К. т. н. Е. С. Абдрахимова¹ (🖂), д. т. н. В. З. Абдрахимов²

¹ ФГБОУ ВПО «Самарский государственный аэрокосмический университет имени академика С. П. Королёва» (Национальный исследовательский университет имени академика С. П. Королёва), г. Самара, Россия

² ФГБОУ ВПО «Самарский государственный экономический университет», г. Самара, Россия

УДК 666.774.046.44.017:620.186

ВЛИЯНИЕ ТЕМПЕРАТУРНО-ГАЗОВОЙ СРЕДЫ ОБЖИГА НА ФОРМИРОВАНИЕ ПОРИСТОЙ СТРУКТУРЫ КИСЛОТОУПОРОВ

Установлена зависимость пористой структуры кислотоупоров от температурно-газовых параметров обжига. Обжиг кислотоупоров целесообразно проводить до 1100 °C в окислительной среде, а при 1100-1200 °C — в восстановительной. При таком режиме обжига обеспечивается улучшение пористой структуры кислотоупоров.

Ключевые слова: глинистая часть хвостов гравитации циркон-ильменитовых руд (ГЦИ), полевошпатовый концентрат (ПШК), пирофиллит, кислотоупоры, пористая структура.

введение

Основные физико-технические свойства керамических изделий, является структура их пористости. Изучению пористости посвящено значительное число исследований в различных областях науки. Однако процессы формирования пористости и ее конечной структуры в керамических изделиях изучены недостаточно.

Установлено [1-3], что наиболее опасными являются поры размерами 10⁻⁶–10⁻⁷ м. Поры размерами менее 10-7 м не являются опасными, так как вода в них не замерзает. Исследователи А. С. Беркман и И. Т. Мельникова считают, что поры размерами 10⁻⁶-10⁻⁷ м являются резервными [1]. М. К. Гальперина считает наиболее опасными поры размерами 10⁻⁶-10⁻⁷ м, а к резервным относит поры размерами 10⁻⁴-10⁻⁵ м [3]. Установлено [4-7], что если радиус капиллярных пор более 10-7 м, то они не могут быть заполнены водой за счет адсорбции влаги из влажного воздуха и, наоборот, отдают влагу в атмосферу. Таким образом, макрокапиллярные поры могут быть заполнены водой только при непосредственном контакте с ней. Столь большой разброс в размерах опасных и неопасных пор, по-видимому, обусловлен не только методическими особенностями исследования пористо-капиллярной структуры, но и видами керамических материалов, которые авторы исследовали. Создание

> ⊠ E. C. Абдрахимова E-mail: 3375892@mail.ru

единой классификации пор и пористости различных пористых материалов и сред связано со значительными трудностями, поэтому общепринятой классификации до настоящего времени для керамических материалов нет.

Большая потребность различных отраслей народного хозяйства в кислотоупорных материалах ориентирует керамическую промышленность на использование доступного и дешевого сырья [8-10].

В настоящей статье представлены результаты исследования влияния температурно-газовой среды при различных температурах обжига на формирование пористой структуры кислотоупоров, полученных на основе глинистой части хвостов гравитации циркон-ильменитовых руд (ГЦИ) — попутного продукта редкоземельных металлов — и пирофиллита.

СЫРЬЕВЫЕ МАТЕРИАЛЫ

Для производства кислотоупоров в качестве глинистого компонента используют ГЦИ, в качестве алюмосодержащего отощителя — пирофиллит, а в качестве плавня — попутный продукт редкоземельных металлов (полевошпатовый концентрат — ПШК) [10–13]. Исследования показали, что при производстве кислотоупоров оптимальным составом является следующий, мас. %: ГЦИ 50, пирофиллит 40, ПШК 10 (табл. 1) [13, 14]. Химический состав исходных компонентов представлен в табл. 2. ГЦИ образуется после дезинтеграции и грохочения руды в виде пульпы влажностью 37–45 % и представляет собой тугоплавкую глину [14–16]. В табл. 3 приведены качественные характеристики пяти проб ГЦИ.

