ПРОИЗВОДСТВО И ОБОРУДОВАНИЕ

Д. г.-м. н. В. А. Перепелицын¹ (⋈), А. М. Гороховский², А. В. Федоровцева², к. г.-м. н. Л. П. Яковлева²

- ФГАОУ ВПО «Уральский федеральный университет», г. Екатеринбург,
 Россия
- ² OAO «Первоуральский динасовый завод», г. Первоуральск Свердловской обл., Россия

УПК 666.762.5.046.5:621.365.22

ПРОИЗВОДСТВО ПЛАВЛЕНОГО ДИОКСИДА ЦИРКОНИЯ В ОАО «ПЕРВОУРАЛЬСКИЙ ДИНАСОВЫЙ ЗАВОД»*1

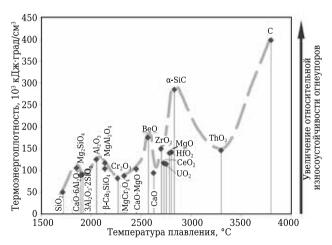
Выполнен теоретический расчет относительной износоустойчивости в службе огнеупоров различного химико-минерального состава. На основании величины термоэнергоплотности установлено, что среди всех оксидов высшей огнеупорности (температура плавления >2500 °C) диоксид циркония находится на первом месте. Среди доступных тугоплавких минералов (соединений) других химических классов ZrO₂ по относительной износостойкости уступает только графиту и карбиду кремния (α-SiC). На основании исследований разработан технологический регламент, спроектирована, построена технологическая линия и освоено промышленное производство плавленого частично стабилизированного диоксида циркония (ЧСДЦ). С использованием ЧСДЦ осуществляется производство цирконистографитовых погружаемых стаканов для МНЛЗ.

Ключевые слова: частично стабилизированный диоксид циркония (ЧСДЦ), кларк химического элемента, высшая огнеупорность, термоэнергоплотность, относительная износоустойчивость огнеупоров.

павными направлениями непрерывного технологического развития ОАО «Первоуральский динасовый завод» являются разработка и внедрение новой эффективной продукции, совершенствование технологии, улучшение качества серийных изделий и неформованных огнеупоров, расширение ассортимента и объема производства качественного синтетического сырья, импортозамещение (особенно в решении сырьевых проблем).

Общеизвестно, что примерно 60-70 % футеровок в службе разрушаются в результате химического взаимодействия с жидкими, газообразными и твердыми веществами — активными корродиентами тепловых агрегатов. Так как скорость растворения, испарения и химических реакций огнеупоров с агрессивными средами обратно пропорциональна размерам кристаллов слагающих их минералов, максимальной химической коррозионной устойчивостью обладают плотные крупнокристаллические плавленые материалы. На основании многочисленных сравнительных промышленных испытаний в службе

⊠ B. A. Перепелицын E-mail: pva-vostio@bk.ru установлено, что относительная коррозионная стойкость плавленых материалов на 30-60 % выше, чем спеченных идентичного химикоминерального состава.


В ОАО «Динур» постоянно расширяется ассортимент и увеличивается объем выпуска современной огнеупорной продукции с использованием плавленых сырьевых материалов собственного производства [1]. В течение последних 15-20 лет в Инженерном центре завода разработаны физико-химические основы и организовано промышленное производство плавленых материалов: магнезиальноглиноземистой шпинели MgAl₂O₄, белого электрокорунда, легированных разновидностей корунда (Al,Ti)₂O₃, $(Al_2Cr)_2O_3$, корундомуллита $(Al_2O_3 + 3Al_2O_3 \cdot 2SiO_2)$. Все эти материалы имеют температуру плавления в интервале 1713-2200 °C, что уже недостаточно для ряда современных и новых технологических высокотемпературных процессов в электротермии, космической, атомной и других отраслях. Для применения в экстремальных высокотемпературных условиях в окислительных средах необходимы огнеупоры высшей огнеупорности с температурой плавления выше 2500 °C.

Согласно инновационной программе расширения ассортимента продукции на заводе выбор сырьевых материалов для промышленного производства новых высокостойких огнеупоров осуществляется на основе комплексной оценки максимальной износоустойчивости с учетом материаловедческих, геохимических, экологических, технологических и экономиче-

^{*1} По материалам Международной конференции огнеупорщиков и металлургов (7-8 апреля 2016 г., Москва).

ских факторов. При этом немаловажное значение имеют экономические параметры производства и применения продукции [2]. Главными геохимическими факторами всех технологий с использованием минерального сырья являются кларк химического элемента и наличие его промышленных концентраций (месторождений) в земной коре. Износоустойчивость огнеупоров находится в сложной функциональной зависимости от теплофизических и кристаллохимических свойств составляющих их минералов или неорганических соединений. Первостепенное значение имеет максимальный резерв огнеупорности (превышение температуры плавления над температурой службы) футеровки.

