

Е. С. Антонова¹, Н. А. Голубева¹, к. т. н. И. Ю. Келина¹ (⊠), к. т. н. Л. А. Плясункова¹, к. т. н. Т. Е. Стахровская², д. т. н. А. С. Нечепуренко²

1 ГНЦ РФ ОАО «ОНПП «Технология», г. Обнинск Калужской обл., Россия
2 ОАО «УНИХИМ с ОЗ», г. Екатеринбург, Россия

УДК 666.762.852

ВЛИЯНИЕ ФРАКЦИОННОГО СОСТАВА ИСХОДНЫХ ПОРОШКОВЫХ СМЕСЕЙ И ИХ ДИСПЕРСНОСТИ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА РЕАКЦИОННО-СВЯЗАННОГО КАРБИДА КРЕМНИЯ

Представлены результаты экспериментальных исследований влияния фракционного состава и дисперсности исходных шихт на основе отечественных полидисперсных порошков карбида кремния разработки ОАО «УНИХИМ с ОЗ» на физико-механические свойства керамики, полученной методом реакционного спекания.

Ключевые слова: карбид кремния, реакционное спекание, фракционный состав, порошковая смесь, структура, физико-механические свойства.

ВВЕДЕНИЕ

ОНПП «Технология» разработаны керамические материалы ОТМ-923 и ОТМ-927, полученные методом реакционного спекания порошков карбида кремния Запорожского абразивного завода. Материалы отличаются высокой твердостью и пределом прочности при изгибе 150-300 МПа [1]. Технология реакционного спекания позволяет изготавливать изделия с минимальным припуском на механическую обработку, а технологическое оборудование для реализации реакционного спекания менее энергоемко и более доступно по сравнению, например, с горячим прессованием. Процесс реакционного спекания протекает при более низких температурах, что позволяет использовать более дешевые грубодисперсные порошки. Метод имеет широкий выбор способов формования заготовок изделий, а получаемые при этом материалы обладают свойствами, близкими к горячепрессованным. Это обусловливает преимущества производства крупногабаритных изделий и изделий, для которых процессы диффузионного спекания неэффективны.

Решая проблему импортозамещения в рамках Федеральных целевых программ, ОАО «УНИ-ХИМ с ОЗ» разработало карботермическим способом полидисперсные порошки карбида

> ⊠ И. Ю. Келина E-mail: kelina@technologiya.ru

кремния. Порошки отличаются высокой чистотой и с заданным зерновым составом. Нами исследовано влияние фракционного состава и дисперсности исходных шихт на основе порошков карбида кремния отечественного производства на достижение высоких показателей физикомеханических свойств реакционно-связанного карбида кремния.

ИСХОДНЫЕ МАТЕРИАЛЫ

Для получения шихт использовали порошки карбида кремния зеленого марки 63 С зернистостью F 150, F 180, F 220, F 320, F 500, F 1200 и сажи марки П-803 с удельной поверхностью 30000 см²/г. Форма и состояние поверхности частиц порошка SiC несовершенны, частицы имеют обломочную форму (рис. 1), так как их получают дроблением с последующей классификацией. По данным седиментационного анализа зерновой состав порошков SiC полностью соответствует ГОСТ 3647, доля основной фракции составляет более 50 % (табл. 1).

По данным разработчиков порошков, во всех фракциях содержание основной фазы SiC составляет 96,0–96,3 %, а примеси Fe, снижающей высокотемпературную прочность, не более 0,5 % (табл. 2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения экспериментальных образцов порошки карбида кремния различного зернового состава смешивали с порошком углеродсодержаще-

Рис. 1. Микроструктура порошков SiC составов F 150 (*a*) и F 180 (б)

го компонента в виде сажи в количестве 10 мас. % в изопропиловом спирте. В качестве связующего использовали бакелитовый лак ЛБС в количестве 10 %. Пластины размерами 70×70×10 мм изготавливали методом полусухого прессования в стальных пресс-формах на прессе П-250 под давлением 750 МПа, которое позволяет получать заготовки с наибольшей степенью уплотнения. Далее образцы подвергали пиролизу в среде азота и силицированию парами кремния в вакууме при температуре до 1850 °С в высокотемпературной вакуумной печи VHT 40/22-GR. Анализ фазового состава показал, что все образцы состоят из β- и α-SiC.

На полученных образцах проводили измерения геометрических размеров, массы и кажущейся плотности, оценку физико-механических свойств, исследование микроструктуры и фазового состава.