Компонент	Содержание компонента, мас. %, в составе				
	1	2	3	4	
ГЦИ	100	60	50	40	
Пирофиллит	-	35	40	45	
пшк	-	5	10	15	
Показатели:					
водопоглощение, %	7,4	3,5	3,4	3,6	
предел прочности при изгибе, МПа	45	55	57	56	
морозостойкость, циклы	195	230	248	239	
кислотостойкость, %	96,1	97,9	98,3	98,1	
термостойкость, теплосмены	4	9	11	10	

Таблица 1. Составы керамических масс и показатели кислотоупоров, обожженных при 1200 °С

Таблица 2. Химический состав исходных компонентов

	Массовая доля, %						
Компонент	SiO_2	Al ₂ O ₃ + +TiO ₂	Fe ₂ O ₃	CaO	MgO	R_2O	$\Delta m_{ m npk}$
ГЦИ	58,74	21,39	6,21	1,70	1,22	1,62	7,34
Пирофил-	55,82	34,88	0,40	0,22	0,10	0,09	7,88
лит							
ПШК	74,22	14,48	0,32	0,37	0,31	10,18	0,32

Как видно из табл. З, ГЦИ в отличие от традиционных тугоплавких глин более однородна и представлена в большей степени частицами размерами менее 0,001·10⁻³ м (>40 %, см. табл. 3). Однородность глины, выдержанной в глинозапаснике, повышается, а прочность изделий, сформованных из такой глины, увеличивается на 10–15 % по сравнению с изделиями, изготовленными из глины, взятой непосредственно с карьера [14].

Пирофиллит (Al₂O₃·4SiO₂·H₂O) образуется в зонах глубокого метаморфизма при 300-400 °С, залегает в виде плотной породы, не размокает в воде. Малая усадка при обжиге дает возможность изготовлять из пирофиллита огнеупорные детали или использовать его в качестве отощителя в керамических массах [17, 18]. Минеральный состав исследуемой пирофиллитовой руды, мас. %: пирофиллит 80, кварц 14, диаспор 4, прочие 2.

Белогорский ПШК является попутным продуктом производства редкоземельных металлов и получается после помола исходного сырья,

Таблица 4. Гранулометрический состав ПШК

Остатки на ситах, %	Содержание, %, фракции (размер отверстий сит), мм					
	1,25	0,63	0,315	0,14		
Частные	0,1	2,0	34,8	60,2		
Полные	0,1	2,1	36,9	97,1		

извлечения из него металлов и последующей флотации слюды [8, 19–21]. Гранулометрический состав ПШК представлен в табл. 4. После обогащения ПШК в виде пульпы, содержащей 60 % воды, по трубопроводу подается в хвостохранилище. ПШК, как и ГЦИ, обладает более равномерным составом, чем традиционные тугоплавкие глины и плавни, так как получается мокрогравитационным способом, имеет белый цвет с проблесками слюды и внешне напоминает песок. Минеральный состав ПШК, мас. %: кварц 30–40, полевой шпат 60–70, слюда 1–2. Огнеупорность ПШК 1100–1150 °С, плотность 2,68–2,72 г/см³. Полевой шпат в ПШК представлен альбитом (50–60 %) и ортоклазом (40–45 %).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Одним из прогрессивных методом оценки распределения пор по размерам является метод вдавливания ртути, основанный на том, что заполнение пор ртутью возможно только при определенном давлении, определяемом капиллярным сопротивлением [22–27]. В общем виде эквивалентный диаметр поры $D_{\scriptscriptstyle ЭКВ}$ описывается уравнением $D_{3 \text{кв}} = (4 \sigma \cos \theta) / P$, где σ — поверхностное натяжение ртути; 0 — краевой угол смачивания; Р — внешнее давление. При расчетах для силикатных материалов и ртути обычно принимают следующие значения: $\sigma = 471,6$ дин/см²; θ = 145° (cos 145° = 0,8192); плотность ртути ρ = 13,546 г/см³ при 20 °C. Приведенное давление $P_{\text{прив}}$ определяется по уравнению $P_{\text{прив}} = P_{\text{ман}} +$ + $P_{\text{нач}} - \Delta P$, где $P_{\text{ман}}$ — манометрическое давление, кг/см²; *Р*_{нач} — начальное давление, кг/см²; ΔP — уменьшенное давление столбика ртути в капилляре дилатометра, кг/см², возникающее в результате ее вдавливания в поры материала.