В настоящее время и в обозримом будущем наибольшую практическую ценность для службы в экстремальных условиях в окислительной среде при 2000 °С и выше имеют высокоогнеупорные оксиды с температурой плавления выше 2500 °С (табл. 1). Однако число таких термостабильных соединений весьма мало, их всего восемь (в скобках указаны температура плавления, °С, и название аналога — природного минерала): ThO₂ (3300, торианит), MgO (2800, периклаз), HfO₂ (2780), UO₂ (2750, уранинит), CeO₂ (2727), ZrO₂ (2700, бадделеит), CaO (2625, известь), ВеО (2570, бромеллит). Среди перечисленных восьми оксидов пять невозможно использовать в массовом производстве вследствие радиоактивности

Рис. 1. Термоэнергетические параметры огнеупорных минералов

 $(ThO_2,\ UO_2)$ и токсичности (BeO), а также весьма низкого кларка (содержание в земной коре в 1000 раз меньше, чем CaO и MqO).

Среди трех доступных оксидных сырьевых материалов ZrO_2 обладает уникальным сочетанием физико-химических свойств для повышения износоустойчивости огнеупоров, а также является эффективным веществом для легирования и модифицирования большинства огнеупорных материалов. Реальная практика службы и теоретические расчеты показали, что относительная износоустойчивость этих трех высокоогнеупоров резко различается и сильно снижается в ряду ZrO_2 , MgO, CaO.

Ранее было установлено, что наиболее достоверным количественным оценочным критерием для прогнозирования относительной износоустойчивости огнеупоров является термоэнергоплотность T_{π} вещества [2–5]:

$$T_{\pi} = ET_{\pi\pi} = (\Delta G/V)T_{\pi\pi} = (\Delta G\rho/M)T_{\pi\pi}, кДж\cdotград/см^3,$$

где ΔG — изобарно-изотермический потенциал (энергия Гиббса) для оксидов или энергия атомизации для элементов и бескислородных соединений, кДж/моль или кДж/атом соответственно; V — молярный или атомный объем, см³/моль или см³/атом; $T_{\rm пл}$ — температура плавления, °С; ρ — истинная плотность, r/cм³; M — молярная или атомная масса, r/моль или r/aтом.

Формула термоэнергоплотности включает в краткой форме весь комплекс главных теплофизических, термодинамических и кристаллохимических свойств тугоплавких минералов (соединений). Расчетные значения термоэнергоплотности приведены в табл. 2 и показаны на рис. 1. От наиболее износоустойчивого минерала графита к менее устойчивому кварцу T_{π} снижается почти в 8 раз. Диоксид циркония — бадделеит среди доступных сырьевых материалов по относительной износоустойчивости находится на третьем месте после графита и карбида кремния, что подтверждается практикой их эксплуатации в экстремальных условиях. Среди доступных высокоогнеупорных оксидов ZrO₂ занимает лидирующую позицию.

До 2016 г. на заводе при производстве изделий для МНЛЗ несколько лет использовали импортный плавленый ZrO_2 . Для импортозаме-

Таблица 1. (Оксиды высшей	огнеупорности
--------------	---------------	---------------

Соединение	Температура плавления, °С	Природный минерал	Кларк*, мас. %	Примечание
BeO	2570	Бромеллит	3,8·10-4	Токсичный, низкий кларк в земной коре
MgO	2800	Периклаз	1,87	Доступность
CaO	2625	Известь	2,96	»
ZrO_2	2700	Бадделеит	17·10 ⁻³	_
CeO_2	2727	Церианит	7.10-3	Низкий кларк в земной коре
HfO_2	2780	_	$1,0.10^{-4}$	» » » »
ThO_2	3300	Торианит	1,3·10 ⁻³	Радиоактивный
UO_2	2750	Уранинит	$2,5\cdot 10^{-4}$	Радиоактивная урановая руда
* Указан кларк	оксидообразующего	химического элем	ента.	