МЕТОДЫ ИССЛЕДОВАНИЙ

Для проведения седиментационного анализа использовали анализатор размеров частиц ВТ-1500 и лазерный дифракционный анализатор Analysette 22. Кажущуюся плотность, открытую пористость и водопоглощение определяли методом гидростатического взвешивания.

Предел прочности при трехточечном изгибе измеряли на стандартных образцах размерами 7×7×70 мм.

Таблица 1. Зерновой состав порошков карбида кремния

•		
Обозначение	Ориентировочное	Средний размер
зернистости	соответствие	основной фракции
по FEPA	ГОСТ 3647	(более 50 %), мкм
F 150	№ 10	88–133
F 180	<u>№</u> 8	58-80
F 220	<u>№</u> 6	51-88
F 320	<u>№</u> 4	26-44
F 500	M 20	15-22
F 1200	M 5	5-8

Таблица 2. Химический	состав	порошков	карбида
кремния, мас. %			

Фракция	SiC	Si	С	Fe	SiO ₂
F 1200	96,0	67,8	28,4	0,48	0,5
F 500	96,0	67,8	28,4	0,4	0,4
F 320	96,1	68,0	28,5	0,36	0,4
F 220	96,1	68,2	28,5	0,35	0,35
F 180	96,3	68,1	28,5	0,35	0,35
F 150	96,3	68,0	28,5	0,34	0,34

Микротвердость по Виккерсу при нагрузке 200 г и критический коэффициент интенсивности напряжения при нагрузке 300 г методом микроиндентирования определяли на микротвердомере DuraScan 50.

Для проведения качественного рентгенофазового анализа (РФА) использовали рентгеновский дифрактометр ДРОН-6,0. Для определения макродефектов поверхности и объема заготовок использовали рентгенодефектоскопический аппарат РАП-150/300, негатоскоп НШ-80.

Микроструктуру образцов материалов исследовали с помощью сканирующего электронного микроскопа (СЭМ) EVO 40 XVP (Zeiss) и оптического инвертированного микроскопа Axio Observer MAT.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для исследований было подготовлено 9 составов (A-L) шихты с учетом зернистости разработанных порошков. При этом ставилась задача получения максимальной плотности упаковки частиц в заготовке. Составы можно разбить на 2 группы. К первой относятся составы A-D, полученные варьированием соотношения парциальных долей фракций при постоянном отношении размеров частиц фракций [2, 3]. Ко второй — составы F-L, полученные варьированием отношения размеров частиц при постоянном соотношении парциальных долей фракций, при котором достигается максимальная плотность заготовок для составов первой группы.

Характеристика составов шихты и результаты определения плотности заготовок после прессования и после силицирования представлены в табл. 3.

Таблица 3. Характеристика составов шихт и результаты определения плотности

	SiC			Плотность заготовки, г/см ³ , после	
Состав	зернистость по FEPA	средний размер зерна, мкм	содержа- ние, %	прессо- вания	силици- рования
Группа 1					
A	F 1200	7	50	1,91	3,02
	F 220	65	50		
В	F 1200	7	40	1,96	3,02
	F 220	65	60		
C	F 1200	7	30	2,01	3,05
	F 220	65	70		
D	F 1200	7	37,5	2,05	3,10
	F 220	65	62,5		
Группа 2					
F	F 1200	7	37,5	2,06	3,11
	F 150	100	62,5		
I	F 1200	7	37,5	1,98	3,03
	F 500	20	62,5		
K	F 1200	7	37,5	1,88	3,04
	F 180	80	62,5		
L	F 1200	7	37,5	1,97	3,02
	F 320	35	62,5		

По экспериментальным данным построена зависимость плотности заготовок из порошков карбида кремния группы 1 для составов A-D (зернистость $d_1 = 65$ мкм и $d_2 = 7$ мкм) от величины отношения объемных долей фракций, при которой можно достичь максимальной плотности упаковки согласно [4] (рис. 2).

Анализ диаграммы (рис. 2, *a*) показывает, что наибольшая плотность упаковки частиц карбида кремния достигается в заготовках образцов состава D с бинарной смесью порошков SiC зернистостью 65 мкм и мелкодисперсной фракции зернистостью 7 мкм. Максимум наблюдается при парциальном отношении объемных долей $V_2/V_1 = 0,6$ ($V_1 = 0,625, V_2 = 0,375$). Из аналогичной зависимости, приведенной на рис. 2, б, для образцов после силицирования наибольшее значение плотности также получено для образца состава D, что соответствует максимальной плотности упаковки частиц в прессованной заготовке и далее подтверждается сравнением структуры полученных образцов.

