- Д. т. н. В. В. Кузин¹ (🖾), к. т. н. М. Ю. Фёдоров¹, к. т. н. Предраг Дашич²
 - ¹ ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия
 - ² SaTCIP Publisher Ltd, г. Врнячка Баня, Сербия

УДК 621.778.1.073:666.3]:669.018.25

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОМЕХАНИЧЕСКИХ ПРОЦЕССОВ НА ГРАНИЦЕ СЛОЕВ ТІС/ТІN-ПОКРЫТИЯ, НАНЕСЕННОГО НА НИТРИДНУЮ КЕРАМИКУ

Установлены основные закономерности термомеханических процессов на границе слоев нанесенного на нитридную керамику TiC/TiN-покрытия, протекающих под воздействием тепловых и комбинированных нагрузок. Выявлено влияние материала основного структурного элемента керамики на температуру и напряжения, формируемые в контактирующих подслоях TiC/TiN-покрытия под действием этих нагрузок.

Ключевые слова: керамика, покрытие, слой, граница, напряжения, тепловой поток, комбинированная нагрузка.

введение

Реализация принципов инженерии поверхности при создании инновационных керамических инструментов требует детального описания поведения хрупкого материала с поверхностными функциональными слоями в разных условиях [1, 2]. Для выявления особенностей термомеханических процессов, протекающих в этих материалах под действием силовых и тепловых нагрузок, построены микроструктурная и математическая модели керамической пластины с многослойным покрытием, на основе которых создана автоматизированная система термопрочностных расчетов [3-5]. Их практическое использование позволило выявить закономерности влияния состава покрытия на напряженно-деформированное состояние структурных элементов оксидной и нитридной керамики, а также границы между покрытием и керамикой [6-10]. Установлено, что рельеф поверхности керамики и толщина однослойного покрытия существенно влияют на напряженное состояние поверхностного слоя керамики и границы «керамика-покрытие» под действием силовой и тепловой нагрузки [11-14]. Влияние структуры нитридной керамики на неоднородность напряжений на границе «керамика – покрытие» при термомеханическом воздействии оценено в работе [15]. На основе результатов математического моделирования термомехани-

> ⊠ B. B. Кузин E-mail: kyzena@post.ru

ческих процессов в слоисто-неоднородном материале разработан метод проектирования керамических инструментов с покрытиями [16, 17]. Применение этого метода позволило решить задачу создания керамических инструментов нового поколения для определенных условий эксплуатации [18, 19]. Опытная эксплуатация этих инструментов доказала их высокую эффективность и выявила существенный недостаток — высокую вероятность разрушения многослойных покрытий в результате зарождения и роста трещин на границе его слоев [20, 21].

Одной из причин этого вида разрушения многослойных покрытий на керамике могут быть экстремально высокие напряжения, приводящие к зарождению и накоплению структурных дефектов на границе слоев из-за существенной разницы в свойствах тугоплавких материалов и технологических факторов [22]. Экспериментальные методы не позволяют подтвердить или опровергнуть эту гипотезу [23]. Поэтому в работе поставлена цель — с использованием математического моделирования изучить термомеханические процессы на границе между слоями TiC/TiN-покрытия на нитридной керамике при совместном воздействии тепловых и силовых нагрузок.

МЕТОДИКА ИССЛЕДОВАНИЯ

Исследование теплового и напряженного состояния границы между слоями двухслойного TiC/TiN-покрытия выполнено по методике и с использованием расчетной схемы, приведенной в [24]. Проведены две серии численных экспериментов, в которых исследованы две системы керамики на основе нитрида кремния: система № 1 — Si₃N₄ (зерно) – Y₂O₃ (межзеренная фаза) – Si₃N₄ (матрица); система № 2 — ТiC (зерно) – Y₂O₃ (межзеренная фаза) – Si₃N₄ (матрица). В первой серии численных экспериментов к свободной поверхности конструкции прикладывали тепловой поток Q = 3·10⁷ Вт/м² при теплоотводе с поверхностей, свободных от теплового потока, в окружающую среду с коэффициентом $h = 10^5$ Вт/(м²·град). Во второй серии численных экспериментов прикладываемая внешняя нагрузка включала комбинацию сил (сосредоточенная F = 0,1 Н под углом 45° и распределенная P == 4,0·10⁸ Па) и тепловой поток $Q = 3 \cdot 10^7$ Вт/м² (при теплоотводе с коэффициентом $h = 10^5$ Вт/ /(м²·град). Контрольные точки (КТ), выделенные по методике [25], были симметрично расположены в контактирующих подслоях слоя ТіС (ПС₁) — КТ1–КТ20 и в подслое слоя ТіN (ПС₂) КТ21–КТ40. Численные эксперименты выполняли с использованием автоматизированной системы термопрочностных расчетов RKS-ST v.1.0 [5].

