2\left(u_s - \frac{\omega_s}{r}\right) \frac{E}{w_s \sqrt{\zeta_0}}; \quad B = \left(1 - \frac{u_s}{v_s}\right) \frac{\text{Le} \cdot E}{w_s \sqrt{\zeta_0}}; \quad k_2 = 2b_2 \frac{A}{B};$$

$$\begin{aligned} k_1 &= 2 \frac{A}{B} (b_1 - k_2) - b_2 / B; \ a_1 &= A + \sqrt{A^2 + B}; \ a_2 &= A - \sqrt{A^2 + B}; \\ a_3 &= n - k_1; \ b_3 &= 1 - k_1 - k_2; \ a_4 &= b_1 - k_2; \\ b_4 &= b_1 + b_2 - k_2; \ z_1 &= e^{a_1} - e^{a_2}; \\ C_1 &= \frac{u_n (1 - e^{a_2}) + a_3 e^{a_2} - b_3}{z_1}; \ C_2 &= \frac{u_n (e^{a_1} - 1) - a_3 e^{a_1} + b_3}{z_1} \end{aligned}$$

и путем решения трансцендентного уравнения

$$\left(\zeta_{p}u_{n}^{2}-p_{y}\right)\frac{E}{w_{s}\sqrt{\zeta_{0}}}-\left(C_{1}a_{1}(1-e^{a_{1}})+C_{2}a_{2}(1-e^{a_{2}})+a_{4}-b_{4}\right)=0$$

определяется безразмерная скорость *u_n* эжектируемого воздуха при входе (и выходе) в телескопический желоб.

7. Производится расчет скорости u(x) в произвольных сечениях желоба на отрезке $x=0,...,1:u(x)=C_1e^{a_1x}+C_2e^{a_2x}+b_0-k_1+x(b_1-k_2)+\frac{b_2}{2}x^2$ и интегрированием функции u(x) на том же отрезке определяется средняя скорость $u_s=\frac{C_1}{a_1}(e^{a_1}-1)+\frac{C_2}{a_2}(e^{a_2}-1)+b_0+\frac{b_1-k_2}{2}+\frac{b_2}{6}-k_1$.

8. Находится сечение x_m путем решения уравнения

$$C_1 a_1 e^{a_1 x_m} + C_2 a_2 e^{a_2 x_m} + b_1 + b_2 x_m - k_2 = 0$$

и рассчитывается максимальная величина безразмерной скорости эжектируемого воздуха

$$u_m = C_1 e^{a_1 x_m} + C_2 e^{a_2 x_m} + b_0 - k_1 + x_m (b_1 - k_2) + \frac{b_2}{2} x_m^2.$$

9. Определяются максимальные объемные расходы воздуха в сечении $x = x_m$. В телескопическом желобе Q_m рассчитывается по формуле $Q_m = 3600u_m v_k S_g$, рециркулируемого в байпасной камере Q_r по формуле $Q_r = 3600(u_m - u_n)v_k S_g$ и разность этих расходов, т. е. величина $Q_o = Q_m - Q_r$.

10. Вычисляется безразмерное избыточное давление на днище байпасной камеры p_a в соответствии с формулой

$$p_a = 0.5 ((\zeta_k - \zeta_n) u_n^2 - p_y) + w_s \frac{\sqrt{\zeta_0}}{2E} [C_1 a_1 (1 + e^{a_1}) + C_2 a_2 (1 + e^{a_2}) + a_4 + b_4].$$

11. Выполняются с шагом x = 0,1 (на отрезке x = 0, ..., 1) расчеты следующих безразмерных функций:

$$\begin{split} & u(x) \text{ по формуле} \\ & u = C_1 e^{a_1 x} + C_2 e^{a_2 x} + b_0 - k_1 + x(b_1 - k_2) + \frac{b_2}{2} x^2, \\ & p_\omega(x) \text{ по формуле} p_\omega(x) = p_a - \frac{4\omega_s}{r} (u(x) - u_n), \\ & p(x) \text{ по формуле} \\ & p(x) = p_\omega(x) - \frac{w_s \sqrt{\zeta_0}}{E} \Big(C_1 a_1 e^{a_1 x} + C_2 a_2 e^{a_2 x} + b_1 - k_2 + b_2 x \Big), \\ & \text{разности давлений по формуле } \Delta p(x) = -p(x) + p_\omega(x), \\ & w(x) \text{ по формуле } w(x) = \frac{\Delta p(x)}{\zeta_0 w_s}. \end{split}$$

Для анализа изменения вышеупомянутых функций удобно в первом столбце выводить значения аргумента x, равные 0, 0,1, 0,2, ..., 1, во втором величины u(x), в третьем — w(x), в четвертом — p(x), в пятом — $p_w(x)$ и в шестом — $\Delta p(x)$.

