Д. т. н. И. Д. Кащеев, к. т. н. К. Г. Земляной 🖾), К. О. Степанова

ФГАОУ ВО «Уральский федеральный университет», г. Екатеринбург, Россия

УДК 666.762.1:[666.321+666.762.1.002.68 ВОЗМОЖНОСТЬ ПОЛУЧЕНИЯ АЛЮМОСИЛИКАТНЫХ ЗАПОЛНИТЕЛЕЙ НА ОСНОВЕ КАОЛИНА И ТЕХНОГЕННЫХ МАТЕРИАЛОВ

Определены вещественный, химический и зерновой составы и свойства каолина Полетаевского месторождения. Приведены результаты исследования возможности получения на его основе плотного алюмосиликатного заполнителя для огнеупорных и керамических материалов и изделий. Введение алюмосиликатного материала позволяет получать заполнитель с повышенным содержанием Al₂O₃. **Ключевые слова:** каолин Полетаевского месторождения, алюмосиликатный материал (ACM), техногенные отходы переработки отработанных катализаторов, муллитообразование.

В связи с интенсификацией процессов в металлургии и химической промышленности повышаются требования к качеству огнеупорных материалов, в том числе рядовых алюмосиликатных. Интенсификация технологических процессов и изменение структуры металлургического производства сопровождается снижением потребности в алюмосиликатных огнеупорах, но требования к их качеству постоянно возрастают [1].

Основным направлением повышения качества является использование более чистых исходных материалов, что повышает температуру применения и химическую стойкость огнеупоров. Использование для производства заполнителей для рядовых алюмосиликатных огнеупоров каолинов вместо огнеупорных глин позволяет решать эту проблему, но требует модернизации технологий производства плотного заполнителя — шамота. Производство шамотных изделий включает получение шамота — синтетического плотного заполнителя, подготовку пластичной глины и изготовление изделий [2, 3]. В настоящей работе исследована возможность использования каолина Полетаевского месторождения и отходов химического производства — отработанных алюмосиликатных материалов для производства алюмосиликатных заполнителей различных марок.

Полетаевское месторождение каолина расположено в 4,5 км к северо-западу от ст. «Полетаево-1» и 20 км западнее Челябинска.

> ⊠ К. Г. Земляной E-mail: kir77766617@yandex.ru

Геолого-разведочными работами выявлены три основных каолиноносных участка — Западный, Центральный и Южный, в пределах которых находятся 29 залежей рыхлых геологических отложений каолинов с общими запасами по категориям А + В + С1 14,9 млн т. Разведанные участки представлены в основном каолинами, образованными при выветривании крупнозернистых биотитовых порфировидных гранитов, а также каолинами, расположенными по средним и мелкозернистым лейкократовым гранитам, мусковитам и двуслюдяным гранитам, которые в общем балансе запасов месторождения имеют второстепенное значение. По внешнему виду исходная каолиновая порода состоит из тонкодисперсного каолина и крупнозернистого кристаллического кварца.

Разделение полетаевского каолина по фракциям и определение фазового состава полученных материалов показало, что он содержит, мас. %: кварцит 5-8, каолинит 45-52 и мусковит до 40. Отдельные фракции каолина резко различаются по вещественному составу: фракция крупнее 0,1 мм представляет собой кварцевый песок, содержание которого составляет 99 %. Фракция мельче 0,063 мм представлена большим содержанием каолинита (>60 %) и мусковита (до 36 %). Фракция 0,063-0,1 содержит, мас. %: кварцит 30, каолинит 33 и мусковит 37. Для дальнейшей работы исходный каолин был обогащен мокрым способом на сите с размером ячейки 0,063 мм. Фракцию крупнее 0,063 мм исследовали на возможность применения при производстве керамических материалов, фракцию мельче 0.063 мм под индексом «Каолин обогащенный» использовали в настоящей работе.

В качестве высокоглиноземистого компонента для регулирования содержания Al_2O_3 в готовом заполнителе использовали алюмоси-

ликатный материал (ACM) — техногенные отходы переработки промышленных отработанных катализаторов. Минеральной основой катализаторов являются технический глинозем и диатомит, на которые в процессе производства наносятся активные фазы. После вывода катализаторов из эксплуатации их перерабатывают на минеральную основу и активные фазы методами гидрохимии. Отделенные активные фазы отправляются на регенерацию, а минеральная основа, составляющая до 98 мас. % исходного

Таблица 1. Химический состав исследуемых материалов, мас. %

•			
Ожония	Полетаево	ACM	
Оксид	исходный	обогащенный	ACM
Al ₂ O ₃	22,80	34,70	48,20
SiO ₂	68,00	49,00	38,80
Fe ₂ O ₃	1,15	1,78	1,30
TiO ₂	0,30	0,60	0,84
CaO	0,15	0,20	1,40
MgO	0,42	0,45	3,90
R_2O	2,54	3,10	-
Δm_{TDK}	6,34	10.60	5.50

продукта, в настоящее время складируется и требует разработки технологий их дальнейшего использования.

