НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

Д. т. н. **И. Д. Кащеев**, к. т. н. **К. Г. Земляной** (🖂), **К. О. Степанова**

ФГАОУ ВО «Уральский федеральный университет», г. Екатеринбург, Россия

УДК 666.762.1:[666.321+666.762.1.002.68

ВОЗМОЖНОСТЬ ПОЛУЧЕНИЯ АЛЮМОСИЛИКАТНЫХ ЗАПОЛНИТЕЛЕЙ НА ОСНОВЕ КАОЛИНА И ТЕХНОГЕННЫХ МАТЕРИАЛОВ

Определены вещественный, химический и зерновой составы и свойства каолина Полетаевского месторождения. Приведены результаты исследования возможности получения на его основе плотного алюмосиликатного заполнителя для огнеупорных и керамических материалов и изделий. Введение алюмосиликатного материала позволяет получать заполнитель с повышенным содержанием Al_2O_3 .

Ключевые слова: каолин Полетаевского месторождения, алюмосиликатный материал (ACM), техногенные отходы переработки отработанных катализаторов, муллитообразование.

Всвязи с интенсификацией процессов в металлургии и химической промышленности повышаются требования к качеству огнеупорных материалов, в том числе рядовых алюмосиликатных. Интенсификация технологических процессов и изменение структуры металлургического производства сопровождается снижением потребности в алюмосиликатных огнеупорах, но требования к их качеству постоянно возрастают [1].

Основным направлением повышения качества является использование более чистых исходных материалов, что повышает температуру применения и химическую стойкость огнеупоров. Использование для производства заполнителей для рядовых алюмосиликатных огнеупоров каолинов вместо огнеупорных глин позволяет решать эту проблему, но требует модернизации технологий производства плотного заполнителя — шамота. Производство шамотных изделий включает получение шамота — синтетического плотного заполнителя, подготовку пластичной глины и изготовление изделий [2, 3]. В настоящей работе исследована возможность использования каолина Полетаевского месторождения и отходов химического производства — отработанных алюмосиликатных материалов для производства алюмосиликатных заполнителей различных марок.

Полетаевское месторождение каолина расположено в 4,5 км к северо-западу от ст. «Полетаево-1» и 20 км западнее Челябинска.

 \bowtie

К. Г. Земляной E-mail: kir77766617@yandex.ru Геолого-разведочными работами выявлены три основных каолиноносных участка — Западный, Центральный и Южный, в пределах которых находятся 29 залежей рыхлых геологических отложений каолинов с общими запасами по категориям А + В + С1 14,9 млн т. Разведанные участки представлены в основном каолинами, образованными при выветривании крупнозернистых биотитовых порфировидных гранитов, а также каолинами, расположенными по средним и мелкозернистым лейкократовым гранитам, мусковитам и двуслюдяным гранитам, которые в общем балансе запасов месторождения имеют второстепенное значение. По внешнему виду исходная каолиновая порода состоит из тонкодисперсного каолина и крупнозернистого кристаллического кварца.

Разделение полетаевского каолина по фракциям и определение фазового состава полученных материалов показало, что он содержит, мас. %: кварцит 5-8, каолинит 45-52 и мусковит до 40. Отдельные фракции каолина резко различаются по вещественному составу: фракция крупнее 0,1 мм представляет собой кварцевый песок, содержание которого составляет 99 %. Фракция мельче 0,063 мм представлена большим содержанием каолинита (>60 %) и мусковита (до 36 %). Фракция 0,063-0,1 содержит, мас. %: кварцит 30, каолинит 33 и мусковит 37. Для дальнейшей работы исходный каолин был обогащен мокрым способом на сите с размером ячейки 0,063 мм. Фракцию крупнее 0,063 мм исследовали на возможность применения при производстве керамических материалов, фракцию мельче 0.063 мм под индексом «Каолин обогащенный» использовали в настоящей работе.