щения разработан технологический регламент, спроектирована, строена и в 2015 г. введена в эксплуатацию технологическая линия по производству плавленого ZrO₂. В структуре себестоимости производства цирконийсодержащих материалов более 60 % составляют расходы на сырье. Особенно дорогим является технически чистый ZrO2, получаемый сложной химико-термической переработкой ZrSiO₄ (содержит ~72 % ZrO₂). По суммарному количеству балансовых запасов циркониевых руд Россия занимает третье место в мире после Австралии и ЮАР [6]. Госбалансом учтено 13 месторождений (12 циркона и одно бадделеита). Однако ни одно месторождение циркона пока не разрабатывается; осуществляется подготовка к освоению на двух из них. По данным Всероссийского научно-исследовательского института минерального сырья (ВИМС) в настоящее время Россия единственный в мире продуцент бадделеитового концентрата, получаемого в качестве ценного дополнительного продукта из комплексных руд Ковдорского железорудного месторождения (Мурманская обл.) [6]. К сожалению, до 90 % получаемого концентрата экспортируется. В то же время наша страна импортирует до 30 тыс. т в год цирконового концентрата, в основном из Украины. В природе ZrO₂ моноклинной модификации (бадделеит) известен с 1893 г. В 1969 г. в Сибири найден природный твердый раствор на основе ZrO₂ кубической системы (Zr, Ti, Са)О2, названный тажеранитом. Минерал весьма редкий, представляет только научный интерес [7].

В качестве основного сырьевого компонента для производства ZrO₂

выбран бадделеитовый концентрат Ковдорского месторождения. Для стабилизации ZrO₂ в кубической кристаллохимической модификации ZrO₂ (мон.) используют природный карбонат кальция. Химический состав исходных природных сырьевых материалов приведен в табл. 3. Обе разновидности минерального сырья имеют высокое содержание основного оксида (>98,0 %). Минеральный состав бадделеитового концентрата представлен изоморфной смесью ZrO₂ + HfO₂ моноклинной модификации (98–99 %). В виде примесей встречается незначительное количество апатита Ca₅(PO₄)₃(OH,F), сфена CaTiSiO₅, форстерита Mg₂SiO₄ и магнетита. Ми-

Таблица 2. **Взаимосвязь температуры плавления и термо-** энергоплотности огнеупорных соединений

Минерал, соединение	Химическая формула	Температура плавления, °С	Термоэнерго- плотность, 10³ кДж∙град/см³	8
Графит	С	3800	397,9	1 1
Карбид кремния	α-SiC	2830	285,3	1 2
Бромеллит	BeO	2570	176,1	
Бадделеит	ZrO_2	2700	150,1	1 2
Торианит	ThO_2	3300	146,2	ي ا
Периклаз	MgO	2800	142,3	
Оксид гафния	HfO_2	2780	140,7	, is
Корунд	Al_2O_3	2050	125,9	1 2
Церианит	CeO_2	2727	117,8	
Шпинель	$MgAl_2O_4$	2135	117,6	H H
Уранинит	UO_2	2750	115,2	25
Бонит	$CaO \cdot 6Al_2O_3$	1850	106,6	
Ларнит	β -Ca ₂ SiO ₄	2135	104,8	Ę
«Доломит»	CaO·MgO	2450	104,1	Ë
Известь	CaO	2625	94,7	5
Муллит	$3Al_2O_3 \cdot 2SiO_2$	1910	91,0	Ē
Форстерит	Mg_2SiO_4	1890	88,6	Z d
Магнохромит	$MgCr_2O_4$	2330	87,8	1 4
Эсколаит	Cr_2O_3	2265	82,5	
Кварц	SiO_2	1713	50,7	уве пичение относительной износоусой чивости отнауполов

Таблица 3. **Характеристика сырьевых материалов**

Показатели	Требования НД	Результаты испытаний ОАО «Динур»					
Бадделеитовый концентрат							
Химический состав, мас. %:							
$ZrO_2 + HfO_2$	Не менее 98,5	98,60					
SiO_2	Не более 0,4	0,29					
Fe_2O_3	Не более 0,1	0,10					
TiO ₂	Не более 0,13	0,10					
P_2O_5	Не более 0,2	0,18					
Влажность, %	Не более 0,5	0,02					
Фазовый состав, %:							
ZrO ₂ (мон.)		100					
Зерновой состав, %, фракции,							
MM:							
>0,2		2,30					
>0,1		31,40					
<0,1		66,30					
Карбонат кальция (кальцит)							
Химический состав, мас. %:							
CaO	Не менее 98,0	98,20					
Fe_2O_3	Не более 0,25	0,24					
$m_{\scriptscriptstyle \Pi m p \kappa}$	_	43,40					
Влажность, %	Не более 0,20	0,42					

неральный состав карбоната кальция представлен практически полностью кальцитом $CaCO_3$ (содержание примесей <1,0 %).