Тепловое состояние ΠC_1 и ΠC_2 TiC/TiNпокрытия имеет следующие статистические характеристики *T*: наибольшее $T_{\text{макс}}$, наименьшее $T_{\text{мин}}$ и среднее $T_{\text{ср}}$ значение. Структурную неоднородность напряжений в ΠC_1 и ΠC_2 характеризовали следующими статистическими параметрами: σ_{11} , σ_{22} , σ_{12} и σ_i : наибольшее $\sigma_{\text{макс}}$, наименьшее $\sigma_{\text{мин}}$ и среднее $\sigma_{\text{ср}}$ значение, диапазон Σ изменения, стандартное отклонение *s* и число *N* изменения знака. Напряженное состояние границы между слоями TiC/TiN-покрытия оценивали следующими характеристиками: $\Sigma^{\text{гр}}$, $\sigma_{\text{макс}}^{\text{гр}}$, $\sigma_{\text{ср}}^{\text{гр}}$ и $s^{\text{гр}}$, рассчитанными как среднее арифметическое $\sigma_{\text{макс}}$, $\sigma_{\text{мин}}$, $\sigma_{\text{ср}}$, Σ и *s* значений интенсивности напряжений σ_i в ΠC_1 и ΠC_2 .

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты расчетов температур в ΠC_1 и ΠC_2 системы № 1 и 2 под действием теплового потока Q =

= 3 · 10⁷ Вт/м² показаны на рис. 1. Кривые, характеризующие изменение температур в ПС₁ и ПС₂ разных систем, имеют одинаковый вид характеризуются и тремя участками. На первом участке (КТ1-КТ8 ПС₁ и КТ21-КТ28 ПС₂) температура резко увеличивается, на втором участке (КТ8-КТ15 ПС₁ и КТ28-КТ35 ПС₂) практически не изменяется и на третьем (KT15-KT20 участке

Рис. 1. Температура в ПС1 (*a*, *в*) и ПС2 (*б*, *г*) разных систем под действием теплового потока

ПС₁ и КТ35-КТ40 ПС₂) — резко уменьшается. Наименьшие температуры зафиксированы в КТ, примыкающим к участкам, с которых осуществляется отвод тепла.

Под действием приложенного теплового потока в ПС₁ системы № 1 температура на участке КТ1-КТ8 увеличивается со 129 до 880 °C, а на участке КТ15-КТ20 — уменьшается до 249 °С (см. рис. 1, *a*). В ПС₂ этой системы на участке КТ21-КТ28 температура увеличивается с 258 до 897 °С, а на участке КТ35-КТ40 — уменьшается до 477 °С (см. рис. 1, б). В ПС1 Т_{мин} меньше, чем в ПС₂, в два раза, а $T_{\text{макс}}$ и $T_{\text{ср}}$ на 2 и 7 % соответственно. Температура в ПС₁ системы № 2 на участке КТ1-КТ8 увеличивается со 118 до 749 °С, а на участке КТ15-КТ20 — уменьшается до 214 °С (см. рис. 1, в). Температура в ПС₂ на участке КТ21-КТ28 увеличивается с 236 до 770 °С, а на участке КТ35-КТ40 — уменьшается до 409 °С (см. рис. 1, г). В ПС₁ Т_{мин} меньше, чем в ПС₂, в два раза, а $T_{\text{макс}}$ и $T_{\text{ср}}$ на 6 и 7 % соответственно.

Результаты расчетов напряжений в ПС₁ и ПС₂ систем № 1 и 2 под действием теплового потока $Q = 3 \cdot 10^7$ Вт/м² показаны на рис. 2.