Интегральные и дифференциальные порограммы (рис. 1), полученные с помощью ртутного поромера П-ЗМ, показывают, что в образцах из ГЦИ (состав 1, см. табл. 1) и в образцах

Таблица 3. Качественные характеристики пяти проб ГЦИ*

Trafa	Число	Чувствительность Содержание, %, фракции, 10-				ии, 10 ⁻³ м	
Tipooa	пластичности	к сушке, с	0,1-0,05	0,05–0,01	0,01–0,005	0,005–0,001	<0,001
1	25	90	0,8	12,1	16,1	23,0	48,0
2	23	100	0,9	14,0	18,1	24,2	42,8
3	24	100	0,8	14,1	17,5	21,1	46,6
4	23	100	0,7	18,4	22,3	15,7	42,9
5	22	110	0,6	19,6	22,2	15,8	41,8
* Сырье среднедисперсное (ГОСТ 9169).							

оптимального состава (состав 3, см. табл. 1) при температуре обжига 1200 °С имеются поры размерами $50\cdot10^{-10}-400\cdot10^{-10}$ м.

Для изучения влияния температурногазовых параметров обжига на характер рас-

Рис. 1. Интегральные (а) и дифференциальные (б) порограммы образцов из ГЦИ составов 1 и 3: r — радиус пор; V — объем пор

Рис. 2. Малоугловые рентгенограммы образцов из ГЦИ оптимального состава: *1* — необожженный образец; *2* — образец после обжига при 1000 °C; *3* — то же при 1100 °C; *4* — то же при 1200 °C; *J*_∞ — интенсивность; φ — угол рассеяния, рад

пределения пор размерами $50\cdot10^{-10}-400\cdot10^{-10}$ м в образцах состава 3 был использован метод диффузного малоуглового рассеяния, позволяющего определять поры размерами $40\cdot10^{-10}-800\cdot10^{-10}$ м [22–27]. Преимуществом этого метода является получение количественных экспериментальных результатов на образцах без их разрушения. Диффузная картина рассеяния керамических материалов под малыми углами получена на рентгеновской малоугловой установке типа КРМ-1, источник излучения Си K_{α} . Режим работы рентгеновской трубки: напряжение 35 кВ, ток 20 мА.

Образцы состава 3 для исследования готовили методом пластического формования. Часть высушенных образцов обжигали в кварцевой трубке при 1000, 1100, 1200 °С в среде воздуха, H₂, CO, CO₂, Ar; другую часть образцов обжигали в комбинированных, условно названных восстановительноокислительными, газовых средах (до 1100 °С — восстановительная среда, 1100–1200 °С — окислительная). Из обожженных керамических образцов готовили пластинки толщиной 0,3 мм.

Как известно [28, 29], всякое рентгеновское рассеяние под малыми углами свидетельствует о той или иной неоднородности строения исследуемого вещества и о наличии флуктуации плотности на расстоянии 20.10-10-1000.10-10 м. Малоугловое рентгеновское рассеяние — упругое рассеяние рентгеновского излучения на неоднородностях вещества, размеры которых существенно превышают длину волны излучения, которая составляет λ = 0,1÷1,0 нм; направления рассеянных лучей при этом лишь незначительно (на малые углы) отклоняются от направления падающего луча. В керамических материалах на основе ГШИ, как было показано в статьях [30-33], такая неоднородность обусловлена в основном разными плотностью твердых фаз и пористостью. Плотность фаз, кг/м³: муллит 3,05, кварц 2,65, кремнеземистое стекло 2,49-2,60, кристобалит 2,27-2,35, поры 1,29 (за плотность пор принята плотность воздуха). Как видно, наибольшее различие по плотности относительно твердых фаз имеют поры. Максимальный размер пор, участвующих в рассеянии рентгеновских лучей, ограничен верхним пределом разрешения экспериментальной установки и составляет для применяемой в работе аппаратуры 800.10-10 м. Это позволяет исследовать поры в интересующей области распределения.