В качестве высокоглиноземистого компонента для регулирования содержания Al_2O_3 в готовом заполнителе использовали алюмоси-

ликатный материал (АСМ) — техногенные отходы переработки промышленных отработанных катализаторов. Минеральной основой катализаторов являются технический глинозем и диатомит, на которые в процессе производства наносятся активные фазы. После вывода катализаторов из эксплуатации их перерабатывают на минеральную основу и активные фазы методами гидрохимии. Отделенные активные фазы отправляются на регенерацию, а минеральная основа, составляющая до 98 мас. % исходного

Таблица 1. **Химический состав исследуемых материалов, мас.** %

• '			
Оксид	Полетаево	ACM	
ОКСИД	исходный	обогащенный	ACM
Al_2O_3	22,80	34,70	48,20
SiO_2	68,00	49,00	38,80
Fe_2O_3	1,15	1,78	1,30
TiO_2	0,30	0,60	0,84
CaO	0,15	0,20	1,40
MgO	0,42	0,45	3,90
R_2O	2,54	3,10	_
$\Delta m_{ m npk}$	6,34	10,60	5,50

Рис. 1. Результаты ДТА-анализа полетаевского каолина: a — фракция мельче 0,063 мм (обогащенный); δ — фракция 0,063–0,1 мм

продукта, в настоящее время складируется и требует разработки технологий их дальнейшего использования.

По зерновому составу АСМ содержит, мас. %: фракции крупнее 0,315 мм 0,5, 0,063–0,315 мм 2,8, мельче 0,063 мм 96,7. Фазовый состав отработанного катализатора, мас. %: опаловые породы 45–48, у-глинозем 48–50, корунд 2–5. Химический состав используемых материалов представлен в табл. 1.

Для анализа процессов, происходящих при нагревании исходного каолина, был выполнен дифференциальный термический анализ (ДТА), результаты которого показаны на рис. 1. Эндотермические эффекты в области 70–120 °С связаны с удалением адсорбированной и межслоевой воды. Второй эффект в области 500–550 °С связан с удалением конституционной воды и разрушением кристаллической решетки каолинита, он сопровождается потерей массы 4,77–9,37 %. Эндотермические эффекты в области 875 и 960 °С связаны с разложением карбонатов и

гидрослюдистых минералов, экзотермические при 1000 и 1230 °C обусловлены кристаллизацией муллита и кристобалита.

Исследование реологических свойств отдельных фракций полетаевского каолина показало следующее:

- согласно ГОСТ 9169, полетаевский каолин по содержанию Al_2O_3 является полукислым, обогащенный каолин основным. По содержанию красящих оксидов (Fe_2O_3 и TiO_2) каолин относится к группе с низким содержанием красящих оксилов:
- по пластичности полетаевский каолин относится к непластичной группе, а фракция мельче 0,063 мм
 к умеренно-пластичной группе;
- по зерновому составу каолин относится к грубодисперсному сырью, обогащенный каолин — к низкодисперсному сырью.

МЕТОДЫ ИССЛЕДОВАНИЯ

Зерновой состав проб определяли согласно ГОСТ 21216 на ситах по ГОСТ Р 51568 (ИСО 3310-1-90). Число пластичности и пластичность материала по Васильевой определяли по ГОСТ 21216.

Исследования проб на ДТА проводили на дифференциальном сканирующем калориметре «STA 449 F3 Jupiter» («Netzsch-Gerätebau GmbH», Германия) с использовани-

ем программного пакета «Proteus Analysis 5.2» по методике DIN 51004:1994 Determination of melting temperatures of crystalline materials using differential thermal analysis (Определение температур плавления кристаллических материалов с использованием дифференциального термического анализа). Химический состав исследованных проб определяли эмиссионным спектральным методом анализа с индуктивно-связанной плазмой на приборе «Optima 4300 DV, ICP-OES» (PerkinElmer, США), фазовый состав — рентгенофазовым анализом (РФА) на дифрактометре с вращающимся анодом «MiniFlex 600» (Си K_{α} -излучение, $\lambda = 1,541862$ А, интервал съемки 3,00-90,00 град, шаг сканирования 0,02 град) фирмы «Rigaku - Carl Zeiss», Япония, с программами управления и сбора данных «MiniFlex guidance» и пакетом обработки данных «PDXL Basic». Идентификацию дифракционных максимумов проводили с использованием базы данных «JSPDS», полуколичественную оценку содержания фаз — с использованием корундового числа RIR (Reference Intensity Ratio). Открытую пористость и кажущуюся плотность определяли по ГОСТ 2409. Предел прочности при сжатии — по ГОСТ 53065.2, остаточные изменения линейных размеров при нагревании — по ГОСТ 5402.1.

ПОДГОТОВКА ОБРАЗЦОВ

В ходе работы методом совместного тонкого помола были приготовлены смеси обогащенного каолина и АСМ с расчетом на содержание ($Al_2O_3 + TiO_2$) в готовом заполнителе 35, 37, 40 и более 40 мас. %. Исследовали также чистый обогащенный каолин и АСМ. В качестве временного технологического связующего использовали раствор лигносульфоната (ЛСТ) плотностью 1,2 г/см³ в количестве 5–9 мас. %. Образцы высотой и диаметром 40 мм формовали под давлением 80 МПа, сформованные образцы сушили при 110 °С в течение 24 ч и обжигали при 1400, 1500, 1600 и 1700 °С с выдержкой при конечной температуре 2 ч.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Свойства образцов обогащенного каолина и исходного АСМ представлены в табл. 2, 3 и показаны на рис. 2.