Установлено, что σ₁₁, σ₂₂, σ₁₂ и σ_i в ПС₁ систем № 1 и 2 на участках КТ4-КТ17 и КТ24-КТ40 изменяются достаточно стабильно, а на участках с резким изменением температуры зафиксированы существенные «скачки» напряжений. Кривые σ₁₁, σ₂₂ и σ₁₂ для ПС₂ систем № 1 и 2 имеют более сглаженный вид, по сравнению с ПС₁, причем на кривых σ_i выделяются три характерных участка. На первом участке (КТ21-КТ26) σ_i уменьшается, на втором участке (КТ26-КТ35) σ_i практически не изменяется, на третьем участке (КТ35-КТ40) σ_i увеличивается и достигает наибольшего значения в КТ40.

Установлено, что в ПС₁ системы № 1 под действием теплового потока $Q = 3 \cdot 10^7$ Вт/м² формируются напряжения σ_{11} , изменяющиеся в диапазоне 675 МПа — от 38 (КТ5) до -637 МПа (КТ19) при $\sigma_{cp} = -179$ МПа, стандартном отклоне-

до -850 МПа (КТ40) при σ_{ср} = -153 МПа, s = 221 МПа и N = 1 (см. рис. 2, г). Напряжения σ_{22} изменяются в диапазоне 782 МПа — от 144 (КТ40) до -638 МПа (КТ22) при σ_{ср} = -133 МПа, s = 175 МПа и N = 2. Напряжения σ_{12} изменяются в диапазоне 182 МПа — от 54 (КТ21) до -128 МПа (КТ31) при $\sigma_{cp} = -40$ МПа, s = 48 МПа и N = 2. Интенсивность напряжений о изменяется в диапазоне 731 МПа-от 200

Рис. 2. Напряжения в ПС1 (*a*, *в*) и ПС2 (*б*, *г*) разных систем под действием теплового потока

нии s = 190 МПа и числе изменений знака N = 2 (см. рис. 2, d). Напряжения σ_{22} изменяются в диапазоне 558 МПа — от 51 (КТ16) до -507 МПа (КТ2) при $\sigma_{cp} = -128$ МПа, s = 176 МПа и N = 2. Напряжения σ_{12} изменяются в диапазоне 521 МПа — от 232 (КТ20) до -289 МПа (КТ7) при $\sigma_{cp} = -172$ МПа, s = 139 МПа и N = 2. Интенсивность напряжений σ_i изменяется в диапазоне 257 МПа от 343 (КТ10) до 600 МПа (КТ20) при $\sigma_{cp} = 474$ МПа и s = 73 МПа.

В ПС₂ системы № 1 под действием теплового потока формируются напряжения σ_{11} , изменяющиеся в диапазоне 1243 МПа — от 233 (КТ21) до -1010 МПа (КТ40) при $\sigma_{cp} = -279$ МПа, s = 313МПа и N = 1 (см. рис. 2, б). Напряжения σ_{22} изменяются в диапазоне 938 МПа — от 179 (КТ40) до -759 МПа (КТ22) при $\sigma_{cp} = -249$ МПа, s = 264МПа и N = 1. Напряжения σ_{12} изменяются в диапазоне 350 МПа — от 105 (КТ21) до -245 МПа (КТ31) при $\sigma_{cp} = -121$ МПа, s = 87 МПа и N = 2. Интенсивность напряжений σ_i изменяется в диапазоне 684 МПа — от 430 (КТ27) до 1114 МПа (КТ40) при $\sigma_{cp} = 579$ МПа и s = 185 МПа.

В ПС₁ системы № 2 под действием теплового потока формируются напряжения σ_{11} , изменяющиеся в диапазоне 386 МПа — от 71 (КТ9) до -315 МПа (КТ2) при $\sigma_{cp} = -35$ МПа, стандартном отклонении s = 125 МПа и числе изменений знака N = 2 (см. рис. 2, e). Напряжения σ_{22} изменяются в диапазоне 404 МПа — от 83 (КТ11) до -321 МПа (КТ19) при $\sigma_{cp} = -23$ МПа, s = 126 МПа и N = 2. Напряжения σ_{12} изменяются в диапазоне 404 МПа — от 83 (КТ11) до -321 МПа (КТ19) при $\sigma_{cp} = -23$ МПа, s = 126 МПа и N = 2. Напряжения σ_{12} изменяются в диапазоне 301 МПа — от -120 (КТ2) до 181 МПа (КТ20) при $\sigma_{cp} = -31$ МПа, s = 68 МПа и N = 2. Интенсивность напряжений σ_i изменяется в диапазоне 358 МПа от 69 (КТ12) до 427 МПа (КТ20) при $\sigma_{cp} = 160$ МПа и s = 111 МПа.