По зерновому составу АСМ содержит, мас. %: фракции крупнее 0,315 мм 0,5, 0,063-0,315 мм 2,8, мельче 0,063 мм 96,7. Фазовый состав отработанного катализатора, мас. %: опаловые породы 45-48, у-глинозем 48-50, корунд 2-5. Химический состав используемых материалов представлен в табл. 1.

Для анализа процессов, происходящих при нагревании исходного каолина, был выполнен дифференциальный термический анализ (ДТА), результаты которого показаны на рис. 1. Эндотермические эффекты в области 70–120 °C связаны с удалением адсорбированной и межслоевой воды. Второй эффект в области 500–550 °C связан с удалением конституционной воды и разрушением кристаллической решетки каолинита, он сопровождается потерей массы 4,77–9,37 %. Эндотермические эффекты в области 875 и 960 °C связаны с разложением карбонатов и

гидрослюдистых минералов, экзотермические при 1000 и 1230 °С обусловлены кристаллизацией муллита и кристобалита.

Исследование реологических свойств отдельных фракций полетаевского каолина показало следующее:

– согласно ГОСТ 9169, полетаевский каолин по содержанию Al₂O₃ является полукислым, обогащенный каолин — основным. По содержанию красящих оксидов (Fe₂O₃ и TiO₂) каолин относится к группе с низким содержанием красящих оксидов;

 по пластичности полетаевский каолин относится к непластичной группе, а фракция мельче 0,063 мм
к умеренно-пластичной группе;

 по зерновому составу каолин относится к грубодисперсному сырью, обогащенный каолин — к низкодисперсному сырью.

МЕТОДЫ ИССЛЕДОВАНИЯ

Зерновой состав проб определяли согласно ГОСТ 21216 на ситах по ГОСТ Р 51568 (ИСО 3310-1-90). Число пластичности и пластичность материала по Васильевой определяли по ГОСТ 21216.

Исследования проб на ДТА проводили на дифференциальном сканирующем калориметре «STA 449 F3 Jupiter» («Netzsch-Gerätebau GmbH», Германия) с использовани-

32

ем программного пакета «Proteus Analysis 5.2» по методике DIN 51004:1994 Determination of melting temperatures of crystalline materials using differential thermal analysis (Определение температур плавления кристаллических материалов с использованием дифференциального термического анализа). Химический состав исследованных проб определяли эмиссионным спектральным методом анализа с индуктивно-связанной плазмой на приборе «Optima 4300 DV, ICP-OES» (PerkinElmer, США), фазовый состав — рентгенофазовым анализом (РФА) на дифрактометре с врашающимся анодом «MiniFlex 600» (Си К_α-излучение, λ = 1.541862 Å, интервал съемки 3,00–90,00 град, шаг сканирования 0,02 град) фирмы «Rigaku – Carl Zeiss», Япония, с программами управления и сбора данных «MiniFlex guidance» и пакетом обработки данных «PDXL Basic». Идентификацию дифракционных максимумов проводили с использованием базы данных «ISPDS», полуколичественную оценку содержания фаз — с использованием корундового числа RIR (Reference Intensity Ratio). Открытую пористость и кажущуюся плотность определяли по ГОСТ 2409. Предел прочности при сжатии — по ГОСТ 53065.2, остаточные изменения линейных размеров при нагревании — по ГОСТ 5402.1.

ПОДГОТОВКА ОБРАЗЦОВ

В ходе работы методом совместного тонкого помола были приготовлены смеси обогащенного каолина и ACM с расчетом на содержание (Al₂O₃ + TiO₂) в готовом заполнителе 35, 37, 40 и более 40 мас. %. Исследовали также чистый обогащенный каолин и ACM. В качестве временного технологического связующего использовали раствор лигносульфоната (ЛСТ) плотностью 1,2 г/см³ в количестве 5–9 мас. %. Образцы высотой и диаметром 40 мм формовали под давлением 80 МПа, сформованные образцы сушили при 110 °C в течение 24 ч и обжигали при 1400, 1500, 1600 и 1700 °C с выдержкой при конечной температуре 2 ч.

