К. т. н. Е. С. Абдрахимова (🖂)

ФГБОУ ВПО «Самарский национальный исследовательский университет», г. Самара, Россия

УДК 549.61:666.774

ВЛИЯНИЕ АЛЮМОСОДЕРЖАЩЕГО НАНОТЕХНОГЕННОГО СЫРЬЯ И ПИРОФИЛЛИТА НА МУЛЛИТИЗАЦИЮ СТЕКЛОФАЗЫ В КОМПОЗИЦИОННЫХ КИСЛОТОУПОРАХ

С помощью электронного микроскопа и локального рентгеноспектрального анализа определены качественные и количественные составы муллитизированного стекла — основного структурного элемента керамики, обеспечивающего прочность готовых изделий при использовании в составах керамических масс пирофиллита и алюмосодержащего нанотехногенного сырья.

Ключевые слова: композиционные материалы, кислотоупоры, нанотехногенное сырье, пирофиллит, муллитизация, локальный анализ.

Астоящие исследования являются продолжением работ [1–5] по использованию алюмосодержащих нанотехногенных отходов и отходов цветной металлургии в составах керамических масс для получения кислотоупоров. Цель работы — исследование влияния алюмосодержащего нанотехногенного сырья и пирофиллита на муллитизацию стеклофазы в композиционных кислотоупорных керамических материалах методом локального рентгеноспектрального анализа с помощью микрозонда фирмы «САМЕВАХ»; изучение микроструктуры с помощью электронного микроскопа ЭМВ-100Б для получения наиболее полных данных о структурообразовании керамических материалов различных составов.

СЫРЬЕВЫЕ МАТЕРИАЛЫ

Глинистая часть хвостов гравитации цирконильменитовых руд. В качестве глинистого компонента для производства кислотоупоров использовали глинистую часть хвостов гравитации циркон-ильменитовых руд (ГЦИ) [6–10]. ГЦИ получается после дезинтеграции и грохочения руды в виде пульпы влажностью 37–45 % и, по существу, представляет собой тугоплавкую глину, но имеет сложный минеральный состав, включающий, в отличие от традиционных туго-

Таблица 1. Химиноский состав компонентов

плавких глин, 10 минералов и повышенное содержание Fe₂O₃ (>5 %). Химический состав ГЦИ представлен в табл. 1.

Основным глинистым минералом ГЦИ является каолинит (43–48 %), который плохо окристаллизован [6–10]. В плохо окристаллизованных структурах каолинита и при повышенном содержании в глинистых компонентах Fe₂O₃ наблюдается изоморфное замещение некоторой части ионов алюминия ионами Fe³⁺. В физико-химическом понимании — это твердый раствор замещения.

Пирофиллит Al₂O₃·4SiO₂·H₂O — минерал, по своим свойствам близкий к тальку, но по размерам блоки природного пирофиллита превосходят заготовки, которые удается получить из талька [11–17]. Усредненный химический состав пирофиллитовой руды Никольского месторождения представлен в табл. 1; в виде примесей пирофиллит содержит MgO, FeO и Fe₂O₃. Малая усадка при обжиге дает возможность изготовлять из пирофиллита огнеупорные детали или использовать его в качестве отощителя в керамических массах. Огнеупорность пирофиллита 1700 °C.

Алюмосодержащий нанотехногенный отход <u>нефтехимии</u>. В качестве алюмосодержащего компонента использовали отход нефтехимии отработанный катализатор ИМ-2201 Новокуйбышевского нефтехимического комбината [18-25].

