К. т. н. Ю. И. Комоликов¹ (🖂), д. т. н. И. Д. Кащеев², к. т. н. В. Р. Хрустов³

- 1 Институт физики металлов УрО РАН, г. Екатеринбург, Россия
- ² ФГАОУ ВПО «Уральский федеральный университет», г. Екатеринбург, Россия
- ³ Институт электрофизики УрО РАН, г. Екатеринбург, Россия

УДК 666.3:[546.62-31+546.831-31]:546.31

ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ КОМПОЗИЦИОННОЙ КЕРАМИКИ СИСТЕМЫ ДИОКСИД ЦИРКОНИЯ – ОКСИД АЛЮМИНИЯ

Выполнен анализ изменения ТКЛР при нагреве и охлаждении керамических материалов системы ${\rm Al_2O_3-ZrO_2}$ в интервале 200-1500 °C. Установлены влияние структурно-фазовых составляющих и режима измерения (нагрев/охлаждение) на вид зависимостей $\Delta l/l_0=f(t)$, а также зависимость ТКЛР от химического состава композита. Полученные результаты обсуждены с точки зрения фазового состава материалов и анализа литературных данных. Приведены данные по средним и истинным значениям ТКЛР.

Ключевые слова: *ТКЛР, диоксид циркония, оксид алюминия, композиционная керамика, структурно-фазовый состав.*

ВВЕДЕНИЕ

известно, что композиционная керамика системы $ZrO_2(Y)$ - Al_2O_3 обладает рядом таких чрезвычайно важных свойств, как повышенные прочность и трещиностойкость, и широко применяется в качестве огнеупорного, теплозашитного и конструкционного материала [1-3]. В материалах системы ZrO₂-Al₂O₃ реализуется особый механизм упрочнения, обеспечивающий улучшенные механические свойства композиционной керамики по сравнению с моноциркониевой или монокорундовой [4-6]. Поскольку Al_2O_3 имеет низкую растворимость в ZrO2 при высоких температурах, то при спекании такой композиции создаются условия для подавления роста зерен обоих компонентов, вследствие чего в системе формируется мелкозернистая структура. Наличие у одного из компонентов полиморфного превращения с объемной инверсией в температурном интервале спекания приводит к нелинейной зависимости изменения плотности спеченных образцов от состава [7]. Можно ожидать, что и другие важные свойства композита будут иметь свою зависимость от состава. Для эффективного использования композита в сочетании с другими материалами был исследован ТКЛР композита в зависимости от соотношения ZrO₂ и Al₂O₃. Определение ТКЛР важно, так как его близкие значения необходимы для обеспечения хорошего контакта между функциональными материалами и предотвращения растрескивания или

 \bowtie

Ю. И. Комоликов E-mail: yikom@yandex.ru отслаивания в процессе нагрева, охлаждения и термоциклирования. Для инженерных расчетов применяют как средние, так и истинные значения ТКЛР в процессе нагрева и охлаждения. Например, для расчета внутренних напряжений, возникающих в материале при изменении его температуры, необходимо использовать истинные значения ТКЛР, а для расчета изменения размеров изделия вследствие термического расширения удобно использовать средние значения ТКЛР, вычисленные для диапазона температур t_1 - t_2 , так как ТКЛР зависит от фазового и химического составов, характера термообработки.

У чистого Al_2O_3 со структурой α -корунда ТКЛР в процессе нагрева и охлаждения монотонно изменяется. При присутствии в композите ZrO_2 , который может иметь структурные изменения (фазовые превращения), монотонное изменение ТКЛР в процессе нагрева и охлаждения нарушается [3]. Характер изменения ТКЛР композита $ZrO_2(Y) + Al_2O_3$ должен зависеть от его состава

Цель исследования — комплексное изучение изменения ТКЛР при нагреве и охлаждении керамики системы Al_2O_3 – ZrO_2 в интервале 200–1500 °C, оценка влияния структурных составляющих и соотношения долей оксидов на уровень ТКЛР.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Была исследована композиционная керамика состава (x)Al₂O₃ + (100 - x)ZrO₂(Y), где x = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 и 100. В качестве исходных материалов использовали порошки диоксида циркония, стабилизированного 3,5 мол. % Y_2O_3 ; порошки синтезировали методом совмест-

ного осаждения, промыванием осадка, сушкой и прокаливанием при 1100 °C в течение 3 ч. Оксид алюминия получали прокаливанием гидроксида при 1350 °C в течение 4 ч. Фазовый состав порошка диоксида циркония YSZ-3,5 в основном был представлен тетрагональной структурой, содержание моноклинной фазы находилось в пределах 20-10 %. Оксид алюминия имел структуру корунда. Образцы заданного состава формовали в виде цилиндров диаметром 10 и длиной 30 мм по технологии, описанной в публикации [7]. В дальнейшем образцы сущили и обжигали при температуре, обеспечивающей получение образцов плотностью не менее 0,99 относительно теоретической, чтобы исключить влияние пористости керамики на их термическое расширение.

