Д. т. н. В. В. Кузин (🖾), к. т. н. М. Ю. Фёдоров, к. т. н. М. А. Волосова

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

УДК 621.778.1.073:666.3]:669.018.25 ТРАНСФОРМАЦИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ ПОВЕРХНОСТНОГО СЛОЯ НИТРИДНОЙ КЕРАМИКИ ПРИ ИЗМЕНЕНИИ ТОЛЩИНЫ ТІС-ПОКРЫТИЯ. ВАРИАНТ НАГРУЖЕНИЯ — КОМБИНИРОВАННАЯ НАГРУЗКА

В результате выполненных численных экспериментов выявлено благоприятное влияние толщины покрытия из карбида титана на трансформацию напряженного состояния поверхностного слоя Si₃N₄-TiC-Y₂O₃-керамики. Установлено, что увеличение толщины TiC-покрытия приводит к стабильному уменьшению σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностном слое основных структурных элементов.

Ключевые слова: нитридная керамика, покрытие, структурная неоднородность напряжений, комбинированная нагрузка, поверхностный слой.

введение

конструктивные элементы из нитридной кера-мики, обладающие повышенной стабильностью при температурах выше 1000 °С, имеют важное значение для высокотемпературной техники [1-4]. Для их лучшей адаптации к определенным эксплуатационным нагрузкам применяют функциональные покрытия [5-7]. Однако проектирование таких керамических деталей затруднено из-за необходимости создания оригинального композиционного материала со сложным комплексом поверхностных свойств [8]. Накопленный опыт по созданию и применению инструментов из нитридной керамики с покрытием доказал высокую результативность целевого проектирования системы керамика – покрытие с учетом определенных условий эксплуатации [9-11]. Успешная реализации этого подхода предполагает детальное изучение поведения системы керамика – покрытие под действием тепловых и силовых нагрузок, а также выявление взаимосвязи напряженного состояния поверхностного слоя нитридной керамики с причинами отказов сложно нагруженных конструктивных элементов [12].

Развитие системы термопрочностых расчетов керамических материалов, созданной на основе их микроструктурной модели [13–15], открывает новые возможности при проведении фундаментальных и прикладных исследований, а также позволяет идентифицировать наиболее «слабые звенья» в керамике — локальные области высоких напряжений, инициирующих разрушение композиционного материала при эксплуатации [16, 17]. Основные

> ⊠ В. В. Кузин E-mail: kyzena@post.ru

результаты исследований, в которых учитывались характер внешнего воздействия, свойства TiNпокрытия, а также размеры, форма и свойства основных структурных элементов оксидно-карбидной керамики, приведены в статьях [18–22]. Важные закономерности трансформации напряженного состояния поверхностного слоя Si₃N₄–TiC–Y₂O₃керамики при изменении толщины TiC-покрытия под действием силовой и тепловой нагрузок проанализированы в статьях [23–25]. В настоящей работе исследована трансформация напряженного состояния поверхностного слоя нитридной керамики под действием комбинированной нагрузки при изменении толщины TiC-покрытия с 5 до 15 мкм.

МЕТОДИКА ИССЛЕДОВАНИЯ

Для выявления и анализа структурной неоднородности напряжений о11, о22, о12 и интенсивности напряжений о, в поверхностном слое нитридной керамики с разной толщиной покрытия под действием внешней нагрузки использовали методику, приведенную в статье [23]. Исследовали неоднородность напряжений в керамике системы Si₃N₄-TiC-Y₂O₃ с покрытием из TiC толщиной 5, 10 и 15 мкм, контактирующим со слоем чугуна СЧЗ2 толщиной 1 мкм. К поверхности конструкции приложена комбинированная нагрузка: F = 0.1 H: $P = 4.0 \cdot 10^8$ Па и $O = 3 \cdot 10^7$ Вт/м² при теплоотводе с коэффициентом $h = 10^5$ Вт/(м²-град). Для анализа результатов расчета σ_{11} , σ_{22} , σ_{12} и σ_i использовали метод контрольных точек (КТ) [26]. Выбранные КТ расположены в поверхностных слоях основных структурных элементов керамики — поверхности зерна, примыкающей к межзеренной фазе (3), поверхности межзеренной фазы, примыкающей к зерну (МФЗ), поверхности межзеренной фазы, примыкающей к матрице (МФМ), и поверхности матрицы,

примыкающей к межзеренной фазе (М). Структурную неоднородность напряжений в поверхностных слоях элементов керамики характеризовали следующими статистическими показателями: наибольшее $\sigma_{\text{макс}}$, наименьшее $\sigma_{\text{мин}}$ и среднее $\sigma_{\text{ср}}$ значения, диапазон изменения Σ , стандартное отклонение *s* и число *N* изменения знака для σ_{11} , σ_{22} , σ_{12} и σ_i .