V	Содержание, мас. %									
компоненты	SiO ₂	Al_2O_3	TiO ₂	Fe ₂ O ₃	MgO	CaO	R_2O	Cr_2O_3	$\Delta m_{ m npk}$	
ГЦИ	58,74	20,80	2,20	6,33	1,22	1,70	1,62	-	7,24	
Пирофиллит	52,95	34,88	0,96	0,04	0,10	0,22	0,09	-	7,88	
ИМ-2201	8,40	74,50	-	0,75	0,50	-	0,47	14,50	-	

⊠ E. C. Абдрахимова E-mail: 3375892@mail.ru Для получения керамического материала использовали ИМ-2201 техногенного происхождения размерами от 150 до 300 нм (см. табл. 1). В ИМ-2201 в большей мере присутствует высокотемпературная α-модификация, которая является аналогом природного корунда.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Показано [1, 2, 4, 5], что по формовочным и сушильным свойствам оптимальными составами для производства кислотоупоров являются составы, приведенные в табл. 2; расчетный химический состав керамических масс указан в табл. 3. Увеличение в составе керамических масс количества отощителей (пирофиллита и ИМ-2201) более 40 % снижает пластичность керамических масс, что затрудняет пластическое формование.

Исследовали образцы составов 1-3, обожженные при 1300 °С и содержащие сравнительно большое количество муллитизированной стеклофазы, — соответственно 45-50, 50-55 и 55-60 % (рис. 1).

В образцах состава 1 при температуре обжига 1300 °С наряду с кристаллами удлиненнопризматической формы наблюдаются короткопризматические кристаллы муллита (рис. 1, а). Необычная форма кристаллов муллита характерна тем, что в образце состава 1 более высокое содержание Fe_2O_3 и TiO_2 , чем в образцах составов 2 и 3. С возникновением твердых растворов замещения образуется муллит различного химического состава. При этом Fe³⁺ замещает Al³⁺, а Ti⁴⁺ — Si⁴⁺ [12, 26, 27]. Внедрение в твердый раствор оксидов железа и титана приводит к кристаллизации муллита в виде короткопризматических кристаллов вместо тончайших игл и удлиненнопризматических кристаллов (см. рис. 1, а). Решетка муллита построена из близких количеств групп [AlO₄], [AlO₆] и островных групп [SiO₄]. Для получения таких групп при внедрении в твердый раствор оксидов железа необходимы ионы с размерами ионных радиусов не более 0,7.10-10 м [12, 26, 27], поэтому в качестве иона замещения Fe²⁺ не подходит, так как размер его радиуса 0,80.10-10 м, а размер радиуса Fe³⁺ соответствует вышеуказанному требованию — 0,67·10⁻¹⁰ м.

Показатели преломления N стекол в образцах состава 1 колеблются в пределах от 0,61 до 1,65. Увеличение N до 1,65 свидетельствует о переходе большей части оксида железа и кристаллического магнетита в расплав; присутствие магнетита не обнаруживается и под микроскопом [9]. Матрица стекла захватывает в

Таблица	2.	Составы	керамичес	ких мас	C
---------	----	---------	-----------	---------	---

Konmonoum	Содержание компонента, мас. %, в составе					
компонент	1	2	3			
ГЦИ	100	60	60			
Пирофиллит	-	40	-			
ИМ-2201	-	-	40			

Рис. 1. Электронное фото муллитизированной стеклофазы в образцах составов *1* (*a*), *2* (б) и *3* (*b*). ×15000

свою структуру также часть анортита и гематита, так как интенсивность их линий снижается [9, 27]. Коэффициент преломления SiO₂ 1,475, а у стеклофазы образцов состава 1 0,61–0,65, что свидетельствует об образовании в исследуемом материале щелочежелезистого стекла [9, 27].

В образцах состава 2 не наблюдается значительного увеличения N, что свидетельствует о значительном уменьшении содержания Fe₂O₃ (уменьшается при введении в состав пирофиллита от 6,33 до 3,82 %, см. табл. 3). Введение в составы керамических масс пирофиллита способствует образованию в образцах значительного скопления хорошо развитых кристаллов муллита игольчатого облика. В образцах состава 3 с использованием ИМ-2201 наблюдаются обширные области стеклофазы, единичные оплавленные кристаллы кварца, кристаллы α-кристобалит и нитевидные кристаллы муллита.