По рентгенограммам (рис. 2), полученным в непрерывном режиме, построены графики $\lg J_{\infty} - \varphi^2$, где $\varphi = 2 \sin \theta$ (рис. 3). Эта зависимость выражается кривой, а угловой коэффициент а позволяет определить радиус инерции пор R_0 в исследуемом интервале: $\alpha = 5,715 \cdot R_0^2/\lambda^2$, откуда $R_0 = 0,41 \cdot \lambda \sqrt{-\alpha}$. При применении излучения Cu $K_{\alpha} \lambda = 1,539 \cdot 10^{-10}$ м, $R_0 = 0,644 \sqrt{-\alpha}$, где $\alpha = \Delta \lg J_{\infty} / \Delta \varphi^2$. Дискретные значения и их отно-

58

сительное содержание получены в ступенчатом режиме работы рентгеновского прибора. По распределению содержания пор определены эффективные средние радиусы $R_{oэ\phi}$ инерции $R_{oэ\phi} = \sum f_k^2 R_{oi}^2 / f_k^2$, где $R_{oi} - i$ -й радиус инерции пор; f - функция относительного содержания пор с i-м радиусом, $f = \Delta J_{\infty}/R_{oi}$.

Атомная амплитуда рассеяния выражается функцией f (в силу близости симметрии электронной плотности атома к сферической). Амплитуду рассеяния образцом можно представить в виде суммы всех вторичных волн, рассеянных всеми структурными единицами объекта. Так как число электронов (атомов) в образце велико, а расстояния между ними достаточно малы по сравнению с длиной волны, то обычно работают с непрерывной функцией рассеивающей электронной плотности $\rho(r)$. Это распределение концентрации электронов в пространстве $\rho(r)dV$, где dV — элемент объема, дает число электронов в этом элементе, расположенном в точке пространства, заданной координатами

 $f_{R_0} = 4 \int_0^{\infty} r^2 \rho_a(r) [(\sin R_0 r)/(Rr)] dr,$

где $\rho_{\rm a}(r)$ — радиальная функция электронной плотности атома

Данные на рис. З показывают зависимость характера пористой структуры образца состава 3 от температуры и газовой среды обжига. Изменение параметров микропористости керамического образца объясняется различными процессами, происходящими в обжигаемом материале. Увеличение кривизны на кривых зависимости $\lg J_{\infty} - \varphi^2$ (см. рис. 3, *a*) свидетельствует об уменьшении однородности пор по размерам. При 1000 °C в образцах происходят процессы дегидратации и разрушения глинообразующих минералов, диссоциации карбонатов и выгорания остаточной органики.

Установлено [8, 19-21], что в интервале 1000-1100 °C прекращается усадка кислотоупоров на основе ГЦИ в восстановительной среде, что связано с образованием неустойчивых кольцевых соединений типа муллита, поэтому улучшение микропористой структуры керамики в восстановительной среде происходит при более высоких температурах, чем в окислительной. При обжиге в среде водорода пористая структура керамических материалов однороднее, чем в среде СО, что, вероятно, связано с большой реакционной способностью водорода, молекулы которого обладают меньшим диаметром и большой диффузионной способностью (см. рис. 3, б). Логарифмические кривые интенсивности (см. рис. 3) и данные табл. 5 ($R_{0.0}$) показывают, что при обжиге керамические образцы, содержащие 50 % ГЦИ, в средах Ar и CO₂ имеют размеры пор больше, а однородность меньше, чем при обжиге в средах воздуха и газов H₂ и CO.

Рис. 3. Логарифмические кривые интенсивности малоуглового рассеяния керамики, обожженной в различных газовых средах. Среда: *a* — окислительная; *б* — восстановительная; *в* — Ar (1), CO (2), CO₂ (3); *г* — окислительновосстановительная (1); восстановительно-окислительная (2). Температура обжига, °C: *I* — 1000; *II* — 1100; *III* — 1200; *IV* — необожженный образец

При более высоких температурах обжига (1100-1200 °C) в окислительной среде (см. рис. 3, а) заметно сокращаются границы распределения пор по размерам и уменьшается эффективный радиус инерции пор. График $lg J_{\infty} - \varphi^2$ становится менее криволинейным, что указывает на увеличение однородности пор по размерам. В интервале 1000-1100 °С в обжигаемом керамическом материале повышается количество жидкой фазы, которая заполняет крупные поры и делит их на более мелкие. В восстановительной газовой среде сужение границ распределения пор в образцах, уменьшение их эффективного радиуса инерции и повышение однородности пор (см. рис. 3, б) происходят при 1100 °С. При восстановительно-окислительном