В ПС₂ системы № 2 под действием теплового потока формируются напряжения σ₁₁, изменяющиеся в диапазоне 1033 МПа — от 183 (КТ21) (КТ24) до 931 МПа (КТ40) при $\sigma_{\rm cp}$ = 316 МПа и s = = 199 МПа.

Сравнительный анализ показателей структурной неоднородности напряжений в ΠC_1 и ΠC_2 обеих систем, сформированных тепловым потоком $Q = 3 \cdot 10^7$ Вт/м² показал следующее. Значения Σ , $\sigma_{\text{макс}}$, $\sigma_{\text{мин}}$, $\sigma_{\text{ср}}$ и *s* для σ_{11} , σ_{22} и σ_i в ΠC_1 меньше, чем в ΠC_2 . Например, значения Σ , $\sigma_{\text{макс}}$, $\sigma_{\text{мин}}$, $\sigma_{\text{ср}}$ и *s* для σ_i в ΠC_1 системы № 1 меньше, чем в ΠC_2 , в 2,7; 1,9; 1,3; 1,2 и 2,5 раза соответственно. Для системы № 2 эта разница составляет 2; 2,2; 2,9; 2 и 1,8 раза соответственно.

Напряженное состояние границы между слоями TiC/TiN-покрытия, нанесенного на нитридную керамику, под действием теплового потока $Q = 3 \cdot 10^7$ Вт/м² определяется следующими характеристиками: $\Sigma^{\rm rp} = 470,5$ и 544,5 МПа; $\sigma^{\rm rp}_{\rm makc} = 857$ и 679 МПа; $\sigma^{\rm rp}_{\rm mH} = 386,5$ и 134,5 МПа; $\sigma^{\rm rp}_{\rm cp} = 526,5$ и 238 МПа и $s^{\rm rp} = 129$ и 155 МПа для систем № 1 и 2 соответственно. Значения $\Sigma^{\rm rp}$ и $s^{\rm rp}$ для системы № 1 ниже, чем для системы № 2, на 15 и 20 % соответственно. Значения $\sigma^{\rm rp}_{\rm макс}$, $\sigma^{\rm rp}_{\rm mu}$ и $\sigma^{\rm rp}_{\rm cp}$ для системы № 1 выше, чем для системы № 2, в 1,3; 2,9 и 2,2 раза соответственно.

Результаты расчетов напряжений в ПС₁ и ПС₂ двух систем под действием комбинированной нагрузки (F = 0,1 H, $P = 4,0\cdot10^8$ Па и $Q = 3 \cdot 10^7$ Вт/м²) представлены на рис. З. Видно, что в этом случае материал зерна не оказывает существенного влияния на характер кривых σ_{11} , σ_{22} , σ_{12} и σ_i для ПС₁ и ПС₂ — кривые имеют однотипный вид. Особенностью этих кривых является наиболее значимое изменение напряжений на участке КТ18-КТ20.

Установлено, что в ПС₁ системы № 1 (см. рис. 3, *a*) формируются напряжения σ_{11} , изменяющиеся в диапазоне 1117 МПа от -4 (КТ9) до -1121 МПа (КТ20) при σ_{cp} = -251 МПа, *s* = 303 МПа и N = 0. Напряжения σ_{22} изменяются в диапазоне 1121 МПа — от 96 (КТ11) до -1025 МПа (КТ2)

66

при $\sigma_{cp} = -319$ МПа, s = 335 МПа и N = = 3. Напряжения σ_{12} изменяются в диапазоне 713 МПа — от 95 (КТ2) до 808 МПа (КТ20) при $\sigma_{cp} = 209$ МПа, s = 154 МПа и N = 0. Интенсивность напряжений σ_i изменяется в диапазоне 1407 МПа — от 337 (КТ14) до 1741 МПа (КТ20) при $\sigma_{cp} = 632$ МПа и s = 309 МПа.