Формирование прочности и пористой структуры керамики во многом определяется муллитизацией стекла, служащего основной частью каркаса готовых изделий. Ниже изложены результаты определения химического и мине-

Габ	блица 3.	Расчетный	химический	состав	керамических і	масс
-----	----------	-----------	------------	--------	----------------	------

Coomon	Содержание, мас. %								
COCIAB	SiO_2	Al ₂ O ₃	Fe_2O_3	TiO ₂	CaO	R_2O	Cr_2O_3	MgO	$\Delta m_{ m npk}$
1	58,74	20,80	6,33	2,20	1,70	1,62	_	1,22	7,24
2	56,43	26,08	3,82	1,71	1,11	1,02	-	0,78	7,51
3	38,61	42,45	4,21	1,32	1,02	1,17	5,80	0,94	4,35

рального составов участков муллитизированной стеклофазы в образцах составов 1-3 методом локального рентгеноспектрального анализа с помощью микрозонда фирмы «CAMEBAX». Непосредственно на приборе была получена информация об изменении элементного состава по длине исследуемого участка образца. Количественное содержание элементов определено, согласно известным методикам [26, 28, 29], по отношению интенсивностей излучения определяемого элемента и соответствующего эталона. После количественного определения элементов проведен пересчет на оксиды. Коэффициент пересчета К — величина, равная отношению атомной массы определенного элемента к массе оксида, для SiO₂ составляет 0,467, Al₂O₃ 0,529, TiO₂ 0,518, Fe₂O₃ 0,699, CaO 0,715, MgO 0,716, K₂O 0.830, Na₂O 0.742 [26, 28, 29].

На основании результатов локального химического анализа рассчитан фазовый состав образцов составов 1-3. При этом предполагалось, что весь глинозем связан в муллит 3Al₂O₃·2SiO₂ с содержанием Al₂O₃ 71,8 % и SiO₂ 28,2 %. Количество кремнезема, входящего в состав муллита, в образцах составов 1-3 составило 8.17. 10.25 и 16,68 % соответственно; остаток кремнезема соответственно 50,57, 46,18 и 21,93 %. Одна часть оставшегося кварца переходит в расплав, другая часть — в α-кристобалит. Было установлено [30], что при обжиге малошелочных (R₂O <2 %) каолинитовых, а также некоторых каолинитовых глин с примесью монтмориллонита (к числу которых относится ГЦИ — состав 1) кристобалит образуется в основном за счет аморфного кремнезема, образовавшегося в результате муллитизации. Кварц, содержащийся в глинах, также частично превращается в кристобалит, но при сравнительно более высоких температурах (1250-1300 °C) и в небольших количествах.

Введение в составы керамических масс пирофиллита не способствует образованию кристобалита. Так, было показано [30], что Al₂O₃ задерживает расстекловывание кварцевого стекла в кристобалит. Как видно из рис. 1, б, стеклофаза пронизана игольчатыми кристаллами муллита, количество которого может достигать 15-25 %. Размеры кристаллов муллита колеблются в широких пределах. Минимальный размер 1-2, максимальный 35 мкм. Наиболее часто встречаются иголки муллита длиной 15-20 мкм. Количественное распределение оксидов по длине выбранного участка, состоящего в основном из муллитизированного стекла, показано на рис. 2.

Межплоскостные расстояния короткопризматического (состав 1) и игольчатого муллита (состав 2) весьма близки между собой, поэтому кристаллическую форму зародышей муллита рентгенофазовым анализом определить невозможно. Введение в состав керамических масс алюмосодержащего нанотехногенного сырья — ИМ-2201 способствует получению нитевидных кристаллов муллита. Нитевидные кристаллы муллита по прочности, химической стойкости и другим показателям значительно превосходят короткопризматический (состав 1) и игольчатый муллит (состав 2). В табл. 4 приведены физикопоказатели кислотоупорных механические плиток составов 1-3, обожженных при 1300 °С. Как видно из табл. 4, при температуре обжига 1300 °С образцы состава 3 имеют наиболее высокие физико-механические и химические показатели. Таким образом, лучшие показатели имеют кислотоупорные плитки, содержащие

Рис. 2. Рентгеноспектрограммы количественного распределения элементов, пересчитанных на оксиды по длине выбранного участка *l*, состоящего в основном из муллитизированного стекла кислотоупора: *a*-*e* — образцы составов *1*-*3*; *1* — SiO₂; *2* — Al₂O₃; *3* — Fe₂O₃