		Радиус инерции пор, 10 ⁻¹⁰ м				
тазовая среда оожита	температура обжита, С	$R_{ m o ext{ o ext} ext{ o ex} ext{ o ex ext{ o ext{ o ext{ o ext{ o ext{ o ext}$	$R_{ m omax}$	$R_{ m omin}$		
Необожженный образец		180,8	232,4	91,6		
Окислительная (воздух)	1000	254,0	298,4	64,2		
	1100	240,2	278,4	98,2		
	1200	222,4	272,2	101,0		
Восстановительная	1000	250,0	292,2	58,4		
	1100	260,4	304,8	42,8		
	1200	224,2	272,4	101,2		
СО	1200	242,2	290,0	90,2		
СО2 (углекислый газ)	1200	258,8	308,4	92,8		
Восстановительно-окислительная	1200	268,4	306,8	92,8		
Окислительно-восстановительная	1200	220,8	278,4	84,8		

Таблица 5. Радиусы инерции пор керамических образцов состава *3*, обожженных в различных газовых средах

обжиге дисперсно-пористая структура керамического материала ухудшается, о чем свидетельствуют увеличение эффективного радиуса инерции пор и уменьшение их однородности (см. рис. 3, г). Наиболее однородная структура материала (см. рис. 3, г) и эффективный наименьший радиус инерции пор (см. табл. 5) достигаются при окислительно-восстановительном обжиге образцов. Наиболее прочные и морозостойкие образцы получены при окислительновосстановительном обжиге, их прочность по сравнению с образцами, обожженными в окислительной среде, увеличивается в 1,3 раза (от 57 до 74 МПа). Морозостойкость образцов (при окислительно-восстановительном обжиге) пре-

Библиографический список

1. **Беркман, А. С.** Структура и морозостойкость стеновых материалов / А. С. Беркман, И. Т. Мельникова. — Л. : Госстрой, 1962. — 136 с.

2. Гальперина, М. К. Изменение пористой структуры фасадных плиток при их испытании на морозостойкость / М. К. Гальперина, А. В. Ерохина // Тр. ин-та НИИстройкерамики. — 1981. — Вып. 45. — С. 3–18.

3. *Гальперина, М. К.* Изменение пористой структуры фасадных плиток при испытании их на морозостойкость / *М. К. Гальперина, В. М. Егерев //* Тр. ин-та НИИстройкерамики, — 1985. — Вып. 56. — С. 71–82.

4. **Лыков, А. В.** Явление переноса в капиллярнопористых телах / *А. В. Лыков.* — М. : Госэнергоиздат, 1954. — 214 с.

5. *Лыков, А. В.* Тепло- и массообмен в процессе сушки / *А. В. Лыков.* — М. : Госэнергоиздат, 1956. — 464 с.

6. *Лыков, А. В.* Теория переноса энергии вещества / *А. В. Лыков.* — Минск : АН БССР, 1959. — 330 с.

7. *Лыков, А. В.* Тепло- и массообмен в капиллярнопористых телах / *А. В. Лыков.* — М. : Госэнергоиздат, 1957. — 255 с.

8. **Абдрахимова, Е. С.** Физико-химические процессы при обжиге кислотоупоров / *Е. С. Абдрахимова, В. З. Абдрахимов.* — СПб. : Недра, 2003. — 284 с.

9. *Абдрахимова, Е. С.* Использование отходов цветной металлургии в производстве кислотоупоров / *Е. С.*

вышает 250 циклов попеременного замораживания и оттаивания.

ЗАКЛЮЧЕНИЕ

Таким образом, проведенные исследования позволили установить зависимость пористой структуры кислотоупоров, содержащих 50 % ГЦИ, 40 % пирофиллита и 10 % ПШК, от температурно-газовых параметров обжига. Обжиг такой керамики целесообразно проводить до 1100 °C в окислительной среде, а при 1100–1200 °C — в восстановительной. При таком режиме обжига обеспечивается улучшение пористой микроструктуры кислотоупоров (R_{osp} однороднее) и их физико-механических свойств.