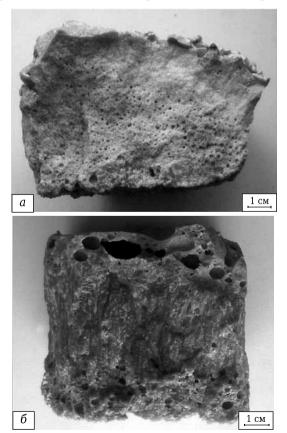

Практикой производства и применения цирконисто-оксидных огнеупоров установлено, что наиболее оптимальное сочетание свойств и поведения в службе обеспечивает частично стабилизированный диоксид циркония (ЧСДЦ), в котором соотношение кубической и моноклинной модификаций находится в пределах 65–85: 35–15 мас. % (среднее 75: 25%) [8]. В отличие от полностью стабилизированной кубической модификации ЧСДЦ обладает рядом положительных свойств, в частности заметно более вы-

Таблица 4. Химический и фазовый составы плавленого ЧСДЦ (готовый продукт фракции <0,5 мм)

испи		Химический состав, мас. %					Фазовый состав, %		
ЧСДЦ	ZrO ₂ +HfO ₂	SiO_2	Al_2O_3	Fe_2O_3	CaO	MgO	$m_{\scriptscriptstyle \Pi m p \kappa}$	ZrO ₂ (куб.)	ZrO ₂ (мон.)
Номер партии	:								
1	94,10	0,28	0,50	0,14	3,56	0,24	0,05	78,0	28,0
2	94,34	0,32	0,47	0,12	3,56	0,36	0,06	73,1	26,9
Норматив	>94,0	-	_	<0,2	3,3-4,5	_	_	65-85	-

сокими термостойкостью, механической прочностью и ударной вязкостью.

Подготовка шихты включает дозирование компонентов и тщательное смешение порошкообразной смеси фиксированного зернового состава. Шихту плавят в футерованной электродуговой печи оригинальной конструкции собственного изготовления при заданных электрических параметрах. В результате проведения серии опытных плавок удалось получить качественный плавленый ЧСДЦ, в котором содержание кубической модификации составляет 83-85 мас. % при суммарном содержании ZrO₂ не менее 94,0 мас. %. Химический и фазовый составы плавленого ЧСДЦ приведены в табл. 4. Характерная особенность минерального состава ЧСДЦ (табл. 5) — незначительное содержание примесей, представленных в основном стеклофазой сложного силикатного состава и ничтожным количеством единичных микровключений металлического железа, восстановленного из примесного магнетита при плавке в электропе-

Рис. 2. Макростроение плотной зоны (*a*) и зоны столбчатых кристаллов (*б*) плавленого ЧСДЦ

Таблица 5	Б. Характерис т	тика ЧСДЦ
-----------	------------------------	-----------

Минеральный состав, мас. %:		
ZrO ₂ (куб.)	71-72	
ZrO ₂ (мон.)	18-19	
стекло R_2 O \cdot RO \cdot R $_2$ O $_3$ \cdot nSiO $_2$	≤1	
Fe _{мет}	<<0,01	
Размер кристаллов (для идиоморфной струк-		
туры), мкм:		
пределы	80-600	
преобладающий	160-250	

чи с графитовыми электродами. Выплавленные слитки имеют зональное макростроение. В горизонтальном сечении блоков отчетливо видны плотная зона изометричных кристаллов с мелкой закрытой пористостью (рис. 2, a) и зона удлиненных столбчатых кристаллов, переходящая в поверхностную пористую корочку (рис. 2, δ).

Полученный плавленый материал имеет следующие характеристики: содержание (ZrO₂ + HfO₂) 94,3-94,8 мас. %; открытая пористость фракции 3-6 мм 8,8-11,6 %; кажущаяся плотность фракции 3-6 мм 5,11-5,27 г/см³; термостойкость данной монофракции 97,8 / 2,2 %*2 (на уровне термостойкости табулярного глинозема фирмы «Алматис»). Петрографическим исследованием установлена неоднородная по размеру кристаллов и пор микроструктура различных зон слитка. Плотная зона имеет преимущественно равновесную форму кристаллов ZrO₂ + HfO₂ гексагонального габитуса в сечении. Кристаллы образуют плотный и прочный трехмерный сросток с прямыми связями (рис. 3). При большом увеличении микроскопа видны прерывистые выделения стеклофазы, локализованные на поверхности 3-4 контактирующих кристаллов главного минерала. Малое содержание и локальное пространственное расположение стеклофазы не оказывает заметного отрицательного влияния на термопрочность и расплавоустойчивость плавленого материала (рис. 4).