Поноролоти	Плі	итки состав)B	Плитки кислотоупорные и термокислотоупорные	
Показатели	1	2	3	марки КШ по ГОСТ 961	
Водопоглощение, %	2,5	3,0	2,2	Менее 5,0	
Кислотостойкость, %	98,1	98,4	99,2	Не менее 98,0	
Предел прочности, МПа:					
при сжатии	88	102	148	» » 50	
при статическом изгибе	34	38	54	» » 25	
Морозостойкость, циклы	103	128	178	» » 20	
Термостойкость, теплосмены	6	12	15	» » 5	

нанотехногенное алюмосодержащее сырье — отработанный катализатор ИМ-2201, который способствует образованию нитевидных кристаллов муллита. Максимальная прочность нитевидных кристаллов обычно составляет 20–30 % от теоретической, модуль упругости достигает теоретических значений только для монокристаллов, из которых сложены нитевидные кристаллы.

ЗАКЛЮЧЕНИЕ

Таким образом, с применением электронного микроскопа ЭМВ-100Б и локального рентгеноспектрального анализа определены качественные и количественные составы муллитизированного стекла — основного структурного элемента керамики, обеспечивающего прочность готовых изделий. Исследования показали, что в образцах

Библиографический список

1. **Абдрахимов, В. З.** Применение алюмосодержащих отходов в производстве керамических материалов различного назначения / В. З. Абдрахимов // Новые огнеупоры. — 2013. — № 1. — С. 13–23.

Abdrakhimov, V. Z. Use of aluminum-containing waste in production of ceramic materials for various purposes / V. Z. Abdrakhimov // Refractories and Industrial Ceramics. -2013. -Vol. 54, No 1. -P. 7–16.

2. Абдрахимов, В. З. Исследование фазового состава керамических материалов на основе алюмосодержащих отходов цветной металлургии, химической и нефтехимической промышленности / В. З. Абдрахимов, Е. С. Абдрахимова // Новые огнеупоры. — 2015. — № 1. — С. 3–9.

Abdrakhimov, V. Z. Study of phase composition of ceramic materials based on nonferrous metallurgy, chemical, and petrochemical industry aluminum-containing waste / *V. Z. Abdrakhimov, E. S. Abdrakhimova* // Refractories and Industrial Ceramics. — 2015. — Vol. 56, № 1. — P. 5–10.

3. **Кайракбаев, А. К.** Исследование влияния Al₂O₃ на кислотостойкость и термостойкость кислотоупоров с применением регрессионного метода анализа / А. К. Кайракбаев, В. З. Абдрахимов, Е. С. Абдрахимова // Новые огнеупоры. — 2015. — № 5. — С. 58–62.

Kairakbaev, A. K. Study of the effect of Al_2O_3 on acid and thermal shock resistance of acid-resistant refractories using a regression analysis method / *A. K. Kairakbaev, V. Z. Abdrakhimov, E. S. Abdrakhimova //* Refractories and Industrial Ceramics. — 2015. — Vol. 56, № 3. — P. 276–280.

4. Абдрахимова, Е. С. Исследование характеристик кислотоупоров на основе отходов цветной металлур-

состава, содержащего только глинистый компонент, при температуре обжига 1300 °С наряду с кристаллами удлиненно-призматической формы наблюдаются короткопризматические кристаллы муллита.

Введение в состав керамических масс пирофиллита способствует образованию в образцах значительного скопления хорошо развитых кристаллов муллита игольчатого строения. В образцах состава с ИМ-2201 наблюдаются обширные области стеклофазы, единичные оплавленные кристаллы кварца, кристаллы α-кристобалита и нитевидные кристаллы муллита. Лучшие показатели имеют кислотоупорные плитки, содержащие нанотехногенное алюмосодержащее сырье — отработанный катализатор ИМ-2201, который способствует образованию нитевидных кристаллов муллита.