Таблица 2.	Свойства	ACM	после	термообр	работки
------------	----------	-----	-------	----------	---------

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Свойства образцов обогащенного каолина и исходного ACM представлены в табл. 2, 3 и показаны на рис. 2.

Из данных табл. 2 и рис. 2 видно, что температура спекания чистого ACM обоих фракций составляет 1700 °С. При этом фракция 0,063–0,315 мм в процессе спекания показывает меньшие кажущуюся плотность и открытую пористость. Дополнительные исследования фазового состава образцов после термообработки (табл. 4) показывают, что крупная фракция ACM содержит большее количество SiO₂, который в процессе термообработки не полностью связывается в муллит, остается в свободном виде и обеспечивает некоторое разрыхление при 1500–1600 °С,

Рис. 2. Спекаемость чистого АСМ (*a*) и обогащенного каолина (б): ▲ — фракция 0,063–0,315 мм; ■ — фракция мельче 0,063 мм

		-			
Anorma ACM 194	C- a ža-sa	Показатель после термообработки при температуре, °С			
Фракция АСМ, мм	Своиство	1400	1500	1600	1700
0,063-0,135	Водопоглощение, %	18,00	10,00	10,00	1,50
	Кажущаяся плотность, г/см ³	1,70	2,10	2,10	2,25
	Открытая пористость, %	39,00	29,00	27,00	2,50
< 0,063	Водопоглощение, %	17,40	10,00	9,05	1,56
	Кажущаяся плотность, г/см ³	1,98	2,12	2,24	2,43
	Открытая пористость, %	43,00	27,00	25,00	3,50

гаолица 3. Своиства обогащенного каолина после термообработ	войства обогащенного каолина посл	е термообработк
--	-----------------------------------	-----------------

Crožerno	Показатель после термообработки при температуре, °С				
Своиство	1300	1400	1500	1600	
Водопоглощение, %	2,30	1,00	3,50	1,00	
Кажущаяся плотность, г/см ³	2,27	2,25	2,23	2,28	
Открытая пористость, %	6,50	4,00	9,00	3,00	
Линейная усадка, %	7,80	6,80	6,00	7,10	
Предел прочности при сжатии, МПа	78,00	63,00	43,00	53,00	

Молориол		Содержание фазы, мас. %				
материал	температура оожита, С	муллит (3Al ₂ O ₃ ·2SiO ₂)	β-кристобалит	корунд		
АСМ фракции, мм:						
0,063-0,315	1400	91,0	8,6	_		
	1500	93,0	5,0	1,0		
	1600	99,0	_	0,5		
	1700	92,4	7,6	_		
<0,063	1400	92,0	6,0	1,6		
	1500	100,0	0,4	_		
	1600	100,0	_	_		
	1700	93,0	7,0	_		
Обогащенный	1300	90,0	9,0	_		
каолин	1400	91,0	9,0	_		
	1500	95,0	5,0	_		
	1600	92,0	8,0	-		

Таблица 4. Фазовый состав исходных материалов

но лучшее спекание при 1700 °С. Фракция мельче 0,063 мм, наоборот, обогащена Al₂O₃, что обеспечивает повышенную кажущуюся плотность и более полную муллитизацию. Следует отметить эффект частичного разложения муллита в обеих исследованных массах при 1700 °С с выделением примерно 7 % свободного SiO₂. Таким образом, оптимальной температурой обжига чистого ACM на шамот следует считать 1600 °С.

Полетаевский каолин (см. рис. 2, б) имеет сложный характер спекания. В интервале 1400-1500 °С материал начинает интенсивно разрыхляться, что, вероятно, связано с процессом вторичного муллитообразования и/или кристобалитизации за счет тонкодисперсного кристаллического кварца, содержащегося в материале. Результаты исследования фазового состава образцов (см. табл. 4) показывают большее содержание муллита при температуре термообработки 1500 °С.