С использованием плавленого ЧСДЦ собственного производства и импортных аналогов изготовлены погружаемые стаканы для МНЛЗ и другая продукция. Сравнительные испытания опытных партий изделий при службе в анало-

^{*2} В числителе — количество нерастрескавшихся зерен, в знаменателе — то же, но подвергнутых разрушению на фрагменты размерами менее 3,0 мм в результате термоциклов.

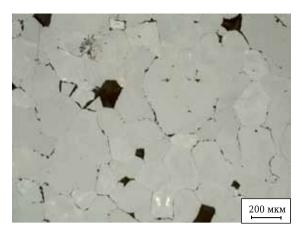


Рис. 3. Микроструктура плавленого ZrO₂. Свет отраженный

гичных условиях показали одинаковую износоустойчивость. В настоящее время продолжаются работы по оптимизации всех технологических параметров производства цирконисто-оксидной продукции и анализу стойкости в МНЛЗ в сравнении с аналогичными импортными огнеупорами.

ЗАКЛЮЧЕНИЕ

- 1. Теоретическими расчетами и многолетней практикой производства и применения огнеупоров различного вещественного состава установлен иерархический ряд относительной износоустойчивости тугоплавких минералов (соединений) различных химических классов (элементы, карбиды, простые и сложные оксиды, силикаты).
- 2. На основании расчетов термоэнергоплотности выявлено, что среди доступных оксидов высшей огнеупорности (температура плавления

Библиографический список

- 1. *Гороховский, А. М.* Производство плавленых огнеупорных материалов в ОАО «Динур» / А. М. Гороховский, Л. А. Карпец, В. А. Перепелицын [и др.] //Новые огнеупоры. 2007. № 3. С. 95–98.
- 2. **Перепелицын, В. А.** Теоретические и прикладные аспекты прогнозирования огнеупоров будущего / В. А. Перепелицын, Ф. Л. Капустин, О. Ю. Шешуков [и др.] // Новые огнеупоры. 2016. № 3. С. 116–122.
- 3. **Перепелицын, В. А.** Энергоплотность и энергопрочность силикатов и оксидов / В. А. Перепелицын // Высокотемпературная химия силикатов и оксидов : тезисы докладов 6-го Всесоюз. совещ. Л. : Наука, 1989. С. 13, 14.
- 4. **Перепелицын, В. А.** Минералого-петрографические основы технологии новых основных огнеупоров: дис. ... докт. геол.-минер. наук / *Владимир Алексеевич Перепелицын.* Л.: ЛГИ, 1989. 48 с.

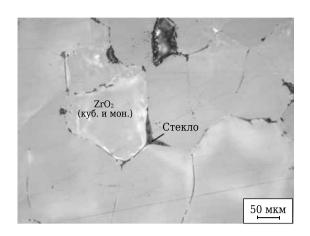


Рис. 4. Стеклофаза сложного состава в плавленом ZrO₂

- >2500 °C) диоксид циркония находится на первом месте, а по относительной износоустойчивости уступает только графиту и карбиду кремния (α -SiC).
- 3. На основании исследований разработан технологический регламент, спроектирована и построена технологическая линия, осваивается промышленное производство плавленого ЧСДЦ, уточняются технологические параметры.
- 4. Сравнительные испытания цирконистографитовых погружаемых стаканов, изготовленных из ЧСДЦ собственного и импортного производства, показали одинаковую износоустойчивость при службе на МНЛЗ.
- 5. Освоенное производство ЧСДЦ позволяет не только обеспечивать потребности в сырье для собственных технологий, но и при необходимости производить материал для отгрузки сторонним потребителям (свойства по требованию заказчика).
- 5. **Перепелицын, В. А.** Сырьевая база для производства высокоизносоустойчивых огнеупоров / В. А. Перепелицын // Огнеупоры на рубеже веков (XX–XXI): сб. науч. тр. ВостИО. Екатеринбург, 1991. С. 21, 22.
- 6. **Быховский,** Л. З. О минерально-сырьевой базе металлов для производства ферросплавов в России / Л. З. Быховский, Л. П. Тигунов // Сталь. 2007. № 1. С. 42–45.
- 7. **Перепелицын, В. А.** Основы технической минералогии и петрографии : уч. пособие для вузов / В. А. Перепелицын. М. : Недра, 1987. 255 с.
- 8. **Рутман, Д. С.** Высокоогнеупорные материалы из диоксида циркония / Д. С. Рутман, Ю. С. Торопов, С. Ю. Плинер [и др.]. М.: Металлургия, 1985. 136 с. ■

Получено 19.04.16 © В. А. Перепелицын, А. М. Гороховский, А. В. Федоровцева, Л. П. Яковлева, 2016 г.

№ 7 2016 **HOBbie Ofheyhopbi** ISSN 1683-4518 **29**