Абдрахимова, В. З. Абдрахимов // Изв. вузов. Цветная металлургия. — 2004. — № 4. — С. 13–18.

10. *Абдрахимов, Д. В.* Влияние некоторых отходов производств цветной металлургии на физические и механические свойства кирпича / Д. В. Абдрахимов, В. З. Абдрахимов, Е. С. Абдрахимов // Изв. вузов. Цветная металлургия. — 2004. — № 2. — С. 4–9.

11. Абдрахимов, В. З. Исследование структуры пористости и плотности в процессе обжига глинистой части «хвостов» обогащения циркон-ильменитовых руд / В. З. Абдрахимов, С. Ж. Сайбулатов, Е. С. Абдрахимова // Комплексное использование минерального сырья. — 1988. — № 8. — С. 80-82.

12. Абдрахимов, В. З. Влияние содержания золы легкой фракции на формирование пористой структуры керамического материала из глинистой части «хвостов» гравитации / В. З. Абдрахимов, С. Ж. Сайбулатов, Е. С. Абдрахимова // Комплексное использование минерального сырья. — 1989. — № 3. — С. 67-69.

13. **Абдрахимов, В. 3.** Структура пористости при обжиге глинистых материалов Восточного Казахстана / В. 3. Абдрахимов, Е. С. Абдрахимова, А. В. Абдрахимов, И. М. Дё // Тезисы докладов XXXVI научно-технической конференции: «Казахстан 2030 : Региональные проблемы науки в ВКТУ», Усть-Каменогорск, 1999. — С. 16.

14. *Абдрахимов, В. З.* Глинистая часть хвостов гравитации циркон-ильменитовых руд — сырье для производства керамических материалов / В. З. Абдрахимов, Е. С. Абдрахимова, Д. В. Абдрахимов, А. В. Абдрахимов // Огнеупоры и техническая керамика. — 2005. — № 5. — С. 38-43.

15. **Абдрахимова, Е. С.** Физико-химические методы исследования минерального состава и структуры пористости глинистой части хвостов гравитации циркон-ильменитовых руд / Е. С. Абдрахимова, В. З. Абдрахимов // Новые огнеупоры. — 2011. — № 1. — С. 10-16.

Abdrakhimova, E. S. Physicochemical methods for studying the mineral composition and pore structure for the argillaceous part zircon-ilmenite ore gravitation tailings / *E. S. Abdrakhimova, V. Z. Abdrakhimov //* Refractories and Industrial Ceramics. — 2011. — Vol. 52, № 1. - P. 1-5.

16. *Абдрахимова, Е. С.* Процессы, происходящие при обжиге глинистой части хвостов гравитации цирконильменитовых руд / *Е. С. Абдрахимова, В. З. Абдрахимов* // Новые огнеупоры. — 2009. — № 3. — С. 13–19.

Abdrakhimova, E. S. Processes that occur during firing of the argillaceous part of zircon-ilmenite ore gravitation tailings / E. S. Abdrakhimova, V. Z. Abdrakhimov // Refractories and Industrial Ceramics. — 2009. — Vol. 50, \mathbb{N} 2. — P. 101–106.

17. **Абдрахимова, Е. С.** Физико-химические исследования пирофиллита Никольского месторождения / *Е. С. Абдрахимова* // Новые огнеупоры. — 2010. — № 2. — С. 10-12.

18. *Абдрахимова, Е. С.* Влияние пирофиллита на структуру пористости и физико-механические свойства кислотоупоров / *Е. С. Абдрахимова, В. З. Абдрахимов* // Материаловедение. — 2003. — № 9. — С. 40-44.

19. **Абдрахимова, Е. С.** Влажностное расширение керамических плиток на основе отходов обогащения / *Е. С. Абдрахимова, В. З. Абдрахимов //* Изв. вузов. Строительство. 1988. — № 6. — С. 75–78.

20. *Абдрахимова, Е. С.* Влияние полевошпатового концентрата на фазовые превращения керамических плиток / *Е. С. Абдрахимова, В. З. Абдрахимов //* Стекло и керамика. — 1997. — № 10. — С. 26–29.

