КАЧЕСТВО И СЕРТИФИКАЦИЯ

Д. т. н. Б. Л. Красный, Т. С. Маринина (⊠)

ЗАО «Научно-технический центр «Бакор», Москва, Россия

УДК 666.3.017

ПРИМЕНЕНИЕ ПРИБОРА «КОНСТАНТА Ц-2» ДЛЯ КАЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ КЕРАМИЧЕСКИХ ПОРИСТЫХ ПОКРЫТИЙ

Разработан метод качественной оценки прочности керамических пористых покрытий (мембран). Метод заключается в определении устойчивости покрытий к повреждению царапанием. Установлена удовлетворительная сходимость и воспроизводимость результатов при испытании пористых керамических покрытий разработанным методом.

Ключевые слова: керамическое покрытие, прочность, твердость, истирание.

В настоящее время на обогатительных фабриках горно-металлургической отрасли для обезвоживания концентратов используют дисковые вакуум-фильтры с керамическими фильтрующими элементами.

ЗАО «НТЦ «Бакор» специализируется на разработке и выпуске керамических фильтрующих элементов секторного типа с керамическим пористым фильтрующим покрытием (мембраной) для горно-металлургических производств. Покрытие представляет собой пористый слой керамического материала толщиной до 500 мкм. Основополагающими характеристиками такого покрытия являются прочность его сцепления с керамической подложкой, а также устойчивость к истирающему воздействию отфильтрованного материала (кека). Устойчивость материала керамического покрытия к истирающему воздействию кека должна оставаться на высоком заданном уровне в течение всего срока эксплуатации изделия. Во время работы на дисковых установках фильтрации керамические элементы испытывают нагрузки на растяжение, изгиб, истирание.

В процессе совершенствования керамических фильтрующих элементов проводится работа над повышением прочности мембраны и способами ее оценки. Так, если с измерением прочности материала подложки фильтрующего элемента и его конструкционной прочности не возникает проблем, поскольку для этого существуют общепринятые методики, разработанные на основе стандартов [1], то для определения прочностных показателей мембраны соответствующих методик не предусмотрено.

 \bowtie

T. C. Маринина E-mail: marininatanya@yandex.ru Износостойкость керамической мембраны — характеристика, от которой зависит долговечность покрытия. В условиях воздействия на керамическую мембрану отфильтрованного кека твердость является критерием износостойкости мембраны.

Твердость — сложная характеристика, которая определяет способность материала противостоять механическому повреждению и зависит от упругих свойств материала, хрупкости. Важное значение имеет метод измерения [2]. Выбор метода измерения зависит от различных факторов: твердости материала, размеров образца, толщины слоя, прочность которого нужно замерить, и др. В зависимости от скорости приложения нагрузки методы определения твердости делятся на статические и динамические. По способу приложения нагрузки различают следующие способы измерения твердости [3], основанные:

- на вдавливании жесткого наконечника в испытуемое тело;
- на царапании испытуемого тела набором эталонных образцов различной твердости или жестким наконечником. Твердость, определенная царапанием, характеризует сопротивление разрушению;
- на колебании маятника, опирающегося жестким наконечником на испытуемое тело.

Наряду с вышеперечисленными методами измерения макротвердости широкое распространение получил метод измерения микротвердости [3]. По известной терминологии Б. В. Мота микротвердость — это твердость при микровдавливании [4]. Метод предназначен для оценки твердости очень малых (микроскопических) объемов материалов. Его применяют для измерения твердости мелких деталей, покрытий.

Наиболее информативным и простым является метод царапания испытуемой поверхности нагруженным индентором. Существует не-

сколько разновидностей измерения твердости покрытий методом царапания. Так ГОСТ 2131 [5] предписывает определять микротвердость различных материалов царапанием алмазным наконечником с определением конечного значения твердости по результатам измерения ширины канавки. Метод накладывает определенные ограничения на материалы, а именно: стандарт не распространяется на измерения микротвердости алмаза и его производных и на случаи, когда ширину канавки невозможно измерить из-за неопределенности контура ее границы.

Другой метод определения устойчивости покрытия к повреждению царапанием применяется в лакокрасочной промышленности [6]. Методом царапания испытуемой поверхности также можно оценить адгезию керамической мембраны к керамической подложке. Однако этот метод не дает количественных значений величины прочности покрытия.

Поскольку устойчивость к истиранию пористого керамического покрытия (мембраны) столь малой толщины, как в нашем случае, трудно оценить количественно, было решено использовать методы, основанные на качественной оценке твердости.

Принцип контроля качества покрытия, основанный на прочерчивании покрытия наконечником-индентором под нагрузкой и визуальном определении, разрушилось покрытие или нет, реализован в приборах типа «Константа Ц-1», «Константа Ц-2», «Константа Ц-3».

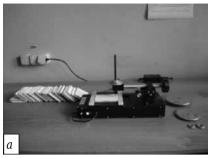
В модели прибора «Константа Ц-2», используемого в данной работе (рис. 1), применяется индентор со стальным наконечником в виде полусферы диаметром 1 мм, усилие его прижима от 10 г до 2,1 кг. Длина царапины не менее 6 см. Прижимное усилие создают металлические диски массой от 10 до 500 г, нанизываемые на стержень в нагружающей части прибора.