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Под действием комбинированной нагрузки поверхностный слой керамики системы Si₃N₄-TiC-Y₂O₃ с покрытием из TiC разной толщины деформируется по однотипной схеме — «расплющенное» зерно вдавливается в матрицу. При этом толщина покрытия оказывает существенное влияние на уровень упругих деформаций. Рассмотрим основные результаты численных экспериментов, подтверждающих этот тезис.

Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в поверхности 3 под действием комбинированной нагрузки показаны на рис. 1. Установлено, что напряжения σ_{11} при толщине покрытия $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 754 МПа — от 358 (КТ23) до -396 МПа (КТ10) при $\sigma_{cp} = -110$ МПа, s = 244 МПа и N = 1 (рис.

Рис. 1. Влияние толщины TiC-покрытия на напряженное состояние поверхностного слоя 3 в Si₃N₄-TiC-Y₂O₃-керамике; толщина покрытия Δ_{π} указана на кривых, мкм

Рис. 2. Влияние толщины TiC-покрытия на напряженное состояние поверхностного при $\sigma_{cp} = -209$ МПа, s = 87 слоя МФЗ в Si₃N₄-TiC-Y₂O₃-керамике; толщина покрытия Δ_{π} указана на кривых, мкм МПа и N = 0.

1, *а*). При $\Delta_{\pi} = 10$ мкм образуются σ_{11} , изменяющиеся в диапазоне 679 МПа — от 270 (КТ23) до -409 МПа (КТ10) при $\sigma_{cp} = -177$ МПа, s = 224 МПа и N = 1. При $\Delta_{\pi} = 15$ мкм формируются σ_{11} с диапазоном изменения 630 МПа — от 222 (КТ23) до -408 МПа (КТ12) при $\sigma_{cp} = -205$ МПа, s = 216 МПа и N = 1.

Напряжения σ_{22} при $\Delta_n = 5$ мкм изменяются в диапазоне 1299 МПа от 296 МПа (КТ23) до -1003 МПа (КТ19) при $\sigma_{cp} = -291$ МПа, s = 310 МПа и N = 3 (рис. 1, б). При $\Delta_n = 10$ мкм в поверхностном слое зерна формируются σ_{22} с диапазоном изменения 1154 МПа — от 369 (КТ23) до -785 МПа (КТ18) при $\sigma_{cp} = -207$ МПа, s = 237 МПа и N = 1. При $\Delta_n = 15$ мкм образуются σ_{22} , изменяющиеся в диапазоне 1102 МПа — от 437 (КТ23) до -665 МПа (КТ18) при $\sigma_{cp} = -165$ МПа, s = 221 МПа и N = 1.

Напряжения σ_{12} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 757 МПа — от 296 (КТ8) до 1053 МПа (КТ22) при $\sigma_{cp} = 517$ МПа, s = 193 МПа и N = 0(рис. 1, в). При $\Delta_{\pi} = 10$ мкм образуются σ_{12} , изменяющиеся в диапазоне 642 МПа — от 273 (КТ8) до 915 МПа (КТ22) при $\sigma_{cp} = 457$ МПа, s = 178 МПа и N == 0. При $\Delta_{\pi} = 15$ мкм формируются σ_{12} , которые изменяются в диапазоне 601 МПа — от 248 (КТ8) до

849 МПа (КТ22) при $\sigma_{cp} = 414$ МПа, s = 175 МПа и N = 0.

Интенсивность напряжений σ_i при $\Delta_n = 5$ мкм изменяется в диапазоне 1288 МПа — от 562 (КТ5) до 1850 МПа (КТ22) при $\sigma_{cp} = 984$ МПа, s = 382 МПа (рис. 1, г). При $\Delta_n = 382$ МПа (рис. 1, г). При $\Delta_n = 10$ мкм диапазон изменения σ_i составляет 1042 МПа — от 554 (КТ8) до 1596 МПа (КТ22) при $\sigma_{cp} = 866$ МПа, s = 314 МПа. При $\Delta_n = 15$ мкм σ_i изменяется в диапазоне 952 МПа — от 520 (КТ8) до 1472 МПа (КТ22) при $\sigma_{cp} = 792$ МПа, s = 290 МПа. Результаты расчетов σ_{11} ,

 σ_{22} , σ_{12} и σ_i в поверхности МФЗ показаны на рис. 2. Установлено, что напряжения σ_{11} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 478 МПа — от 113 (КТ27) до -365 МПа (КТ34) при σ_{ср} = -126 МПа, *s* = 153 МПа и N = 2 (рис. 2, *a*). При $\Delta_{\pi} = 10$ мкм формируются σ₁₁, изменяющиеся в диапазоне 335 МПа — от -21 (КТ28) до –356 МПа (КТЗЗ) при σ_{cp} = = -184 МПа, *s* = 106 МПа и N = 0. При $\Delta_{\pi} = 15$ мкм формируются σ₁₁ с диапазоном изменения 275 МПа — от -76 (КТ28) до -351 МПа (КТ33)