12. Производится расчет безразмерной скорости эжектируемого воздуха *u*₂ из уравнения

$$\frac{3}{\left|1-u_{2}\right|^{3}-\left|n-u_{2}\right|^{3}}-\frac{2\text{Le}}{\left(\zeta_{p}u_{n}^{2}-p_{y}\right)\left(1-n^{2}\right)}=0,$$

укрытия, равен $Q_a = Q_a + Q_n$.

и его расхода $Q_2 = 3600 u_2 v_k S_g$, м³/ч, для случая полной герметизации стенок желоба, т. е. при отсутствии рецикла воздуха в байпасной камере.

13. Вычисляются расход воздуха, поступающего из желоба в аспирируемое укрытие, по формуле $Q_g = 3600 u_n v_k S_g$, м³/ч; расход воздуха, поступающего в это же укрытие через неплотности, из уравнения $Q_n = 3600 F_a \sqrt{\frac{2P_y}{\zeta_m}\rho_w}$, м³/ч, необходимый расход воздуха, удаляемого из аспирационного

Пример расчета аэродинамических параметров эжектирования воздуха в желобах телескопических погрузчиков

В качестве объекта численных исследований процессов аспирации рассмотрим пример загрузки гранулированного сыпучего материала крупностью $d_e = 5$ мм и плотностью $\rho_m = 1800$ кг/м³ с помощью телескопической загрузочной станции T3C 1000 JETPACK. Технологические, конструктивные и аэродинамические исходные данные для расчета: $G_{\rm T} = 20$ кг/с; $H_1 = 4$ м; $H_0 = 0.5$ м; $d_1 = 0.36$ м; $d_2 = 0.3$ м; $D_{\rm H} =$ = 0.45 м; $\zeta_0 = 1.5$; $\zeta_m = 2.4$; $S_{\rm nw} = 0.02$ м²; $S_{\rm nk} =$ = 0.15 м²; $P_{\rm y} = 8$ Па; $F_a = 0.15$ м²; $\psi_0 = 1.1$; $\rho_m = 1800$ кг/м³; $\rho_a = 1.2$ кг/м³; $\rho_w = 1.2$ кг/м³; $d_e = 5$ мм; $N_q = 10$.

В качестве основного изменяющегося параметра принята степень герметизации верхнего (неаспирируемого) укрытия — площадь неплотностей *S*_{nw}. Этот параметр существенным образом сказывается на скорости и, следовательно, на расходе воздуха, эжектируемого в телескопическом желобе и рециркулируемого в байпасной камере не только за счет разрежения *P*_y, поддерживаемого в аспирируемом укрытии вентилятором аспирационной установки.

Прежде всего, это наглядно видно при сопоставлении графиков изменения скорости воздуха u(x) и w(x) на рис. 2. Максимумы этих скоростей при уменьшении площади неплотностей S_{nw} смещаются к началу телескопического желоба. Направление перетекающего рециркулируемого воздуха через зазоры между конечными секциями желоба остается прежним: в начальном сечении (x = 0) перетекание осуществляется из байпасной камеры в желоб, в конечном (x = 1) — из желоба в камеру.

Причем скорость перетекания в начальном сечении увеличивается с повышением степени

герметизации верхнего укрытия (при $S_{nw} \rightarrow 0,02 \text{ м}^2$). Центр вихря рециркулируемого воздуха смещается к началу желоба. Если центр этого вихря лежит в сечении $x_m = 0,82$ при $S_{nw} = 0,14 \text{ M}^2$, то при $S_{nw} = 0,02 \text{ M}^2$ он перемещается в сечение $x_m =$ = 0,64. Такое смещение объясняется уменьшением к концу желоба действия аэродинамических сил (эжекционного давления) ускоренно падающих частиц перегружаемого материала.

Отмеченное смещение вихря рециркуляции к началу желоба объясняется также ростом разрежения *p*_w(*x*) в начальном сечении байпасной ка-

Рис. 2. Изменение безразмерных скоростей эжектируемого воздуха u(x) и скоростей перетекания воздуха w(x) через зазоры между секциями желоба по высоте падения частиц (x = 0, ..., 1) при условном диаметре желоба $D_1 = 0,33$ м, $D_{\rm H} = 0,45$ м, $H_1 = 4$ м, Le = 3,542; $S_{\rm nw}$ равно 0,02 (a), 0,06 (b), 0,1 (b), 0,14 м² (z)

Рис. 3. Изменение безразмерных давлений в начале $p_{\omega}(0)$, в конце $p_{\omega}(1)$ камеры и у стенок днища байпасной камеры p_a при увеличении площади неплотностей S_{nw} верхнего неаспирируемого укрытия при условном диаметре желоба $D_1 = 0,33$ м; $D_{\rm H} = 0,45$ м; $H_1 = 4$ м; Le = 3,542