В ПС₂ системы № 1 (см. рис. 3, б) формируются напряжения о₁₁, изменяющиеся в диапазоне 1712 МПа — от 247 (КТ21) до -1465

Рис. 3. Напряжения в ПС1 (*a*) и ПС2 (б) разных систем под действием комбинированной нагрузки

247 (КТ21) до -1465 МПа (КТ40) при $\sigma_{cp} =$ = -327 МПа, s = 403 МПа и N = 1. Напряжения σ_{22} изменяются в диапазоне 1341 МПа — от 180 (КТ40) до -1024 МПа (КТ21) при $\sigma_{cp} =$ = -466 МПа, s = 405 МПа и N = 1. Напряжения σ_{12} изменяются в диапазоне 257 МПа — от 174 (КТ32) до 431 МПа (КТ40) при $\sigma_{cp} = 266$ МПа, s = 57 МПа и N = 0. Интенсивность напряжений σ_i изменяется в диапазоне 1266 МПа — от 466 (КТ32) до 1732 МПа (КТ40) при $\sigma_{cp} = 865$ МПа и s = 305 МПа.

В ПС₁ системы № 2 формируются напряжения σ_{11} , изменяющиеся в диапазоне 852 МПа — от 99 (КТ10) до -753 МПа (КТ20) при $\sigma_{cp} = -84$ МПа, s = 214 МПа и N = 3 (см. рис. 3, 6). Напряжения σ_{22} изменяются в диапазоне 651 МПа — от 143 (КТ11) до -508 МПа (КТ1) при $\sigma_{cp} = -185$ МПа, s = 178 МПа и N = 2. Напряжения σ_{12} изменяются в диапазоне 631 МПа — от 71 (КТ2) до 702 МПа (КТ20) при $\sigma_{cp} = 359$ МПа, s = 127 МПа и N = 0. Интенсивность напряжений σ_i изменяется в диапазоне 932 МПа — от 462 (КТ18) до 1394 МПа (КТ20) при $\sigma_{cp} = 695$ МПа и s = 199 МПа.

В ПС₂ системы № 2 формируются напряжения σ_{11} , изменяющиеся в диапазоне 1363 МПа — от 195 (КТ21) до -1168 МПа (КТ40) при $\sigma_{cp} =$ = -178 МПа, s = 298 МПа и N = 3 (см. рис. 3, z). Напряжения σ_{22} изменяются в диапазоне 967 МПа — от 144 (КТ40) до -823 МПа (КТ21) при $\sigma_{cp} = -334$ МПа, s = 286 МПа и N = 1. Напряжения σ_{12} изменяются в диапазоне 268 МПа — от 184 (КТ21) до 452 МПа (КТ28) при $\sigma_{cp} = 357$ МПа, s = 65 МПа и N = 0. Интенсивность напряжений σ_i изменяется в диапазоне 431 МПа — от 558 (КТ33) до 989 МПа (КТ21) при $\sigma_{cp} = 773$ МПа и s = 128 МПа.

Сравнительный анализ показателей структурной неоднородности напряжений в ΠC_1 и ΠC_2 обеих систем, сформированных комбинированной нагрузкой, показал, что Σ , $\sigma_{\text{макс}}$, $\sigma_{\text{мин}}$, $\sigma_{\text{ср}}$ и *s* напряжений σ_{11} и σ_{22} в ΠC_1 двух систем меньше, чем в ΠC_2 , а напряжений σ_{12} и σ_i (кроме $\sigma_{\mbox{\tiny MHH}}$ и $\sigma_{\mbox{\tiny Cp}})$ в ΠC_1 больше, чем в $\Pi C_2.$

Напряженное состояние границы между слоями TiC/TiN-покрытия, нанесенного на нитридную керамику, под действием комбинированной нагрузки определяется следующими характеристиками: Σ^{гр} = 1336,5 и 681,5 МПа, σ^{гр}_{макс} = 1736,5 и 1191,5 МПа, σ^{гр}_{мин} = 401,5 и 510 МПа, σ^{гр}_{ср} = 748,5 и 734 МПа и s^{гр} = 307 и 164 МПа для керамики систем № 1 и 2 соответственно. Установлено, что значения Σ^{гр}, σ^{гр}_{макс} и s^{гр} для σ_i, характеризующие напряженное состояние границы между слоями TiC/TiN-покрытия, в 2; 1,5 и 1,9 раза (соответственно) в системе № 2 меньше, чем в системе № 1. Значения σ^{гр}_{мин} в системе № 2 больше в 1,3 раза, чем в системе № 1, а значения с^{ср} в обеих системах практически совпадают.