Исследования микроструктуры образцов (рис. 3) показывает, что чистый АСМ в обеих исследованных фракциях, представляющий собой механическую смесь частиц глинозема и диатомита, после эксплуатации и химической обработки после обжига при 1400 °С показывает высокую степень муллитообразования, но плохо спекается. Общая пористость составляет 30-40 %, поры размерами от 0,5-2,0 до 200-300 мкм образуют ансамбли сложной формы. Видны точечные включения фазы с высокой отражательной способностью (стекло или остатки активных фаз, не удаленные при химической переработке). Отдельные зерна имеют точечные

Рис. 3. Микроструктура образцов АСМ: фракций 0,063–0,315 мм (*a*, *б*) и мельче 0,063 мм (*в*, *г*) после обжига при 1400 (*a*, *в*) и 1700 °С (*б*, *г*)

контакты спекания. Структура образцов после термообработки при 1700 °С плотная, керамическая. Поры округлые, средние и крупные, размерами от 5–15 до 70–100 мкм, общая пористость 5–7 %. Количество фазы с высоким коэффициентом отражения существенно уменьшается.

Каолин фракции мельче 0,063 мм показывает высокую степень муллитообразования и плотную, хорошо спеченную структуру уже после термообработки при 1400 °С (рис. 4, *a*). Поры округлые и изометричные, размерами от 0,5-1,0 до

Рис. 4. Микроструктура образцов обогащенного каолина после термообработки при 1400 (*a*) и 1600 °С (*б*)

100–150 мкм, общая пористость составляет 6–9 %. После термообработки при 1600 °C (рис. 4, б) структура образцов принципиально не меняется, количество пор и их размеры уменьшаются до 3–5 % и до 30–50 мкм соответственно. В образцах практически отсутствует вторая фаза. Таким образом, оптимальной температурой обжига на шамот обогащенного полетаевского каолина следует считать интервал 1350–1400 °C, а ACM — 1650–1700 °C.

Исследование спекания смесей обогащенного каолина и АСМ представлено в табл. 5 и показано на рис. 5.

Все исследованные смеси показывают примерно одинаковый характер изменения свойств в зависимости от температуры термообработки, повторяющий характер спекания каолина: смеси хорошо спекаются до температуры 1400-1450 °C, затем происходит разрыхление при 1500 °C и последующее спекание при 1600 °C. Разрыхление структуры объясняется, по-видимому, вторичным муллитообразованием (табл. 6) происходящим в АСМ.

Наилучшими свойствами обладают смеси с 10 мас. % АСМ. При температуре обжига 1300–1400 °C их водопоглощение составляет 1,09–3,09 %, а предел прочности при сжатии 47–78 МПа. Дальнейшее увеличение содержания АСМ в смеси приводит к повышению температуры и времени обжига материала для преодоления последствий вторичного муллитообразования. Вследствие муллитообразования происходит закономерное ухудшение свойств образцов при всех температурах обжига с ростом содержания в них АСМ (см. рис. 5).

Исследование микроструктуры образцов, полученных из смесей обогащенного каолина и ACM, показывает (рис. 6), что увеличение количества ACM закономерно ведет к ухудшению спекания образцов при 1400 и 1600 °С. Кроме того, с ростом количества ACM появляется вторая фаза с высоким коэффициентом отраже-

	<i>c</i>			C
таолица 5. Своиства	ооразцов смесеи	ооогащенного каолина	а и асм после т	ермооораоотки

Каолин /	Слойство	Показатель после термообработки при температуре			ратуре, °С
ACM	Своиство	1300	1400	1500	1600
90 / 10	Водопоглощение, %	1,09	3,09	6,59	1,40
	Кажущаяся плотность, г/см ³	2,28	2,10	2,11	2,33
	Открытая пористость, %	3,10	6,80	17,40	3,80
	Линейная усадка, %	11,70	12,40	8,70	9,50
	Предел прочности при сжатии, МПа	78,40	46,60	40,00	54,70
80 / 20	Водопоглощение, %	4,59	4,14	9,09	4,52
	Кажущаяся плотность, г/см ³	2,21	2,16	1,92	2,12
	Открытая пористость, %	12,70	10,50	21,80	11,90
	Линейная усадка, %	12,50	12,20	8,60	9,70
	Предел прочности при сжатии, МПа	70,80	54,00	44,30	55,40
70 / 30	Водопоглощение, %	4,59	5,49	10,40	5,36
	Кажущаяся плотность, г/см ³	2,27	2,28	1,90	2,21
	Открытая пористость, %	13,03	16,00	25,30	14,70
	Линейная усадка, %	12,10	12,30	8,40	10,60
	Предел прочности при сжатии, МПа	62,80	59,00	39,20	41,60
60 / 40	Водопоглощение, %	8,23	6,68	11,30	7,32
	Кажущаяся плотность, г/см ³	2,10	2,07	1,86	2,03
	Открытая пористость, %	21,60	17,30	28,40	18,40
	Линейная усадка, %	12,20	12,10	8,70	11,30
	Предел прочности при сжатии, МПа	51,70	47,20	31,60	43,60