меры $p_{\omega}(0)$ при снижении площади неплотностей верхнего укрытия (рис. 3), сопровождающего рост к. м. с. этого укрытия (от $\zeta_{nw} = 0,896$ при $S_{nw} = 0,14 \text{ m}^2$ до $\zeta_{nw} = 43,9$ при $S_{nw} = 0,02 \text{ m}^2$). Причем зона разрежения при малых площадях неплотностей ($S_{nw} \ge 0,04 \text{ m}^2$) захватывает и конечное сечение желоба ($p_{\omega}(1) = -0,12$ при $S_{nw} = 0,02 \text{ m}^2$).

Естественно, смещение зоны разрежения оказывает влияние не только на геометрию вихревой рециркуляции, но и на мощности (расходы) воздушных течений (рис. 4). Так, резко возрастают расходы рециркулируемого воздуха при сни-

жении S_{nw}: с Q_r / Q₁ = 0,4 при S_{nw} = 0,14 м² до Q_r / Q₁ = = 3,0 при S_{nw} = 0,02 м². Рост относительного расхода воздуха, поступающего через неплотности нижнего аспирируемого укрытия, $O_n / O_1 = 0.4$ происходит не потому, что изменяется Q_n (для нашего случая $Q_n = 1273 \text{ м}^3/\text{ч} - \text{const}$), а потому, что уменьшается расход транзитного воздуха Q₁ с уменьшением S_{nw} (в силу большого к. м. с. ζ_{nw} = = 43,9). По этой причине растет и относительный расход аспирируемого воздуха Q_a / Q_1 , и максимальный расход рециркулируемого воздуха Q_m/Q_1 , и относительный расход эжектируемого воздуха при герметичных стенках желоба Q_2 / Q_1 . Рост упомянутых расходов прежде всего объясняется увеличением расхода рециркулируемого воздуха с $Q_r = 429 \text{ м}^3/\text{ч}$ при $S_{nw} = 0.14 \text{ м}^2$ до $Q_r =$ = 1094 м³/ч при S_{nw} = 0,02 м² (рис. 5) и уменьшением транзитного воздуха с $Q_1 = 1123 \text{ м}^3/\text{ч}$ при *S*_{*nw*} = 0,14 м² до *Q*₁ = 364 м³/ч при *S*_{*nw*} = 0,02 м².

Сопоставляя абсолютные величины расходов воздуха (рис. 5), можем констатировать, что с увеличением площади неплотностей верхнего укрытия резко изменяются расход рециркулируемого воздуха Q_r и расход транзитного воздуха в желобе Q_1 . Объемный расход Q_r снижается более чем в 2 раза, расход Q_1 увеличивается в 3 раза в диапазоне $S_{nw} = 0,02\div0,14$ м².

Расход транзитного эжектируемого воздуха Q₁ за счет рецикла воздуха при перетекании в байпасную камеру заметно ниже, чем расход эжектируемого воздуха в желобе при отсутствии

Рис. 4. Изменение относительных скоростей q расходов воздуха: 1 — аспирируемого из нижнего укрытия Q_a / Q_1 ; 2 — максимально эжектируемого по телескопическому желобу Q_m / Q_1 ; 3 — эжектируемого при отсутствии зазоров в стенках желоба Q_2 / Q_1 ; 4 — поступающего через неплотности аспирационного укрытия Q_n / Q_1 ; 5 — рециркулируемого в желобе Q_r / Q_1

64

рецикла воздуха Q_2 , т. е. в случае герметизации стенок желоба, а именно в 2,84–1,16 раза в диапазоне $S_{nw} = 0,02\div0,14$ м². В силу этого уменьшается и требуемая производительность местного отсоса Q_a по сравнению с производительностью местного отсоса от перегрузки по желобу с герметичными стенками $Q_{2a} = Q_2 + Q_n$ в 1,57–1,08 раза в диапазоне $S_{nw} = 0,02\div0,14$ м².

ЗАКЛЮЧЕНИЕ

Разработана методика расчета расхода эжектируемого воздуха при перегрузке сыпучего материала телескопическими погрузчиками.

Высокая энергоемкость телескопических аспирационно-технологических установок (АТУ) перегрузочных станций обусловлена эжекционной способностью гравитационных потоков сыпучего материала, нагнетающих в аспирационные укрытия большое количество воздуха, что существенно увеличивает требуемую производительность систем аспирации. Мощность АТУ можно существенно уменьшить применением коаксиально расположенных загрузочных телескопических желобов и гофрированных непроницаемых стенок, расположенных вокруг желоба, а также герметизацией верхних и нижних укрытий, примыкающих к желобам.