Из данных табл. 2 и рис. 2 видно, что температура спекания чистого АСМ обоих фракций составляет 1700 °С. При этом фракция 0,063–0,315 мм в процессе спекания показывает меньшие кажущуюся плотность и открытую пористость. Дополнительные исследования фазового состава образцов после термообработки (табл. 4) показывают, что крупная фракция АСМ содержит большее количество SiO₂, который в процессе термообработки не полностью связывается в муллит, остается в свободном виде и обеспечивает некоторое разрыхление при 1500–1600 °С,

Рис. 2. Спекаемость чистого АСМ (*a*) и обогащенного каолина (*б*): <u>∧</u> — фракция 0,063–0,315 мм; <u>■</u> — фракция мельче 0,063 мм

Таблица 2. Свойства АСМ после термообработки

Флотина АСМ зак	Свойство	Показатель после термообработки при температуре, °C			
Фракция АСМ, мм		1400	1500	1600	1700
0,063-0,135	Водопоглощение, %	18,00	10,00	10,00	1,50
	Кажущаяся плотность, г/см³	1,70	2,10	2,10	2,25
	Открытая пористость, %	39,00	29,00	27,00	2,50
< 0,063	Водопоглощение, %	17,40	10,00	9,05	1,56
	Кажущаяся плотность, г/см ³	1,98	2,12	2,24	2,43
	Открытая пористость, %	43,00	27,00	25,00	3,50

Таблица 3. Свойства обогащенного каолина после термообработки

The state of the s					
Свойство	Показатель после термообработки при температуре, °C				
Своиство	1300	1400	1500	1600	
Водопоглощение, %	2,30	1,00	3,50	1,00	
Кажущаяся плотность, г/см ³	2,27	2,25	2,23	2,28	
Открытая пористость, %	6,50	4,00	9,00	3,00	
Линейная усадка, %	7,80	6,80	6,00	7,10	
Предел прочности при сжатии, МПа	78,00	63,00	43,00	53,00	

№ 10 2017 **Hobbie Otheytopbi** ISSN 1683-4518 **33**

Можения	Torrenommo of wine 90	(Содержание фазы, мас. %)
Материал	Температура обжига, °С	муллит (3Al ₂ O ₃ ·2SiO ₂)	β-кристобалит	корунд
АСМ фракции, мм:				
0,063-0,315	1400	91,0	8,6	_
	1500	93,0	5,0	1,0
	1600	99,0	_	0,5
	1700	92,4	7,6	-
<0,063	1400	92,0	6,0	1,6
	1500	100,0	0,4	-
	1600	100,0	_	_
	1700	93,0	7,0	-
Обогащенный	1300	90,0	9,0	-
каолин	1400	91,0	9,0	-
	1500	95,0	5,0	-
	1600	92,0	8,0	-

но лучшее спекание при $1700\,^{\circ}$ С. Фракция мельче $0,063\,$ мм, наоборот, обогащена $\mathrm{Al_2O_3}$, что обеспечивает повышенную кажущуюся плотность и более полную муллитизацию. Следует отметить эффект частичного разложения муллита в обеих исследованных массах при $1700\,^{\circ}$ С с выделением примерно $7\,^{\circ}$ С свободного $\mathrm{SiO_2}$. Таким образом, оптимальной температурой обжига чистого ACM на шамот следует считать $1600\,^{\circ}$ С.

Полетаевский каолин (см. рис. 2, б) имеет сложный характер спекания. В интервале 1400-1500 °С материал начинает интенсивно разрыхляться, что, вероятно, связано с процессом вторичного муллитообразования и/или кристобалитизации за счет тонкодисперсного кристаллического кварца, содержащегося в материале. Результаты исследования фазового

состава образцов (см. табл. 4) показывают большее содержание муллита при температуре термообработки 1500 °C.