54

Напряжения σ_{22} при $\Delta_n = 5$ мкм изменяются в диапазоне 713 МПа — от 159 (КТ26) до -554 МПа (КТ42) при $\sigma_{cp} = -221$ МПа, s = 193 МПа и N = 4 (рис. 2, б). При $\Delta_n = 10$ мкм формируются σ_{22} с диапазоном изменения 422 МПа — от -40 (КТ29) до -462 МПа (КТ42) при $\sigma_{cp} = -218$ МПа, s = 99 МПа и N == 0. При $\Delta_n = 15$ мкм образуются σ_{22} , изменяющиеся в диапазоне 361 МПа — от -51 (КТ29) до -412 МПа (КТ42) при $\sigma_{cp} = -196$ МПа, s = 87 МПа и N = 0.

Напряжения σ_{12} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 214 МПа — от 218 (КТ29) до 432 МПа (КТ37) при $\sigma_{cp} = 325$ МПа, s = 76 МПа и N = 0 (рис. 2, е). При $\Delta_{\pi} = 10$ мкм формируются σ_{12} , изменяющиеся в диапазоне 172 МПа — от 176 (КТ42) до 348 МПа (КТ37) при $\sigma_{cp} = 274$ МПа, s = 57 МПа и N = 0. При $\Delta_{\pi} = 15$ мкм формируются напряжения с диапазоном изменения 157 МПа — от 141 (КТ42) до 298 МПа (КТ36) при $\sigma_{cp} = 237$ МПа, s = 49 МПа и N = 0.

Интенсивность напряжений σ_i в этом поверхностном слое при $\Delta_{\pi} = 5$ мкм изменяется в диапазоне 420 МПа — от 380 (КТ29) до 800 МПа (КТ38) при $\sigma_{cp} = 631$ МПа, s = 132 МПа (рис. 2, г). При $\Delta_{\pi} = 10$ мкм диапазон изменения σ_i составляет 320 МПа — от 332 (КТ29) до 652 МПа (КТ34) при $\sigma_{cp} = 532$ МПа, s = 96 МПа. При $\Delta_{\pi} = 15$ мкм σ_i изменяется в диа-

пазоне 273 МПа — от 299 (КТ29) до 572 МПа (КТ34) при $\sigma_{\rm cp}$ = 470 МПа, s = = 84 МПа.

Результаты расчетов σ₁₁, σ₂₂, σ₁₂ и σ_i в поверхностном слое МФМ показаны на рис. З. При $\Delta_{\pi} = 5$ мкм в этом слое формируются напряжения о₁₁, изменяющиеся в диапазоне 511 МПа — от 126 (КТ60) до –385 МПа (КТ51) при σ_{cp} = = -118 МПа, *s* = 176 МПа и N = 2 (рис. 3, *a*). При Δ_п = = 10 мкм образуются σ_{11} , изменяющиеся в диапазоне 420 МПа — от 45 (КТ60) до -375 МПа (КТ51) при σ_{cp} = = -165 МПа, *s* = 140 МПа и *N* = 1. При Δ_{π} = 15 мкм формируются σ_{11} с диапазоном изменения 378 МПа — от 7 (КТ60) до -371 МПа (КТ50) при σ_{ср} = -184 МПа, s = 120 МПа и N = 1.

Напряжения σ_{22} при $\Delta_n =$ = 5 мкм изменяются в диапазоне 460 МПа — от 32 (КТ47) до -428 МПа (КТ60) при $\sigma_{cp} = -216$ МПа, s = 136МПа и N = 2 (рис. 3, δ). При $\Delta_n = 10$ мкм формируются σ_{22} с диапазоном изменения 414 МПа — от 105 (КТ43) до -309 МПа (КТ60) при $\sigma_{cp} = -169$ МПа, s = 106 МПа и N = 1. При $\Delta_{\pi} = 15$ мкм образуются σ_{22} , изменяющиеся в диапазоне 442 МПа — от 199 (КТ43) до -243 МПа (КТ60) при $\sigma_{cp} = -127$ МПа, s = 103 МПа и N = 1.

Напряжения σ_{12} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 302 МПа — от 227 (КТ47) до 529 МПа (КТ43) при $\sigma_{cp} = 366$ МПа, s = 83 МПа и N = 0 (рис. 3, е). При $\Delta_{\pi} = 10$ мкм образуются σ_{12} , изменяющиеся в диапазоне 257 МПа — от 204 (КТ47) до 461 МПа (КТ43) при $\sigma_{cp} = 315$ МПа, s = 64 МПа и N = 0. При $\Delta_{\pi} = 15$ мкм формируются σ_{12} с диапазоном изменения 219 МПа — от 182 (КТ46) до 401 МПа (КТ43) при $\sigma_{cp} = 278$ МПа, s = 53 МПа и N = 0.