ЗАКЛЮЧЕНИЕ

В результате численных расчетов выявлены основные закономерности термомеханических процессов на границе между слоями TiC/TiNпокрытия на нитридной керамике при совместном воздействии тепловых и силовых нагрузок. Установлено, что тепловое состояние границы между слоями двухслойного покрытия в системе с зерном из карбида титана, формируемое под действием теплового потока, характеризуется меньшими температурами, чем в системе с зерном из нитрида кремния. Значения $\sigma^{\rm rp}_{_{\rm MaKC'}}$ $\sigma^{\rm rp}_{_{\rm MHH}}$ и $\sigma^{\rm rp}_{_{\rm cp}}$, определяющие напряженное состояние границы между слоями двухслойного покрытия TiC-TiN, при действии теплового потока меньше в 1,3; 2,9 и 2,2 раза соответственно по сравнению с системой с зерном из нитрида кремния при несколько больших значениях Σ^{гр} и *S*^{гр}.

Под действием комбинированной нагрузки в системе с зерном из карбида титана значения

характеристик Σ^{rp} , $\sigma^{rp}_{_{Makc}}$ и s^{rp} , определяющих напряженное состояние границы между слоями двухслойного покрытия, меньше аналогичных характеристик системы с зерном из нитрида кремния в 2; 1,5 и 1,9 раза при практически равных значениях σ^{rp}_{cp} . Это свидетельствует о более благоприятном напряженном состоянии границы между слоями двухслойного покрытия TiC/TiN в системе с зерном из карбида титана и, соответственно, меньшей вероятности появления дефектов на границе между слоями двухслойного покрытия TiC/TiN под действием этих нагрузок по сравнению с системой с зерном из нитрида кремния с таким же двухслойным покрытием. * **

Настоящая работа выполнена при поддержке Минобрнауки России в рамках выполнения государственного задания (задание 9.1372.2017/4.6).

Библиографический список

1. *Григорьев, С. Н.* Инженерия поверхности металлорежущего инструмента методом комбинированной вакуумно-плазменной обработки (Часть 1) / *С. Н. Григорьев, М. А. Волосова* // Ремонт. Восстановление. Модернизация. — 2004. — № 7. — С. 2–6.

2. **Григорьев, С. Н.** Инженерия поверхности металлорежущего инструмента методом комбинированной вакуумно-плазменной обработки (Часть 2) / С. Н. Григорьев, М. А. Волосова // Ремонт. Восстановление. Модернизация. — 2004. — № 8. — С. 2–6.

3. **Кузин, В. В.** Микроструктурная модель керамической режущей пластины / *В. В. Кузин* // Вестник машиностроения. — 2011. — № 5. — С. 72-76.

Kuzin, V. V. Microstructural model of ceramic cutting plate / V. V. Kuzin // Russ. Eng. Res. -2011. - Vol. 31, \mathbb{N} 5. - P. 479–483.

4. **Кузин, В. В.** Математическая модель напряженнодеформированного состояния керамической режущей пластины / В. В. Кузин, В. И. Мяченков // Вестник машиностроения. — 2011. — № 10. — С. 75-80.

Kuzin, V. V. Stress-strain state of ceramic cutting plate / *V. V. Kuzin, V. I. Myachenkov* // Russ. Eng. Res. — 2011. — Vol. 31, № 10. — P. 994–1000.

5. *Григорьев, С. Н.* Автоматизированная система термопрочностных расчетов керамических режущих пластин / *С. Н. Григорьев, В. И. Мяченков, В. В. Кузин //* Вестник машиностроения. — 2011. — № 11. — С. 26–31.

Grigor'ev, S. N. Automated thermal-strength calculations of ceramic cutting plates / *S. N. Grigor'ev, V. I. Myachenkov, V. V. Kuzin* // Russ. Eng. Res. — 2011. — Vol. 31, № 11. — P. 1060–1066.