Исследования микроструктуры образцов (рис. 3) показывает, что чистый АСМ в обеих исследованных фракциях, представляющий собой механическую смесь частиц глинозема и диатомита, после эксплуатации и химической обработки после обжига при 1400 °С показывает высокую степень муллитообразования, но плохо спекается. Общая пористость составляет 30–40 %, поры размерами от 0,5–2,0 до 200–300 мкм образуют ансамбли сложной формы. Видны точечные включения фазы с высокой отражательной способностью (стекло или остатки активных фаз, не удаленные при химической переработке). Отдельные зерна имеют точечные

Рис. 3. Микроструктура образцов АСМ: фракций 0.063-0.315 мм (a, 6) и мельче 0.063 мм (в, г) после обжига при 1400 (a, в) и 1700 °C (b, r)

контакты спекания. Структура образцов после термообработки при 1700 °С плотная, керамическая. Поры округлые, средние и крупные, размерами от 5–15 до 70–100 мкм, общая пористость 5–7 %. Количество фазы с высоким коэффициентом отражения существенно уменьшается.

Каолин фракции мельче 0,063 мм показывает высокую степень муллитообразования и плотную, хорошо спеченную структуру уже после термообработки при 1400 °С (рис. 4, а). Поры округлые и изометричные, размерами от 0,5–1,0 до

100-150 мкм, общая пористость составляет 6-9 %. После термообработки при 1600 °C (рис. 4, б) структура образцов принципиально не меняется, количество пор и их размеры уменьшаются до 3-5 % и до 30-50 мкм соответственно. В образцах практически отсутствует вторая фаза. Таким образом, оптимальной температурой обжига на шамот обогащенного полетаевского каолина следует считать интервал 1350-1400 °C, а ACM — 1650-1700 °C.

Исследование спекания смесей обогащенного каолина и ACM представлено в табл. 5 и показано на рис. 5.

Все исследованные смеси показывают примерно одинаковый характер изменения свойств в зависимости от температуры термообработки, повторяющий характер спекания каолина: смеси хорошо спекаются до температуры 1400–1450 °C, затем происходит разрыхление при 1500 °C и последующее спекание при 1600 °C. Разрыхление структуры объясняется,

Рис. 4. Микроструктура образцов обогащенного каолина после термообработки при 1400~(a) и $1600~^{\circ}$ С (b)

по-видимому, вторичным муллитообразованием (табл. 6) происходящим в АСМ.

Наилучшими свойствами обладают смеси с 10 мас. % АСМ. При температуре обжига 1300–1400 °С их водопоглощение составляет 1,09–3,09 %, а предел прочности при сжатии 47–78 МПа. Дальнейшее увеличение содержания АСМ в смеси приводит к повышению температуры и времени обжига материала для преодоления последствий вторичного муллитообразования. Вследствие муллитообразования происходит закономерное ухудшение свойств образцов при всех температурах обжига с ростом содержания в них АСМ (см. рис. 5).

Исследование микроструктуры образцов, полученных из смесей обогащенного каолина и АСМ, показывает (рис. 6), что увеличение количества АСМ закономерно ведет к ухудшению спекания образцов при 1400 и 1600 °С. Кроме того, с ростом количества АСМ появляется вторая фаза с высоким коэффициентом отраже-

Таблица 5. Свойства образцов смесей обогащенного каолина и АСМ после термообработки

Каолин /	Свойство	Показатель после термообработки при температуре, °C			
ACM		1300	1400	1500	1600
90 / 10	Водопоглощение, %	1,09	3,09	6,59	1,40
	Кажущаяся плотность, г/см ³	2,28	2,10	2,11	2,33
	Открытая пористость, %	3,10	6,80	17,40	3,80
	Линейная усадка, %	11,70	12,40	8,70	9,50
	Предел прочности при сжатии, МПа	78,40	46,60	40,00	54,70
80 / 20	Водопоглощение, %	4,59	4,14	9,09	4,52
	Кажущаяся плотность, г/см³	2,21	2,16	1,92	2,12
	Открытая пористость, %	12,70	10,50	21,80	11,90
	Линейная усадка, %	12,50	12,20	8,60	9,70
	Предел прочности при сжатии, МПа	70,80	54,00	44,30	55,40
70 / 30	Водопоглощение, %	4,59	5,49	10,40	5,36
	Кажущаяся плотность, г/см³	2,27	2,28	1,90	2,21
	Открытая пористость, %	13,03	16,00	25,30	14,70
	Линейная усадка, %	12,10	12,30	8,40	10,60
	Предел прочности при сжатии, МПа	62,80	59,00	39,20	41,60
60 / 40	Водопоглощение, %	8,23	6,68	11,30	7,32
	Кажущаяся плотность, г/см³	2,10	2,07	1,86	2,03
	Открытая пористость, %	21,60	17,30	28,40	18,40
	Линейная усадка, %	12,20	12,10	8,70	11,30
	Предел прочности при сжатии, МПа	51,70	47,20	31,60	43,60