Интенсивность напряжений σ_i при $\Delta_n = 5$ мкм изменяется в диапазоне 512 МПа — от 403 (КТ47) до 918 МПа (КТ43) при $\sigma_{cp} = 692$ МПа, s = 150 МПа (рис. 3, *г*). При $\Delta_n = 10$ мкм σ_i изменяется в диапазоне 439 МПа — от 371 (КТ46) до 810 МПа (КТ43) при $\sigma_{cp} = 592$ МПа, s = 109 МПа. При $\Delta_n = 15$ мкм σ_i изменяется в диапазоне 408 МПа — от 328 (КТ46) до 736 МПа (КТ43) при $\sigma_{cp} = 527$ МПа, s = 94 МПа.

Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностном слое М показаны на рис. 4. Установлено, что при $\Delta_{\pi} = 5$ мкм в этом слое формируются σ_{11} , изменяющиеся в диапазоне 553 МПа — от

Рис. 3. Влияние толщины TiC-покрытия на напряженное состояние поверхностного слоя $M\Phi M$ в Si₃N₄-TiC-Y₂O₃-керамике; толщина покрытия Δ_{n} указана на кривых, мкм

-139 (КТ68) до 414 МПа (КТ61) при σ_{cp} = 129 МПа, *s* = 169 МПа и *N* = 3 (рис. 4, *a*). При Δ_п = 10 мкм образуются σ₁₁, изменяющиеся в диапазоне 492 MПа — от -169 (КТ67) до 323 МПа (КТ62) при σ_{ср} = 128 МПа, *s* = 153 МПа и *N* = 3. При Δ_п = 15 мкм формируются σ_{11} с диапазоном изменения 461 MПа — от -184 (КТ67) до 277 МПа (КТ62) при σ_{ср} = 128 МПа, *s* = 150 МПа и *N* = 3.

Напряжения σ_{22} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 595 МПа — от 276 (КТ66) до -319 МПа (КТ75) при σ_{cp} = -76 МПа, s = 222 МПа и N = 1 (рис. 4, б). При $\Delta_{\pi} = 10$ мкм формируются σ_{22} с диапазоном изменения 507 МПа — от -183 (КТ73) до 324 МПа (КТ66) при σ_{ср} = -23 МПа, *s* = 167 МПа и *N* = = 2. При Δ_{π} = 15 мкм образуются σ_{22} , изменяющиеся в диапазоне 471 МПа — от -121 (КТ61) до 350 МПа (КТ66) при $\sigma_{cp} = 22$ МПа, s = 154 МПа и N = 3.

Напряжения σ_{12} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 401 МПа — от 102 (КТ65) до 503 МПа (КТ69) при σ_{ср} = 313 МПа, *s* = 128 МПа и *N* = 0 (рис. 4, в). При $\Delta_{\pi} = 10$ мкм образуются σ_{12} , изменяющиеся в диапазоне 469 МПа — от 37 (КТ65) до 506 МПа (КТ69) при σ_{ср} = 248 МПа, *s* = 144 МПа и *N* = 0. При $\Delta_{\pi} = 15$ мкм формируются σ_{12} с диапазоном изменения 480 МПа — от 9 (КТ65) до 489 МПа (КТ69) при $\sigma_{cp} = 207 \text{ MПа}, s = 152 \text{ МПа и } N = 0.$

Интенсивность напряжений σ_i при $\Delta_{\pi} = 5$ мкм изменяется в диапазоне 609 МПа — от 262 (КТ65) до 871 МПа (КТ69) при $\sigma_{\rm cp} = 642$ МПа, s = 190 МПа (рис. 4, *г*). При $\Delta_{\pi} = 10$ мкм σ_i изменяется в диапазоне 664 МПа — от 210 (КТ65) до 874 МПа (КТ69) при σ_{ср} = 529 МПа, *s* = 219 МПа. При Δ_п = 15 мкм σ_i изменяется в диапазоне 731 МПа — от 119 (КТ77) до 850 МПа (КТ69) при σ_{ср} = 467 МПа, s = 232 МПа.

Зависимости, характеризующие общую тенденцию влияния толщины покрытия на трансформацию напряженного состояния поверхностного слоя нитридной керамики при изменении толщины TiC-покрытия под действием комбинированной нагрузки, показаны на рис. 5. Видно, что о, уменьшается в КТ разных поверхностных слоев структурных элементов нитридной керамики при увеличении толщины покрытия, причем степень этого влияния изменяется в достаточно широком диапазоне, зависящем от поверхности структурного элемента керамики и расположения КТ.