6. **Григорьев С. Н.** Напряженно-деформированное состояние инструментов из нитридной керамики с покрытием / С. Н. Григорьев, В. В. Кузин, М. А. Волосова // Вестник машиностроения. — 2012. — № 6. — С. 64-69.

Grigor'ev, S. N. Stress-strain state of a coated nitride-ceramic tool / S. N. Grigor'ev, V. V. Kuzin, M. A. Volosova // Russ. Eng. Res. — 2012. — Vol. 32, № 7/8. — P. 561–566.

7. **Волосова, М. А.** Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 4. Действует тепловой поток / *М. А. Волосова, С. Н. Григорьев, В. В. Кузин* // Новые огнеупоры. — 2015. — № 2. — С. 47–52.

Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 4. Action of heat flow / M. A. Volosova, S. N. *Grigor'ev, V. V. Kuzin //* Refract. Ind. Ceram. — 2015. — Vol. 56, \mathbb{N} 1. — P. 91–96.

8. **Волосова, М. А.** Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 5. Действует комбинированная нагрузка / *М. А. Волосова, С. Н. Григорьев, В. В. Кузин* // Новые огнеупоры. — 2015. — № 4. — С. 49-53.

Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 5. A combined load operates / M. A. *Volosova, S. N. Grigor'ev, V. V. Kuzin //* Refract. Ind. Ceram. -2015. -Vol. 56, $N \ge 2$. -P. 197-200.

9. **Кузин, В. В.** Влияние покрытия ТіС на напряженнодеформированное состояние пластины из высокоплотной нитридной керамики в условиях нестационарной термоупругости / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. — 2013. — № 9. — С. 52–57.

Kuzin, V. V. Effect of a TiC coating on the stressstrain state of a plate of a high-density nitride ceramic under nonsteady thermoelastic conditions / *V. V. Kuzin, S. N. Grigor'ev, M. A. Volosova* // Refract. Ind. Ceram. — 2014. — Vol. 54, Ne 5. — P. 376–380.

10. *Grigoriev, S.* The stress-strained state of ceramic tools with coating / *S. Grigoriev, V. Kuzin, D. Burton* [et al.] // Proceedings of the 37th International MATADOR 2012 Conference. — Springer, 2013. — C. 181–184.

11. **Кузин, В. В.** Влияние теплового потока на неоднородность напряжений в поверхности оксидной керамики с развитым рельефом / В. В. Кузин, С. Н. Григорьев, М. Р. Портной // Новые огнеупоры. — 2015. — № 6. — С. 66-68.

Kuzin, V. V. The Influence of heat flow on the nonuniformity of the stresses in the surface of oxide ceramic with fully developed relief / V. V. Kuzin, S. N. Grigor'ev, M. R. Portnoi // Refract. Ind. Ceram. -2015. - Vol. 56, \mathbb{N} 3. - P. 314–317.

12. **Кузин, В. В.** Неоднородность напряжений в поверхности оксидно-карбидной керамики с развитым рельефом под действием теплового потока / В. В. Кузин, М. Р. Портной, С. Ю. Фёдоров // Новые огнеупоры. — 2015. — № 10. — С. 63-66.

Kuzin, V. V. Stress inhomogeneity in oxide-carbide ceramic surface with developed relief under action of heat flow / *V. V. Kuzin, M. R. Portnoi, S. Yu. Fedorov //* Refract. Ind. Ceram. — 2016. — Vol. 56, № 5. — P. 557–560.

13. **Кузин, В. В.** Трансформация напряженного состояния поверхностного слоя нитридной керамики при изменении толщины ТіС-покрытия. Вариант нагружения — тепловой поток / *В. В. Кузин, М. Ю. Федоров, М. А. Волосова* // Новые огнеупоры. — 2017. — № 2. — С. 54-60.

14. **Кузин, В. В.** Трансформация напряженного состояния поверхностного слоя нитридной керамики при изменении толщины ТіС-покрытия. Вариант нагружения — комбинированная нагрузка / *В. В. Кузин, М. Ю. Фёдоров, М. А. Волосова* // Новые огнеупоры. — 2017. — № 4. — С. 53-59. 15. **Кузин, В. В.** Напряженное состояние границы между керамикой и покрытием под действием комбинированной нагрузки / В. В. Кузин, М. Ю. Фёдоров // Новые огнеупоры. — 2016. — № 6. — С. 43–48.