Рентгенофазовый анализ (РФА) проводили на дифрактометре DMAX-2500, RIGAKU, Япония, в Си K_{α} -излучении в интервале углов $20 \le 2\theta \le 90$. Плотность спеченной керамики определяли методом гидростатического взвешивания в спирте на весах «Shumadzu AUW-220 D», оснащенных для этих целей специальной приставкой.

Дилатометрические измерения керамических материалов были проведены с помощью дилатометра DIL 402 С фирмы «Netzsch Gerätebau», Германия, в режиме нагрева до 1500 °С и последующего охлаждения с постоянной скоростью 5 °С/мин. Эксперименты проводили в воздушной среде с постоянной продувкой воздухом с расходом 100 мл/ч. Точность поддержания температуры в области образца дилатометра не выше 0,1 °С. Точность измерения длины l, определяемая нелинейностью передаточной функции датчика перемещения дилатометра, составляла 0,133 %. На рис. 1 показаны вели-

Рис. 1. Типичные дилатометрические кривые при нагреве и охлаждении спеченной композиционной керамики составов $xAl_2O_3 + (100 - x)ZrO_2(Y)$: $1 - 0.8 \le x \le 1.0$; $2 - 0.6 \le x \le 0.1$; 3 - x = 0; --- временная зависимость температуры

чины $(l-l_0)$ / l_0 относительного изменения длины образцов композиционной керамики составов $xAl_2O_3 + (100 - x)ZrO_2(Y)$ в диапазоне концентраций $0 \le x \le 100$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Дилатометрические данные показали, что характер термического расширения композиционной керамики зависит от соотношения Al₂O₃/ /ZrO₂(Y). На рис. 1 показаны три типичные дилатометрические кривые. Монотонное изменение длины при нагреве и охлаждении (кривая 1) наблюдается у керамики с преобладанием корунда $(0.8 \le x \le 1.0)$. Второй тип зависимости наблюдается у керамики с концентрацией корунда в диапазоне $0.2 \le x \le 0.6$. При 600 °C керамика этих составов претерпевает значительное расширение, сменяющееся сжатием. При дальнейшем повышении температуры ход дилатометрических кривых монотонен, так же как и у керамики с преобладанием корунда (0,8 $\leq x \leq$ 1,0). При охлаждении ниже 300 °C наблюдается эффект расширения. Температуры этих экстремумов сведены в табл. 1.

Третий тип зависимости наблюдается у керамики с малой концентрацией корунда в диапазоне $0 \le x \le 0.1$. В отличие от второго типа здесь отсутствует эффект расширения при охлаждении образцов. Полученные данные дают основание предполагать, что при повышенной концентрации корунда $(0.8 \le x \le 1.0) \text{ ZrO}_2$ в керамике однофазен, так как сжимающие напряжения в матрице уменьшают вероятность тетрагональнополиморфного моноклинного превращения зерен ZrO₂ и способствуют сохранению в композите тетрагональной фазы ZrO₂ во всем температурном диапазоне нагрева и охлаждения. Поэтому ТКЛР сохраняет монотонное изменение при нагреве и охлаждении. При переходе в область пониженных концентраций корунда на кривых появляются перегибы, вызванные, вероятно, трансформационным превращением ZrO₂, происходящим в материале. Это частично подтверждает данные [8] о том, что в присутствии Al_2O_3 стабилизирующие добавки в ZrO₂ полностью или частично теряют свои стабилизирующие свойства. Аналогичное явление наблюдается при избытке Al₂O₃, но корундовая матрица способна удержать незначительное количество зерен ZrO₂ в тетрагональной фазе. Наличие и месторасполо-

Таблица 1. **Температуры перегибов, отмеченные на рис. 1**

x (% Al ₂ O ₃)	t₁, °C	t₂, °C	t₃, °C	t₄, °C	D, 10 ⁻³
0	439	573	_	_	2,13
10	530	610	-	-	0,55
20	434	561	152	157	1,64
30	470	614	284	175	1,86
40	499	612	293	184	3,39
50	451	605	282	171	1,52
60	485	592	283	181	1,10

жение пиков объясняется свойствами самой моноклинной фазы ZrO_2 и тем, что тетрагональномоноклинное превращение в ZrO_2 энергетически смещается в этот температурный интервал, поскольку оно зависит от многих факторов (размера частиц, сжимающего действия матрицы и содержания стабилизатора).