Например, в поверхностном слое 3 (рис. 5, а) о; изменяются следующим образом: в КТ6, КТ11 и КТ19 значения о_i уменьшаются в 1,1, 1,3 и 1,4 раза соответственно при увеличении Δ_{π} с 5 до 15 мкм. В КТЗ1 поверхностного слоя МФЗ значения о, практически не изменяются (рис. 5, б), а в КТЗЗ и КТЗ8 *σ*^{*i*} уменьшаются в 1,1 и 1,5 раза соответственно. В КТ48 поверхностного слоя МФМ значения *σ*_i практически не изменяются (рис. 5, в), а в КТ51 и КТ57 *σ*^{*i*} уменьшаются в 1,2 и 1,5 раза соответственно. Наиболее чувствителен к изменению о, поверхностный слой М (рис. 5, г): значения о, в нем уменьшаются в 1.3. 1.8 и 4.0 раза в КТ65. КТ75 и КТ77 соответственно при увеличении Δ_{π} с 5 до 15 мкм.

В систематизированном виде показатели структурной неоднородности σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностных слоях основных структурных элементов нитридной керамики с ТіС-покрытием разной толщины под действием комбинированной нагрузки приведены в таблице. Анализ табличных данных подтверждает существенное влияние толщины TiC-покрытия на изменение напряженного состояния поверхностного слоя керамики под действием комбинированной нагрузки.

Видно, что с увеличением Δ_{π} с 5 до 15 мкм диапазон изменения σ_{11} в поверхностных слоях 3, МФЗ, МФМ и М уменьшается в 1,2, 1,7, 1,4 и 1,2 раза; стандартное отклонение σ_{11} уменьшается в 1,05, 1,8, 1,5 и 1,1 раза соответственно; максимальные значения о11 в поверхностных слоях МФЗ, МФМ и М уменьшаются в 1,05, 1,05 и 1,5 раза соответственно (в поверхностном слое 3 изменения практически отсутствуют); средние значения σ₁₁ в поверхностных слоях 3, МФЗ и МФМ увеличиваются в 1,9, 1,7 и 1,6 раза соответственно (в поверхностном слое М изменения отсутствуют).

> Увеличение Δ_{π} приводит к уменьшению числа смен знака σ_{11} в поверхностном слое МФЗ с 2 до 0, а МФМ с 2 до 1; в поверхностных слоях З и М о₁₁ не изменяет знака.

Увеличение Δ_{π} с 5 до 15 мкм приводит к уменьшению в поверхностных слоях 3, МФЗ, МФМ и М: диапазона изменения σ₂₂ в 1,2, 2,0, 1,05 и 1,3 раза; среднего значения σ₂₂ в 1,8, 1,1, 1,7 и 3,5 раза; стандартного отклонения σ₂₂ в 1,4, 2,2, 1,3 и 1,4 раза соответственно. При этом максимальные значения σ_{22} в поверхност-

σ,,

МΠа

1400

1200

1000

800

600

400

σ,,

800

700

600

500

400

МΠа

KT19

KT11

KT6

KT57

KT51

KT48

10

10

	σ ₁₁			σ ₂₂			σ ₁₂			σ		
Показатели				при толщине покрытия Δ _п , мкм								
	5	10	15	5	10	15	5	10	15	5	10	15
Поверхность зерна, примыкающая к межзеренной фазе (3)												
Σ	754	679	630	1299	1154	1102	757	642	601	1288	1042	952
σ_{makc}	-396	-409	-408	-1003	-785	-665	1053	915	849	1850	1596	1472
$\sigma_{\rm MHH}$	358	270	222	296	369	437	296	273	248	562	554	520
$\sigma_{\rm cp}$	-110	-177	-205	-291	-207	-165	517	457	414	984	866	792
Ν	1	1	1	3	1	1	0	0	0	-	-	-
S	224	224	216	310	237	221	193	178	175	382	314	290
Поверхность межзеренной фазы, примыкающая к зерну (МФЗ)												
Σ	478	335	275	713	422	361	214	172	157	420	320	273
σмакс	-365	-356	-351	-554	-462	-412	432	348	298	800	652	572
$\sigma_{\rm muh}$	113	-21	-76	159	-40	-51	218	176	141	380	332	299
$\sigma_{\rm cp}$	-126	-184	-209	-221	-218	-196	325	274	237	631	532	470
N	2	0	0	4	0	0	0	0	0	-	-	-
S	153	106	87	193	99	87	76	57	49	132	96	84
Поверхность межзеренной фазы, примыкающая к матрице (МФМ)												
Σ	511	420	378	460	414	442	302	257	219	512	439	408
$\sigma_{\text{макс}}$	-385	-375	-371	-428	-309	-243	529	461	401	918	810	736
$\sigma_{\rm muh}$	126	45	7	32	105	199	227	204	182	403	371	328
$\sigma_{\rm cp}$	-118	-165	-184	-216	-169	-127	366	315	278	692	592	527
N	2	1	1	2	1	1	0	0	0	-	-	-
S	176	140	120	136	106	103	83	64	53	150	109	94
Поверхность матрицы, примыкающая к межзеренной фазе (М)												
Σ	553	492	461	595	507	471	401	469	480	609	664	731
σ_{makc}	414	323	277	-319	324	350	503	506	489	871	874	850
$\sigma_{\rm muh}$	-139	-169	-184	276	-183	-121	102	37	9	262	210	119
σ_{cp}	129	128	128	-76	-23	22	313	248	207	642	529	467
N	3	3	3	1	2	3	0	0	0	-	-	-
S	169	153	150	222	167	154	128	144	152	190	219	232