гии с применением регрессионного анализа / *Е. С. Абдрахимова //* Новые огнеупоры. — 2015. — № 9. — С. 54-61.

Abdrakhimova, E. S. Study of acid-resistant material properties based on nonferrous metallurgy waste using regression analysis / *E. S. Abdrakhimova* // Refractories and Industrial Ceramics. — 2015. — Vol. 56, № 5. — P. 510–516.

5. **Абдрахимова, Е. С.** Влияние температурно-газовой среды обжига на формирование пористой структуры кислотоупоров / Е. С. Абдрахимова, В. З. Абдрахимов // Новые огнеупоры. — 2016. — № 1. — С. 56-61.

Abdrakhimov, E. S. Effect of firing temperature and gas atmosphere on acid-resistant material pore structure formation / E. S. Abdrakhimova, V. Z. Abdrakhimov // Refractories and Industrial Ceramics. — 2016. — Vol. 57, № 1. - P. 59-64.

6. **Абдрахимова, Е. С.** Глинистая часть «хвостов» гравитации циркон-ильменитовых руд — сырье для производства керамических материалов / Е. С. Абдрахимова, В. З. Абдрахимов, Д. В. Абдрахимов, А. В. Абдрахимов // Огнеупоры и техническая керамика. — 2005. — № 5. — С. 38-42.

7. Абдрахимова, Е. С. Физико-химические методы исследования минералогического состава и структуры пористости глинистой части хвостов гравитации циркон-ильменитовых руд / Е. С. Абдрахимова, В. З. Абдрахимова // Новые огнеупоры. — 2011. — № 1. — С. 25–29.

Abdrakhimova, E. S. Physicochemical methods for studying the mineral composition and pore structure for the argillaceous part zircon-ilmenite ore gravitation

tailings / E. S. Abdrakhimova, V. Z. Abdrakhimov // Refractories and Industrial Ceramics. — 2011. — Vol. 52, Nº 1. — P. 1–5.

8. **Абдрахимова, Е. С.** Исследование кислотостойкости глинистых материалов различного химикоминерального состава / Е. С. Абдрахимова, В. З. Абдрахимов // Новые огнеупоры. — 2012. — № 7. — С. 12–18.

9. *Абдрахимова, Е. С.* Процессы, происходящие при обжиге глинистой части хвостов гравитации цирконильменитовых руд / *Е. С. Абдрахимова, В. З. Абдрахимов* // Новые огнеупоры. — 2009. — № 3. — С. 13–19.

10. *Абдрахимова, Е. С.* Формирование структуры кислотоупоров при обжиге глинистой части «хвостов» гравитации циркон-ильменитовых руд / *Е. С. Абдрахимова* // Новые огнеупоры. — 2009. — № 9. — С. 12–15.

11. **Бетехин, А. Г.** Курс минералогии / А. Г. Бетехин. — М. : Госгеолтехиздат, 1961. — 540 с.

12. **Абдрахимова, Е. С.** Основы технической керамики / Е. С. Абдрахимова, В. З. Абдрахимов. — Усть-Каменогорск : Восточно-Казахстанский государственный технический университет, 2001. — 161 с.

13. **Абдрахимова, Е. С.** Физико-химические исследования пирофиллита Никольского месторождения / Е. С. Абдрахимова // Новые огнеупоры. — 2010. — № 2. — С. 10–12.

14. *Абдрахимова, Е. С.* Облицовочные плитки из отходов производств и пирофиллита / *Е. С. Абдрахимова, И. М. Де, В. З. Абдрахимов //* Комплексное использование минерального сырья. — 1998. — № 5. — С. 86–89.

15. **Абдрахимов, В. З.** Пирофиллит как сырье для керамической промышленности / В. З. Абдрахимов // ВНИИЭСМ. Керамическая промышленность. — М., 1989. — Вып. З. — С. 7–8.

16. *Абдрахимова, Е. С.* Влияние пирофиллита на физико-механические свойства и кислотостойкость кислотоупоров / *Е. С. Абдрахимова //* Новые огнеупоры. — 2009. — № 4. — С. 15–19.