Температуры перегибов на кривых (см. рис. 1) не зависят от соотношения Al_2O_3/ZrO_2 : $t_1=(490\pm 100)$ °C (пик расширения), $t_2=(600\pm 40)$ °C (конец расширения при нагреве), $t_3=(290\pm 25)$ °C (начало расширения при охлаждении); $t_4=(180\pm 30)$ °C (пик расширения). С другой стороны, амплитуда пика D зависит от состава. Максимум амплитуды расширения на ветви нагрева соответствует составу x=40 мас. %. Для керамики без корунда (x=0) также характерна значительная величина расширения.

Средние значения ТКЛР были рассчитаны для участков охлаждения в диапазоне 1300-400 °C из выражения ТКЛР = $\Delta l/l \cdot 1/\Delta t$. Расчетные значения величины ТКЛР представлены в табл. 2, из которой следует, что ТКЛР убывает с ростом концентрации корунда (рис. 2). Экспериментальные данные концентрационной зависимости ТКЛР удовлетворительно описываются уравнением линейной регрессии ТКЛР = $1,15 \cdot 10^{-5} - A \cdot x$, где A — коэффициент пропорциональности; x — массовая доля Al_2O_3 в композиционной керамике. Но при $x = 40 \div 50$ %, когда объемные доли фаз корунда и диоксида циркония близки, наблюдается отклонение от общей зависимости изменения величины ТКЛР.

Величины ТКЛР монофазной керамики (x = 0, x = 100) удовлетворительно согласуются со справочными данными [9]: у тетрагонального ZrO₂ $(2-4 \text{ мол. } \% \text{ YSZ}) \text{ ТКЛР} = 11.4 \cdot 10^{-6} \text{ 1/K} (200-1000 °C),$ у Al_2O_3 ТКЛР = 9,5 · 10⁻⁶ 1/K (200–1000 °C). Отмеченное монотонное изменение средних ТКЛР при изменении соотношения ZrO₂ / Al₂O₃ свидетельствует о равном вкладе обеих фаз в термическое расширение во всем диапазоне концентраций и противоречит концепции существования рассматриваемой двухфазной системы в виде непрерывной матрицы основной фазы, в которую вкраплены зерна второй фазы. Это предполагает, что основное термическое расширение должно определяться материалом матрицы. И только в области равных объемных долей фаз термическое расширение должно быть средним из двух фаз.

На рис. З показана зависимость ТКЛР от температуры, интерполированная линейной функцией. Здесь также заметно различие в поведении керамики с преобладанием корунда $(0,8 \le x \le 1,0)$ от остальных композитов $(0,1 \le x \le 0,6)$ и от чистого ${\rm ZrO}_2$ (x=0). Углы наклона температурных зависимостей ТКЛР монотонно уменьшаются с увеличением доли ${\rm ZrO}_2$. Это обусловлено различным характером изменения величины ТКЛР монофазной керамики (x=0, x=100) от

Таблица 2. Средние значения ТКЛР керамики составов $xAl_2O_3 + (100 - x)ZrO_2(Y)$

x (% Al ₂ O ₃)	ТКЛР, 10 ⁻⁶ 1/K	Температурный диапазон, °С		
	1KJIF, 10°1/K	t_1	t_2	
0	11,5	1200	400	
10	11,4	1200	300	
20	11,2	1100	300	
30	10,9	1300	400	
40	10,2	1300	400	
50	10,9	1330	380	
60	10,1	1300	400	
80	10,0	1300	200	
90	9,8	1300	200	
100	9,6	1300	200	

Рис. 2. Усредненные по температурному диапазону 300-1300 °C величины ТКЛР (технические) керамики $xAl_2O_3 + (100 - x)ZrO_2(Y)$

Рис. 3. Температурные зависимости истинных значений ТКЛР при охлаждении образцов состава $x\mathrm{Al}_2\mathrm{O}_3$ + (100 – -x)ZrO₂(Y); числа у линий соответствуют x — доле $\mathrm{Al}_2\mathrm{O}_3$, мас. %

температуры (см. рис. 3). Для чистого ZrO_2 влияние температуры на изменения величины ТКЛР менее выражено, чем для Al_2O_3 .