ных слоях 3, МФЗ и МФМ уменьшаются в 1,5, 1,3 и 1,8 раза соответственно, а в поверхностном слое М — максимальное значение σ_{22} увеличивается в 1,1 раза. Уменьшается число смен знака σ_{22} также в поверхностных слоях 3, МФЗ и МФМ с 3 до 1, с 4 до 0 и с 2 до 1 соответственно при увеличении Δ_{π} . Однако в поверхности М число смен знака σ_{22} увеличивается с 1 до 3.

С увеличением Δ_n с 5 до 15 мкм максимальное значение σ_{12} в поверхностных слоях 3, МФЗ, МФМ и М уменьшается в 1,2, 1,4, 1,3 и 1,03 раза, среднее значение σ_{12} уменьшается в 1,2, 1,4, 1,3 и 1,5 раза соответственно. Диапазон изменения σ_{12} в поверхностных слоях 3, МФЗ и МФМ уменьшается в 1,3, 1,4 и 1,4 раза соответственно, а в поверхностном слое М увеличивается в 1,2 раза. Стандартное отклонение σ_{12} в поверхностных слоях 3, МФЗ и МФМ уменьшается в 1,1, 1,6 и 1,6 раза соответственно, а в поверхностном слое М увеличивается в 1,2 раза. На число смен знака σ_{12} изменение толщины покрытия влияние не оказывает.

Увеличение Δ_{π} с 5 до 15 мкм приводит к уменьшению максимального значения σ_i в поверхностных слоях 3, МФЗ, МФМ и М в 1,3, 1,4, 1,2 и 1,02 раза и среднего значения σ_i в 1,2, 1,3, 1,3 и 1,4 раза соответственно. В поверхностных слоях 3, МФЗ и МФМ уменьшается диапазон изменения σ_i в 1,4, 1,5 и 1,3 раза, стандартное отклонение σ_i уменьшается в 1,3, 1,6 и 1,6 раза соответственно. В поверхностном слое М диапазон изменения и стандартное отклонение о, увеличивается 1,2 раза.

ЗАКЛЮЧЕНИЕ

В результате выполненных численных экспериментов установлено, что увеличение толщины ТіС-покрытия от 5 до 15 мкм при одновременном действии силовой и тепловой нагрузок приводит к благоприятной трансформации напряженного состояния поверхностного слоя Si₃N₄-TiC-Y₂O₃керамики. Это проявляется в стабильном уменьшении σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностях 3, МФЗ, МФМ и М. Более сложным образом изменяются их максимальные, средние и минимальные значения, а также диапазоны изменения, стандартное отклонение и число смен знака при увеличении толщины покрытия, причем характер этого изменения зависит от структурного элемента керамики и расположения КТ в его поверхностном слое. Значения большинства показателей неоднородности σ_{11} , σ_{22} , σ_{12} и о, уменьшаются с увеличением толщины покрытия. Этот факт позволяет предположить, что изделия из нитридной керамики с ТіС-покрытием толщиной 15 мкм будут иметь больший эксплуатационный ресурс по сравнению с изделиями, на поверхности которых имеется ТіС-покрытие толщиной 5 мкм.

* * *

Настоящая работа поддерживается Министерством образования и науки Российской Федерации в рамках государственного задания МГТУ «СТАНКИН» в сфере научной деятельности (регистрационный номер проекта 9.1372.2017).

Библиографический список

1. *Huang, Changming*. Study on friction characterization and wear-resistance properties of Si_3N_4 ceramic sliding against different high-temperature alloys / *Changming Huang, Bin Zou, Yanan Liu* [et al.] // Ceramics International. — 2016. — Vol. 42, № 15. — P. 17210–17221.

2. **Nakatani**, **M.** Oxidation behaviour of Si_3N_4/Y_2O_3 system ceramics and effect of crack-healing treatment on oxidation / *M. Nakatani*, *K. Ando*, *K. Houjou* // J. Europ. Ceram. Soc. -2008. -Vol. 28, N = 6. -P. 1251-1257.