17. **Абдрахимова, Е. С.** Влияние пирофиллита на сушильные свойства кислотоупоров на основе глинистой части хвостов гравитации циркон-ильменитовых руд / *Е. С. Абдрахимова* // Новые огнеупоры. — 2009. — № 11. — С. 17–19.

18. Абдрахимов, В. З. Курс лекций по дисциплине «Технология керамических материалов» / В. З. Абдрахимов, Е. С. Абдрахимова. — Самара : Самарская академия городского и муниципального управления, 2011. — 256 с.

19. **Абдрахимова, Е. С.** Экспериментальное исследование физико-химических процессов при обжиге кислотоупоров на основе традиционных природных материалов и отходов производств / Е. С. Абдрахимова, В. З. Абдрахимов, И. Ю. Рощупкина, Ю. Б. Мышенцева // Новые огнеупоры. — 2012. — № 1. — С. 45-51.

20. **Абдрахимов, В. З.** Использование техногенных образований в производстве без обжиговых огнеупорных композитов / В. З. Абдрахимов, А. И. Хлыстов, В. К. Семёнычев // Новые огнеупоры. — 2010. — № 5. — С. 53–59.

21. **Кайракбаев, А. К.** Влияние высокоглиноземистых нанотехногенных отходов нефтехимии на термостойкость клинкерного кирпича / А. К. Кайракбаев, Е. С. Абдрахимова, В. З. Абдрахимов // Стекло и керамика. — 2015. — № 9. — С. 32–38. 22. Абдрахимов, В. З. Экологические и практические аспекты использования высокоглиноземистых отходов нефтехимии в производстве кислотоупоров / В. З. Абдрахимов // Новые огнеупоры. — 2010. — № 1. — С. 40–43.

23. **Абдрахимов, В. 3.** Экологические, теоретические и практические аспекты использования алюмосодержащих отходов в производстве керамических материалов различного назначения без применения природного традиционного сырья / В. 3. Абдрахимов, Г. Р. Хасаев, Е. С. Абдрахимова // Экология и промышленность России. — 2013. — № 5 (май). — С. 28–32.

24. **Ковков, И. В.** Исследование фазового состава керамических материалов на основе алюмосодержащих отходов / И. В. Ковков, В. З. Абдрахимов, А. В. Колпаков // Изв. вузов. Строительство. — 2012. — № 10. — С. 20-29.

25. *Абдрахимов, В. З.* Влияние высокоглиноземистых отходов нефтехимии на структуру пористости кислотоупоров / В. З. Абдрахимов, В. К. Семёнычев // Новые огнеупоры. — 2010. — № 9. — С. 148–151.

26. **Абдрахимова, Е. С.** Исследование муллитизации стеклофазы при обжиге керамических композиционных материалов на основе бейделлитовой глины и отходов производства минеральной ваты / Е. С. Абдрахимова, Е. В. Вдовина, А. В. Абдрахимов, В. З. Абдрахимов // Изв. вузов. Строительство. — 2008. — № 3. — С. 56–62.

27. *Абдрахимова, Е. С.* Физико-химические процессы при обжиге кислотоупоров / *Е. С. Абдрахимова, В. З. Абдрахимов.* — СПб. : Недра, 2003. — 288 с.

28. **Гольденстейн, Д. Ж**. Электронно-зондовый микроанализ в металлургии / Д. Ж. Гольденстейн // Тезисы конференции. Московский химикотехнологический институт, 1974. — С. 248–254.

29. *Абдрахимова, Е. С.* Муллитизация стеклофазы при обжиге глинистых материалов различного химико-минералогического состава / *Е. С. Абдрахимова, В. З. Абдрахимов //* Башкирский химический журнал. — 2005. — Т. 13, № 4. — С. 130–132.

30. **Павлов, В. Ф.** Особенности превращения кремнезема, содержащегося в глинах / *В. Ф. Павлов* // Тр. ин-та «НИИстройкерамика». — 1973. — Вып. 38. — С. 3–11. ■

> Получено 05.04.16 © Е. С. Абдрахимова, 2016 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