№ 9 2016 **Hobbie Ofheytopbi** ISSN 1683-4518 **61**

ЗАКЛЮЧЕНИЕ

- 1. По особенностям термического расширения исследованная композиционная керамика $x\mathrm{Al_2O_3}+(1-x)\mathrm{ZrO_2}(Y)$ делится на три группы: $0.8 \le x \le 1.0$, $0.1 \le x \le 0.6$ и x=0. Из группы $0.1 \le x \le 0.6$ выделяется состав x=0.4 как по значению среднего ТКЛР, так и по температурной зависимости истинных ТКЛР.
- 2. Показано, что вся композиционная керамика $xAl_2O_3 + (1 - x)ZrO_2(Y)$ с $x \le 0.8$ претерпевает моноклинно-тетрагональное превращение в температурном диапазоне, не зависящем от x. Амплитуда эффекта максимальна для состава x = 0.4.
- 3. Средняя величина ТКЛР монотонно убывает от $11.9 \cdot 10^{-6}$ до $9.6 \cdot 10^{-6}$ 1/K с ростом концентрации корунда от 0 до 100 мас. %
- 4. Температурные зависимости истинных значений ТКЛР различаются для разных *x*. Угол наклона прямых зависимостей изменения ТКЛР от *x* увеличивается с ростом концентрации корунда.

Библиографический список

- 1. *Naglieri, V.* Prepagation and characterization of alumina-doped powders for the design of multi-phase nanocomposities / *V. Naglieri, P. Palmero, L. Montanaro ||* Therm. Anal. Calorim. 2009. Vol. 97, № 1. P. 231–237.
- 2. *Hannik, R. H. J.* Transformation toughening in Zirconia Containing ceramics / R. H. J. Hannik, P. M. Kelly, B. C. Muddle // J. Amer. Ceram. Soc. 2000. Vol. 83. № 3. P. 461–487.
- 3. *Moraes, M. C.* Mechanical properties of aluminazirconia composites for ceramic abutments / *M. C. Moraes, C. N. Elias, J. D. Filho, L. G. Oliviera* // Mater. Res. 2004. № 7 (4). P. 643–649.
- 4. **Santos, C.** Mechanical properties and cytotoxicity of 3Y-TZP bioceramics reinforced with Al₂O₃ particles / C. Santos, L. H. P. Teixiera, J. K. M. F. Daguano [et al.] // Ceramics International. 2009. № 35. P. 709.
- 5. *Guimares, F. A. T.* Correlation between microstructure and mechanical properties of Al₂O₃/ZrO₂ nanocomposites / *F. A. T. Guimares, K. L. Silva, V. Trombini* // Ceramics International. 2009. Vol. 35. P. 741–745.
- 6. **Tuan, W. H.** Mechanical properties of Al_2O_3/ZrO_2 composites / W. H. Tuan, R. Z. Chen, T. C. Wang // J. Europ. Ceram. Soc. 2002. Vol. 22. P. 2827–2833.
- 7. **Комоликов, Ю. И.** Спекание композиционной керамики на основе порошков оксидов циркония и алюминия / Ю. И. Комоликов, И. Д. Кащеев, В. Д. Хрустов // Новые огнеупоры. 2015. № 8. С. 47–49.

Komolikov, Yu. I. Sintering of composite ceramic based on zirconium and aluminum oxide powders / Yu. I. Komolikov, I. D. Kashcheev, V. D. Khrustov // Refractories and Industrial Ceramics. — 2015. — Vol. 56, \mathbb{N} 4. — P. 418–420.

- 8. *Страхов, В. И.* Фазовые преобразования в композициях стабилизированный ZrO₂-Al₂O₃ и свойства циркониевых огнеупоров / *В. И. Страхов, Е. А. Павлова, С. И. Гершкович* // Огнеупоры. 1995. № 12. С. 5-8.
- 9. Таблицы физических величин : справочник ; под ред. акад. И. К. Кикоина. М. : Атомиздат, 1976. 1008 с. ■

Получено 03.03.16

© Ю.И.Комоликов, И.Д.Кащеев, В.Р.Хрустов, 2016 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Министерство образования и науки Украины Национальный технический университет «Харьковский политехнический институт» ПАО «УкрНИИОгнеупоров имени А. С. Бережного»

Международная научно-практическая конференция

«Пятые научные чтения имени академика НАНУ А. С. Бережного «Физико-химические проблемы в технологии тугоплавких и неметаллических материалов»

к 90-летию кафедры технологии керамики, огнеупоров, стекла и эмалей»

11-14 октября 2016 г.

г. Харьков, Украина

Тематика конференции:

Секция 1. Керамические материалы и огнеупоры: от теории к практике

Секция 2. Химия и технология вяжущих и композиционных материалов

Секция 3. Физико-химические основы технологии конструкционных, в том числе наноструктурных материалов

Секция 4. Стеклоэмали и стеклокомпозиционные материалы и покрытия.

Контактная информация:

Федоренко Елена Юрьевна fedorenko_e@ukr.net +380507130335, +380632970313

Саввова Оксана Викторовна savvova_oksana@ukr.net +380502010444

Корогодская Алла Николаевна korogodskaya@yandex.ru +380662296068

Воронов Геннадий Константинович voronov1976@ukr.net +380661449973