Kuzin, V. V. Stressed state of a boundary between ceramic and coating under action of a combined load / *V. V. Kuzin, M. Yu. Fedorov* // Refract. Ind. Ceram. — 2016. — Vol. 57, № 3. — P. 308–312.

16. *Kuzin, V.* Method of investigation of the stressstrain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35.

17. *Kuzin, V.* Applications of multi-level method of stress-strain state analysis in ceramic tools design / *V. Kuzin, S. Grigoriev, M. Fedorov //* Applied Mechanics and Materials. — 2016. — Vol. 827. — P. 173–176.

18. **Volosova, M.** Cutting ceramic inserts: the influence of abrasive machining and surface coatings on the operational characteristics / *M. Volosova, S. Grigoriev //* Mechanics and Industry. — 2016. — Vol. 17 (7). — C. 705.

19. **Кузин, В. В.** Разработка и исследование режущих инструментов из нитридной керамики с покрытием / В. В. Кузин // Тракторы и сельскохозяйственные машины. — 2006. — № 9. — С. 48-52.

20. **Vereschaka**, **A. S.** Improving the efficiency of the cutting tools made of mixed ceramics by applying modifying nanoscale multilayered coatings / A. S. Vereschaka, S. N. Grigoriev, E. S. Sotova, A. A. Vereschaka // Advanced Materials Research. — 2013. — Vols. 712–715. — P. 391–394.

21. **Кузин, В. В.** Эффективное применение высокоплотной керамики для изготовления режущих и деформирующих инструментов / В. В. Кузин // Новые огнеупоры. — 2010. — № 12. — С. 13–19.

Kuzin, V. V. Effective use of high density ceramic for manufacture of cutting and working tools / V. V. Kuzin // Refract. Ind. Ceram. -2010. - Vol. 51, No 6. - P. 421-426.

22. **Huang, L. L.** Overview on double ceramic layer thermal barrier coatings / L. L. Huang, H. M. Meng, J. Tang [et al.] // Advanced Materials Research. — 2014. — Vol. 1053. — P. 364–372.

23. **Верещака, А. С.** Исследование теплового состояния режущих инструментов с помощью термоиндикаторных веществ / А. С. Верещака, В. М. Провоторов, В. В. Кузин [и др.] // Вестник машиностроения. — 1986. — № 1. — С. 45-49.

24. **Кузин, В. В.** Напряженное состояние границы между слоями TiC/TiN-покрытия, нанесенного на нитридную керамику, под действием силовой нагрузки / В. В. Кузин, С. Ю. Фёдоров, П. Дашич // Новые огнеупоры. — 2017. — № 6. — С. 60-65.

25. *Kuzin, V.* Method of investigation of the stressstrain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35. ■

> Получено 12.07.2017 © В. В. Кузин, М. Ю. Фёдоров, Предраг Дашич, 2017 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ	
15-Й ВСЕМИРНЫЙ КОНГРЕСС	26–29 сентября 2017 г. г. Сантьяго, Чили
И ОБЪЕДИНЕННАЯ МЕЖДУНАРОДНАЯ ТЕ	ХНИЧЕСКАЯ КОНФЕРЕНЦИЯ ПО ОГНЕУПОРАМ
15th Biennial Worldwide Congress UNITER 20017 SANTIAGO DE CHILE	 ОСНОВНЫЕ ТЕМЫ Испытания огнеупоров Новые установки и оборудование Монолитные огнеупоры Огнеупоры для сталелитейной промышленности Сырьевые материалы и глобальные вопросы Огнеупоры для стекольной промышленности Огнеупоры для стекольной промышленности Моделирование огнеупоров Нефтехимия Огнеупоры для энергетики и переработки отходов Экономия энергии за счет применения огнеупоров Бескислородные огнеупорные системы Огнеупоры для химических процессов Разработки основных огнеупоров Образование в области огнеупоров Огнеупоры для цветной металлургии
http://www.expoclub.ru/db/exhibition/view/7983/	 Безопасность, окружающая среда, переработка
http://unitecr2017.org	огнеупоров