3. *Zheng, Guangming.* Thermal shock and thermal fatigue resistance of Sialon–Si₃N₄ graded composite ceramic materials / *Guangming Zheng, Jun Zhao, Chao Jia* [et al.] // International Journal of Refractory Metals and Hard Materials. -2012. - Vol. 35. - P. 55–61.

4. *Lin, H. T.* Characterization of mechanical reliability of silicon nitride microturbine rotor / *H. T. Lin, M. K. Ferber* // Key Engineering Materials. — 2005. — Vol. 287. — P. 393–403.

5. *Zuo, Kai-hui.* The mechanical and dielectric properties of Si₃N₄-based sandwich ceramics / *Kai-hui Zuo, Yu-ping Zeng, Dongliang Jiang //* Materials & Design. — 2012— Vol. 35. — P. 770–773.

6. *Xing, Youqiang.* Fabrication and dry cutting performance of Si_3N_4 /TiC ceramic tools reinforced with the PVD WS₂/Zr soft-coatings / *Youqiang Xing, Jianxin Deng, Kedong Zhang* [et al.] // Ceramics International. — 2015. — Vol. 41, No 8. — P. 10261–10271.

7. *Minatto, F. D.* Multilayered ceramic composites : a review / *F. D. Minatto, P. Milak, E. S. Gislon* [et al.] // Materials Science Forum. — 2015. — Vol. 820. — P. 393–398.

8. *Григорьев, С. Н.* Перспективы применения инструментов с керамическими режущими пластинами в современной металлообработке / *С. Н. Григорьев, В. В. Кузин* // Стекло и керамика. — 2011. — № 8. — С. 17-22.

Grigor'ev, S. N. Prospects for tools with ceramic cutting plates in modern metal working / *S. N. Grigor'ev, V. V. Kuzin //* Glass and Ceramics. — 2011. — Vol. 68, № 7/8. — P. 253–257.

9. **Кузин, В. В.** Инструментальное обеспечение высокоскоростной обработки резанием / В. В. Кузин, С. Ю. Фёдоров, М. Ю. Фёдоров [и др.] // Вестник машиностроения. — 2005. — № 9. — С. 46-50.

Kuzin, V. V. Tooling for high-speed cutting / *V. V. Kuzin, S. Yu. Fedorov, M. Yu. Fedorov* [et al.] / Russian Engineering Research. — 2005. — Vol. 25, № 9. — P. 20–25.

10. Kuzin, V. Tool life and wear mechanism of coated Si_3N_4 ceramic tools in turning grey cast iron / V. Kuzin, S. Grigor'ev // Key Engineering Materials. — 2014. — Vol. 581. — P. 14–17.

11. *Grigoriev, S.* The stress-strained state of ceramic tools with coating / *S. Grigor'ev, V. Kuzin, D. Burton, D. Batako //* Proceedings of the 37th International Conference MATADOR. — 2012–2013. — P. 181–184.

12. *Kuzin, V.* Applications of multi-level method of stress-strain state analysis in ceramic tools design / *V. Kuzin, S. Grigor'ev, M. Fedorov //* Applied Mechanics and Materials. — 2016. — Vol. 827. — P. 173–176.

13. Григорьев, С. Н. Автоматизированная система термопрочностных расчетов керамических режущих пластин / С. Н. Григорьев, В. И. Мяченков, В. В. Кузин // Вестник машиностроения. — 2011. — № 11. — С. 26-31. Grigor'ev, S. N. Automated thermal-strength

Grigor'ev, S. N. Automated thermal-strength calculations of ceramic cutting plates / S. N. Grigor'ev, V. I. Myachenkov, V. V. Kuzin // Russian Engineering Research. — 2011. — Vol. 31, № 11. — P. 1060-1066.

14. **Кузин, В. В.** Микроструктурная модель керамической режущей пластины / *В. В. Кузин* // Вестник машиностроения. — 2011. — № 5. — С. 72-76.

Kuzin, V. V. Microstructural model of ceramic cutting plate / *V. V. Kuzin* // Russian Engineering Research. -2011. - Vol. 31, No 5. - P. 479-483.

15. **Кузин, В. В.** Математическая модель напряженнодеформированного состояния керамической режущей пластины / В. В. Кузин, В. И. Мяченков // Вестник машиностроения. — 2011. — № 10. — С. 75-80.

Kuzin, V. V. Stress-strain state of ceramic cutting plate / *V. V. Kuzin, V. I. Myachenkov* // Russian Engineering Research. — 2011. — Vol. 31, № 10. — P. 994–1000.

16. **Кузин, В. В.** Роль теплового фактора в механизме износа керамических инструментов. Часть 1. Макроуровень / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Трение и износ. — 2014. — Т. 35, № 6. — С. 728-734.