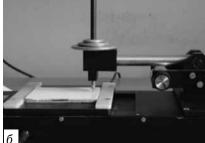
Рис. 1. Прибор для определения устойчивости покрытия к повреждению царапанием «Константа-Ц2»

ПРОВЕДЕНИЕ ИСПЫТАНИЙ

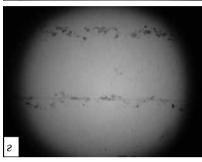
Для проведения испытаний прибор адаптировали под керамические материалы, а именно: из инструкции к прибору взята сущность метода, а количество образцов и количество испытаний выбраны опытным путем.

Для проведения испытаний были изготовлены образцы-пластины размерами $140 \times 100 \times 10$ мм, на которые были нанесены керамические мембраны различных составов по технологии, действующей на предприятии, с последующим обжигом.


Процедура испытания заключается в следующем. Испытуемый образец покрытия помещают на движущийся столик и фиксируют с помощью крепежных приспособлений. Стержень с индентером приводится в равновесие с помощью эксцентрика, расположенного на коромысле. Стержень нагружается испытательными дисками до необходимой массы, затем опускается до контакта с поверхностью мембраны, и включается привод столика. При движении столика индентор, неподвижный в процессе испытаний, оставляет царапину на керамической подложке. Полученная на образце царапина исследуется на стереоскопическом микроскопе на предмет непрерывности. Этапы измерения представлены на рис. 2, $a-\epsilon$.


За результат испытаний принимается масса грузов, при которой на покрытии появляется непрерывная царапина. Результаты испытаний представлены в таблице.

Значительное влияние на прочность керамики, в частности керамического покрытия, оказывает микроструктура: количественное соотношение кристаллических фаз, количество и состав стеклофазы, размер зерна, пористость. Увеличение содержания кристаллических фаз и уменьшение размера зерна ведет к росту прочности. Поры не только уменьшают плошадь поперечного сечения покрытия, но и действуют как концентраторы напряжений [6]. Испытуемые покрытия имеют частично организованную пористую структуру, состоящую из непрерывной стеклофазы, равномерно смачивающей зерна заполнителя, и прерывистой кристаллической фазы. Прочность (твердость) испытуемых покрытий обусловливается в основном прочностью стеклофазы.


За результат испытания принимается среднее арифметическое значение прочности отдельных одноименных образцов из серии [7]. Расхождение результатов испытаний не превышает 7 %.

Наличие расхождений связано с особенностями структуры покрытия. Тем не менее многократно проведенные испытания образцов каждого состава показали допустимую сходимость и воспроизводимость результатов измерений.

Рис. 2. Этапы измерения твердости: a, b — прибор с установленным в него образцом; b — действие индентора; b — след от индентора (вид под микроскопом)

Рекомендовано проводить измерения не менее чем на трех одноименных образцах из серии при не менее шести проходов стола для каждого образца.

ЗАКЛЮЧЕНИЕ

В целом прибор подходит для практической оценки прочности (твердости) керамической мембраны.

В результате проведенных измерений разработана лабораторная методика для оценки прочностных свойств пористых керамических фильтрующих покрытий (мембран).

Разработанная методика рекомендована к применению в качестве локального документа для контроля качества серийных изделий и для определения прочностных характеристик пористых керамических фильтрующих покрытий (мембран) новых составов.

Библиографический список

-195 c.

- 1. **ГОСТ 4071.1-94.** Изделия огнеупорные с общей пористостью менее 45 %. Метод определения предела прочности при сжатии при комнатной температуре. М.: Изд-во стандартов, 1995.
- 2. **Бикбаева, З. Г.** Микротвердость керамических материалов: методические задания к выполнению лабораторных работ по курсу «Методы и оборудование для диагностики структуры и свойств наноматериалов / З. Г. Бикбаева, В. В. Полисадова, А. А. Панина. Томск: Изд-во ТПУ, 2011. 23 с.
- 3. *Григорович, В. К.* Твердость и микротвердость металлов / *В. К. Григорович.* М.: Наука, 1976. 230 с. 4. Актуальные вопросы физики микровдавливания / под ред. Ю. С. Боярской. Кишинев: Штиинца, 1989.

Результаты определения прочности (твердости) на приборе «Константа Ц-2»

Состав образца	Прочность мембранного покрытия*, г	Открытая пористость мембраны, %
1	90	48,3
2	150	38,4
3	100	41,3
4	190	38,6
5	130	39,9
6	100	42,3
7	150	36,8
8	100	39,2
9	100	39,9
10	110	40,1
11	110	42,5
12	160	37,4
13	130	38,5
14	150	38,6
15	100	37,8
16	110	38,7
17	120	38,7
18	140	38,9
19	90	48,5
20	200	35,8
21	80	48,5
22	80	49,2
* Определена в граммах нагружающих колец.		

- 5. **ГОСТ 21318-75.** Измерение микротвердости царапанием алмазными наконечниками. M.: Изд-во стандартов, 1976.
- 6. **ИСО 1518-1992**. Лаки и краски. Определение стойкости к царапанью.
- 7. **Матренин, С. В.** Техническая керамика : уч. пособие / С. В. Матренин, А. И. Слосман. Томск : Изд-во ТПУ, 2004. 20 с. \blacksquare

Получено 13.12.16 © Б. Л. Красный, Т. С. Маринина, 2017 г.

№ 4 2017 **Hobbie Otheytopbi** ISSN 1683-4518 **67**