Рис. 5. Свойства образцов смесей с 10 (♠), 20 (■), 30 (▲) и 40 (×) мас. % АСМ после термообработки: *a* — открытая пористость *Π*_{отк}; *б* — кажущаяся плотность ρ_{каж}; *в* — водопоглощение *W*; *e* — предел прочности при сжатии σ_{сж}

Рис. 6. Микроструктура образцов из смесей обогащенного каолина и АСМ, взятых в соотношении 90 / 10 (*a*, *б*), 80 / 20 (*в*, *г*), 70 / 30 (*д*, *e*) и 60 / 40 (*ж*, *з*), после термообработки при 1400 (*a*, *в*, *д*, *ж*) и 1600 °С (*б*, *г*, *e*, *з*)

36

Koomuu / ACM		Содержание фазы, мас. %, в образце после термообработки при температуре, °С					
KdUJINH / ACIVI	Ψd3d	1300	1400	1500	1600		
90 / 10	Муллит	90,0	89,0	94,0	92,0		
	Кварц	9,0	11,0	4,0	7,5		
	β-Кристобалит	1,0	-	1,0	-		
80 / 20	Муллит	87,0	88,0	91,0	86,0		
	Кварц	12,0	-	7,0	-		
	β-Кристобалит	1,0	1,0	2,0	1,0		
	α -SiO ₂	-	11,0	-	13,0		
70 / 30	Муллит	83,0	85,0	97,0	84,0		
	Кварц	12,0	13,0	2,0	-		
	β-Кристобалит	5,0	2,0	1,0	1,0		
	α -SiO ₂	-	-	-	15,0		
60 / 40	Муллит	82,0	86,0	95,0	94,0		
	Кварц	9,0	9,0	4,0	5,0		
	β-Кристобалит	9,0	5,0	1,0	-		
	Корунд	_	_	_	1,0		

Таблица 6. Фазовый состав образцов после термообработки

ния (стеклофаза или активная фаза материала). Если в смеси с соотношением 90/10 мас. % плотноспеченная структура с изолированными крупными порами получается уже после термообработки при 1400 °С (см. рис. 6, а), то в смеси с соотношением 60/40 мас. % после термообработки при 1600 °C структура остается не полностью спеченной; поры вытянутые, сохраняют форму межзеренного пространства.

ЗАКЛЮЧЕНИЕ

Показана возможность использования обогащенного каолина Полетаевского месторождения для производства алюмосиликатных заполнителей различных марок при введении в его состав АСМ. Реологические свойства обогашенного каолина позволяют формовать из него плотный брикет. Температура спекания чистого обогащенного каолина составляет 1300-1400 °С, при этом образцы показывают водопоглощение 1,0-2,3 %, предел прочности при сжатии 63-78 МПа, плотную структуру с округлыми, изолированными порами и практическим отсутствием второй фазы.

Введение в полетаевский каолин отходов промышленности — АСМ в количестве до 10 мас. % не

меняет характер спекания каолина и позволяет получать при 1300-1400 °С качественный шамот с плотной структурой, содержанием Al₂O₃ до 40 мас. %, водопоглощением 1,0-3,0 %, пределом прочности при сжатии 47-78 МПа. Увеличение содержания АСМ в смеси приводит к необходимости повышения температуры и длительности обжига шамота для достижения тех же качественных показателей.

Библиографический список

1. Аксельрод, Л. М. Развитие огнеупорной отрасли — отклик на запросы металлургии / Л. М. Аксельрод // Черная металлургия. — 2013. — № 3. — С. 125-143.

2. Кащеев, И. Д. Химическая технология огнеупоров / И. Д. Кащеев, К. К. Стрелов, П. С. Мамыкин. — М. : Интермет Инжиниринг, 2007. — 752 с.

3. Хоменко. Е. С. Современная технология получения шамота высоких марок на основе качественного каолинового сырья / Е. С. Хоменко, О. А. Миршавка, В. В. Коледа, Р. Ю. Чернышова // Огнеупоры и техническая керамика. — 2013. — № 9. — С. 20-24. 🔳

> Получено 03.07.17 © И. Д. Кашеев, К. Г. Земляной, К. О. Степанова, 2017 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