Библиографический список

1. **Аверкова, О. А.** Моделирование отрывных потоков на входе в круглые всасывающие каналы с кольцевыми экранами / О. А. Аверкова, И. Н. Логачёв, К. И. Логачёв, И. В. Ходаков // Новые огнеупоры. — 2013. — № 10. — С. 57-61.

Averkova, O. A. Modeling detached flows at the inlet to round suction flues with annular screens / O. A. Averkova, I. N. Logachev, K. I. Logachev, I. V. Khodakov // Refractories and Industrial Ceramics. -2014. -Vol. 54, $N \ge 5$. -P. 425–429.

2. **Ходаков, И. В.** Численное и экспериментальное исследование отрыва потока на входе во всасывающие каналы с механическими экранами / И. В. Ходаков // Вестник БГТУ им. В. Г. Шухова. — 2016. — № 3. — С. 6–12.

3. **Ходаков, И. В.** Моделирование отрывного течения на входе в многоугольное всасывающее отверстие / И. В. Ходаков // Вестник БГТУ им. В. Г. Шухова. — 2016. — № 2. — С. 11-15.

4. *Hemeon, W. C. L.* Plant and process ventilation / *W. C. L. Hemeon.* — N. Y. : The Industrial Press, 1955. — 352 p.

5. *Серенко, А. С.* Обеспыливание воздуха в огнеупорной промышленности / *А. С. Серенко.* — М. : Металлургиздат, 1953. — 144 с.

6. Шелектин, А. В. Определение объемов воздуха для аспирации оборудования дробильно-сортировочных фабрик / А. В. Шелектин // Борьба с силикозом. — М. : Изд-во АН СССР, 1959. — Т. II. — С. 135–140.

7. *Logachev, I. N.* Industrial air quality and ventilation: controlling dust emissions / *I. N. Logachev, K. I. Logachev.* — BocaRaton : CRCPress, 2014. — 417 p.

Коаксиально расположенные желоба и байпасные камеры способствуют формированию внутренней рециркуляции эжектируемого воздуха и заметному снижению мощности потока транзитного воздуха, поступающего из желоба в аспирируемое укрытие.

Численные исследования убедительно показали, что основным параметром снижения транзитного расхода эжектируемого воздуха и увеличения объемов рециркулируемого воздуха является степень герметизации верхнего укрытия. Например, при снижении суммарной площади неплотностей этого укрытия от 0,14 до 0,02 м² расход транзитного воздуха уменьшится в 3 раза, а рециркулируемого увеличится в 2,5 раза. Общая производительность местного отсоса от нижнего укрытия при этом сократится в 1,68 раза. При отсутствии рецикла воздуха (при герметизации стенок желоба и отсутствии байпасной камеры) требуемая производительность отсоса увеличилась бы в 1,57 раза при хорошей герметизации (площадь неплотностей 0,02 м²).

* * *
Работа выполнена при финансовой поддержке совета по грантам РФФИ (проект № 16-08-00074а)
и Президента Российской Федерации (проект МД-95.2017.8).

8. *Logachev, I. N.* Local exhaust ventilation: aerodynamic processes and calculations of dust emissions / *I. N. Logachev, K. I. Logachev, O. A. Averkova.* — BocaRaton : CRCPress, 2015. — 576 p.

9. *Mallick, S.* Evaluation of scaleup procedures using «system» approach for pneumatic conveying of powders / *S. Mallick, P. W. Wypych //* Particulate Sci. Technol. — 2010. —Vol. 28, № 1. — P. 41–50.

10. *Li Xiaochuan.* Developments in studies of air entrained by falling bulk materials / *Li Xiaochuan, Wang Qili, Liu Qi, Hu Yafei //* Powder Technology. — 2016. — Vol. 291. — P. 159–169.

11. **Wypych, Peter W.** Minimum transport boundary for horizontal dense-phase pneumatic conveying of granular materials / *Peter W. Wypych, Jianglin Yi* // Powder Technology. — 2003. — Vol. 129. — P. 111–121.

12. Шафран, Ю. В. Моделирование индустриальных вентиляционных систем: проблема создания 3D-модели расчетной области / Ю. В. Шафран, А. В. Хоперсков // Вестник Волгоградского государственного университета. Серия 1: Математика. Физика. — 2016. — № 2 (33). — С. 52-62.

13. **Хоперсков, А. В.** Численное моделирование вентиляционных течений в промышленных помещениях / *А. В. Хоперсков, Ю. В. Шафран, М. А. Бутенко //* Южно-Сибирский научный вестник. — 2014. — № 2 (6). — С. 98–102. ■

Получено 17.01.17 © О. А. Аверкова, И. Н. Логачёв, К. И. Логачёв, И. В. Крюков, 2017 г.