№ 10 2017 **Hobbie Otheyhopbi** ISSN 1683-4518 **35**

Рис. 5. Свойства образцов смесей с 10 (♠), 20 (■), 30 (▲) и 40 (×) мас. % АСМ после термообработки: a — открытая пористость $\Pi_{\text{отк}}$; b — кажущаяся плотность $\rho_{\text{каж}}$; b — водопоглощение W; b — предел прочности при сжатии $\sigma_{\text{сж}}$

Рис. 6. Микроструктура образцов из смесей обогащенного каолина и АСМ, взятых в соотношении 90 / 10 (a, δ) , 80 / 20 (e, ϵ) , 70 / 30 (∂, e) и 60 / 40 (∞, s) , после термообработки при 1400 (a, e, ∂, ∞) и 1600 °C (δ, ϵ, e, s)

Таблица 6. Фазовый состав образцов после термообработки

Каолин / АСМ	Форо	Содержание фазы, мас. %, в образце после термообработки при температуре, °C				
Каолин / АСМ	Фаза	1300	1400	1500	1600	
90 / 10	Муллит	90,0	89,0	94,0	92,0	
	Кварц	9,0	11,0	4,0	7,5	
	β-Кристобалит	1,0	_	1,0	-	
80 / 20	Муллит	87,0	88,0	91,0	86,0	
	Кварц	12,0	-	7, 0	-	
	β-Кристобалит	1,0	1,0	2,0	1,0	
	α -SiO ₂	-	11,0	-	13,0	
70 / 30	Муллит	83,0	85,0	97,0	84,0	
	Кварц	12,0	13,0	2,0	-	
	β-Кристобалит	5,0	2,0	1,0	1,0	
	α -SiO ₂		-	-	15,0	
60 / 40	Муллит	82,0	86,0	95,0	94,0	
	Кварц	9,0	9,0	4,0	5,0	
	β-Кристобалит	9,0	5,0	1,0	-	
	Корунд	_	_	_	1,0	

ния (стеклофаза или активная фаза материала). Если в смеси с соотношением 90/10 мас. % плотноспеченная структура с изолированными крупными порами получается уже после термообработки при 1400 °C (см. рис. 6, а), то в смеси с соотношением 60/40 мас. % после термообработки при 1600 °C структура остается не полностью спеченной; поры вытянутые, сохраняют форму межзеренного пространства.

ЗАКЛЮЧЕНИЕ

Показана возможность использования обогащенного каолина Полетаевского месторождения для производства алюмосиликатных заполнителей различных марок при введении в его состав АСМ. Реологические свойства обогащенного каолина позволяют формовать из него плотный брикет. Температура спекания чистого обогащенного каолина составляет 1300–1400 °C, при этом образцы показывают водопоглощение 1,0–2,3 %, предел прочности при сжатии 63–78 МПа, плотную структуру с округлыми, изолированными порами и практическим отсутствием второй фазы.

Введение в полетаевский каолин отходов промышленности — АСМ в количестве до 10 мас. % не

меняет характер спекания каолина и позволяет получать при 1300–1400 °С качественный шамот с плотной структурой, содержанием Al_2O_3 до 40 мас. %, водопоглощением 1,0–3,0 %, пределом прочности при сжатии 47–78 МПа. Увеличение содержания АСМ в смеси приводит к необходимости повышения температуры и длительности обжига шамота для достижения тех же качественных показателей.

Библиографический список

- 1. *Аксельрод, Л. М.* Развитие огнеупорной отрасли отклик на запросы металлургии / *Л. М. Аксельрод* // Черная металлургия. 2013. № 3. С. 125–143.
- 2. **Кащеев, И. Д.** Химическая технология огнеупоров / И. Д. Кащеев, К. К. Стрелов, П. С. Мамыкин. М. : Интермет Инжиниринг, 2007. 752 с.
- 3. **Хоменко, Е. С.** Современная технология получения шамота высоких марок на основе качественного каолинового сырья / Е. С. Хоменко, О. А. Миршавка, В. В. Коледа, Р. Ю. Чернышова // Огнеупоры и техническая керамика. 2013. № 9. С. 20–24. ■

Получено 03.07.17 © И. Д. Кащеев, К. Г. Земляной, К. О. Степанова, 2017 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

№ 10 2017 **Hobbie Ofheytopbi** ISSN 1683-4518 **37**