Kuzin, V. V. The role of the thermal factor in the wear mechanism of ceramic tools. Part 1. Macrolevel / *V. V. Kuzin, S. N. Grigor'ev, M. A. Volosova //* J. Friction and Wear. — 2014. — Vol. 35, № 6. — P. 505–510.

17. **Кузин, В. В.** Роль теплового фактора в механизме износа керамических инструментов. Часть 2. Микроуровень / В. В. Кузин, С. Н. Григорьев, М. Ю. Фёдоров // Трение и износ. — 2015. — Т. 36, № 1. — С.50-55.

Kuzin, V. V. Role of the thermal factor in the wear mechanism of ceramic tools. Part 2. Microlevel / V. V. Kuzin, S. N. Grigor'ev, M. Yu. Fedorov // J. Friction and Wear. -2015. - Vol. 36, $N \ge 1. - P. 40-44$.

18. **Волосова, М. А.** Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 2. Действует сосредоточенная сила / М. А. Волосова, С. Н. Григорьев, В. В. Кузин // Новые огнеупоры. — 2014. — № 10. — С. 77-82.

Volosova, M. A. Effect of tinaium nitride coatings on stress structural inhomogeneity in oxide-carbide ceramic. Part 2. Concentrated force action / M. A. Volosova, S. N. Grigor'ev, V. V. Kuzin // Refractories and Industrial Ceramics. — 2015. — Vol. 55, № 5. — P. 487–491.

19. **Волосова, М. А.** Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть З. Действует распределенная силовая нагрузка / *М. А. Волосова, С. Н. Григорьев, В. В. Кузин* // Новые огнеупоры. — 2014. — № 12. — С. 35-40.

Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 3. Action of distributed force load / M. A. Volosova, S. N. Grigor'ev, V. V. Kuzin // Refractories and Industrial Ceramics. — 2015. — Vol. 55, № 6. — P. 565–569.

20. Волосова, М. А. Влияние покрытия из нитрида титана на структурную неоднородность напряжений

в оксидно-карбидной керамике. Часть 4. Действует тепловой поток / *М. А. Волосова, С. Н. Григорьев, В. В. Кузин //* Новые огнеупоры. — 2015. — № 2. — С. 47-52.

Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 4. Action of heat flow / M. A. Volosova, S. N. Grigor'ev, V. V. Kuzin // Refractories and Industrial Ceramics. -2015. - Vol. 56, N $_{2}$ 1. - P. 91–96.

21. **Волосова, М. А.** Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 5. Действует комбинированная нагрузка / *М. А. Волосова, С. Н. Григорьев, В. В. Кузин //* Новые огнеупоры. — 2015. — № 4. — С. 49-53.

Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 5. A combined load operates / M.A. Volosova, S. N. Grigor'ev, V. V. Kuzin // Refractories and Industrial Ceramics. — 2015. — Vol. 56, No 2, — P. 197–200.

22. **Кузин, В. В.** Влияние покрытия ТіС на напряженно-деформированное состояние пластины из высокоплотной нитридной керамики в условиях нестационарной термоупругости / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. — 2013. — № 9. — С. 52–57.

Kuzin, V. V. Effect of a TiC coating on the stressstrain state of a plate of a high-density nitride ceramic under nonsteady thermoelastic conditions / V. V. Kuzin, S. N. *Grigor'ev, M. A. Volosova //* Refractories and Industrial Ceramics. -2014. - Vol. 54, No 5. -P. 376-380.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

23. **Кузин, В. В.** Трансформация напряженного состояния поверхностного слоя нитридной керамики при изменении толщины TiC-покрытия. Вариант нагружения — сосредоточенная силовая нагрузка / В. В. Кузин, М. Ю. Фёдоров // Новые огнеупоры. — 2016. — № 8. — С. 59-65.

Kuzin, V. V. Transformation of the stressed state of a surface layer of nitride ceramic with a change in TiC-coating thickness. Loading version — concentrated force load / V. V. Kuzin, M. Yu. Fedorov // Refractories and Industrial Ceramics. — 2016. — Vol. 57, $\mathbb{N} \oplus 4$. — P. 427–433.

24. **Кузин, В. В.** Трансформация напряженного состояния поверхностного слоя нитридной керамики при изменении толщины ТіС-покрытия. Вариант нагружения — распределенная силовая нагрузка / *В. В. Кузин, М. Ю. Фёдоров* // Новые огнеупоры. — 2016. — № 10. — С. 58-63.

25. **Кузин, В. В.** Трансформация напряженного состояния поверхностного слоя нитридной керамики при изменении толщины ТіС-покрытия. Вариант нагружения — тепловой поток / *В. В. Кузин, М. Ю. Фёдоров* // Новые огнеупоры. — 2016. — № 12. — С. 58-63.

26. *Kuzin, V.* Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35.■

Получено 06.10.16 © В. В. Кузин, М. Ю. Фёдоров, М. А. Волосова, 2017 г.

<image><section-header>