21. Абдрахимов, Е. С. Исследование водопроницаемости и трещиноватости структуры кислотоупоров, полученных с использованием отходов производств / Е. С. Абдрахимова, В. З. Абдрахимов // Материаловедение. — 2001. — № 10. — С. 52–56.

22. **Тогжанов, И. А.** Формирование пористой структуры керамического материала из глинистой части хвостов гравитации циркон-ильменитовых руд / И. А. *Тогжанов, С. Ж. Сайбулатов, В. З. Абдрахимов, А. Ш.* Чердобаев // Журнал прикладной химии. — 1989. — Т. 25. — С. 874, 875. 23. **Абдрахимова, Е. С.** Исследование структуры пористости в процессе обжига кислотоупоров / Е. С. Абдрахимова, В. З. Абдрахимов // Вестник ВКТУ. — 1999. — № 4. — С. 72–78.

24. Абдрахимова, Е. С. Структура пористости кислотоупорных плиток / Е. С. Абдрахимова, В. З. Абдрахимов // Материалы республиканской научнопрактической конференции «Интеграция науки, образования и производства в современных условиях». — Усть-Каменогорск : ВКТУ, 2000. — С. 368, 369.

25. *Абдрахимова, Е. С.* Кинетика изменения структуры пористости в процессе обжига кислотоупоров / *Е. С. Абдрахимова, В. З. Абдрахимов //* Изв. вузов. Строительство. 2000. — № 9. — С. 38–41.

26. **Абдрахимов, В. 3.** Исследование пористой структуры керамического кирпича из отходов производства / В. 3. Абдрахимов, Е. С. Абдрахимова, Д. В. Абдрахимов // Современное состояние и перспектива развития строительного материаловедения. Восьмые академические чтения РААСН. — Самара : СГАСУ, 2004. — С. 8–14.

27. **Абдрахимов, А. В.** Исследование структуры пористости черепицы из техногенного сырья цветной металлургии / А. В. Абдрахимов, В. З. Абдрахимов, Е. С. Абдрахимова // Изв. вузов. Строительство. — 2005. — Т. 31. — С. 38–41.

28. *Гинье, А.* Рентгенография кристаллов / *А. Гинье.* — М. : Физматиздат, 1961. — 604 с.

29. **Тогжанов, И.** А. Исследование структуры пористости керамических материалов на основе отходов цветной металлургии / И. А. Тогжанов, С. Ж. Сайбулатов, В. З. Абдрахимов, А. Ш. Чердобаев // Изв. вузов. Строительство. — 2001. — № 6. — С. 44.

30. **Абдрахимов, В. З.** Особенности формирования структуры пористости в керамических плитках из отходов производств и волластонита / *В. З. Абдрахимов, Е. С. Абдрахимова //* Вестник ВКТУ. — 1998. — № 2. — С. 79–81.

31. Абдрахимов, В. З. Изменение пористой структуры при испытании на морозостойкость керамических материалов из отходов производств / В. З. Абдрахимов, Е. С. Абдрахимова, Д. В. Абдрахимов // Комплексное использование минерального сырья. — 2000. — № 3/4. — С. 103, 104.

32. **Абдрахимов, В. З.** Взаимосвязь пористокапиллярной структуры и морозостойкости кирпича / В. З. Абдрахимов, Е. С. Абдрахимова // Вестник ВКТУ. — 2001. — № 1. — С. 129–132.

33. **Абдрахимов, В. З.** Структура пористости в процессе обжига кирпича / В. З. Абдрахимов, Е. С. Абдрахимова // Вестник ВКТУ. — 2001. — № 2. — С. 101–114. **■**

> Получено 02.09.15 © Е. С. Абдрахимова, В. З. Абдрахимов, 2016 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

07a09June2016 São Paulo Expo | São Paulo - SP - Brasil Ehbibition: 11 a.m às 8 p.m | Congress: 9 a.m to 6 p.m

EXPO ALUMINÍO 2016 — международная выставка по алюминию

7–9 июня 2016 г.

г. Сан-Паулу, Бразилия

www.expoaluminio.com.br