По данным СЭМ микроструктура заготовки состава D после полимеризации фенолоформальдегидного полимера однородная, зерна разных фракций равномерно распределены в объеме заготовки (рис. 3, *a*), после силицирования — микроструктура плотная, границы зерен не определяются (рис. 3, *б*).

В работах [3, 4] авторами показано, что на получение высокой плотности упаковки частиц в заготовке из порошков различной зернисто-

Рис. 2. Влияние соотношения объемных долей V_2/V_1 фракций бинарной смеси порошков SiC составов A-D на изменение плотности ρ образцов после прессования (*a*) и после силицирования (*б*)

Рис. 3. Микроструктура образца состава D после прессования и полимеризации (*a*) и после силицирования (*б*)

Обнинское научно-производственное предприяти

технология

сти и формы существенное влияние оказывает не только соотношение объемных долей частиц фракций, входящих в состав шихты, но и соотношение размеров частиц и их форма. Исходя из этого, построена зависимость плотности заготовок состава D и F-L группы 2 составов от величины соотношения приведенных размеров фракций этих порошков при $V_2/V_1 = 3,75: 6,25 =$ = 0,6 (рис. 4).

Наибольшая плотность упаковки частиц прессованной заготовки и заготовки после силицирования наблюдается (см. рис. 4) при соотношении d_1/d_2 , равном 14. Она соответствует составу F с бинарной смесью порошков карбида кремния зернистостью 100 и 7 мкм. Образцы состава D при соотношении d_1/d_2 , равном 9, и в этом случае имеют высокое значение плотности — 3,1 г/см³.

По измеренным показателям физикомеханических свойств (табл. 4) построены зависимости изменения $\sigma_{\rm изг}$, HV и K_{1c} от величины отношения парциальных долей фракций при $d_1 = 65$ и $d_2 = 7$ мкм и от величины отношения приведенных размеров фракций этих порошков при $V_2/V_1 = 0,375 : 0,625 = 0,6$ (рис. 5, 6). Скорость распространения ультразвуковых колебаний для образцов всех составов более 11000 м/с.

Анализ рис. 5, *а* и 6, *а* показывает, что с увеличением доли мелкозернистой фракции наблюдается увеличение $\sigma_{изг}$ до 380 МПа и уменьше-

Таблица 4. Физико-механические свойства экспериментальных образцов состава A-L

Состав	Плотность заготовки после сили- цирования (средняя), г/см ³	Критический коэффициент интенсивности напряжения K _{1c} , МПа·м ^{1/2}	Предел прочности при изгибе _{σизг} , МПа	Микро- твердость <i>HV</i> , ГПа
A	3,02	3,9	334	24,33
В	3,02	3,6	337	25,41
C	3,05	4,7	293	25,86
D	3,10	4,6	330	25,29
F	3,11	4,5	308	24,58
I	3,03	4,6	380	24,57
K	3,04	3,8	297	24,19
L	3,02	4,9	271	25,64

Рис. 4. Влияние соотношения размеров *d*₁/*d*₂ частиц фракций бинарной смеси порошков SiC составов D, F–L на изменение плотности ρ образцов после прессования (*a*) и силицирования (*б*)

ние *HV* с 26 (состав С) до 24 ГПа (состав А), рис. 5, *б*. Значения *K*_{1c} (рис. 5, *в* и 6, *в*) варьируются от 3,6 (состав В) до 4,9 МПа·м^{1/2} (состав L).

Оптимальными с точки зрения полученных свойств являются составы D, F и I, содержащие фракции с размерами зерен 65 и 7 мкм, 100 и 7 мкм и 20 и 7 мкм, что хорошо согласуется с микроструктурой образцов этих составов, которая представлена на рис. 7. Равномерная и однородная по размеру и форме зерен микроструктура образца состава I, содержащая фракции с размером зерен 20 и 7 мкм, обеспечивает максимальное значение $\sigma_{\rm изг}$ = 380 МПа при сохранении K_{1c} на уровне 4,6 МПа·м^{1/2}. Дальнейшее увеличение размера зерен в образцах составов D и F ведет к

Рис. 6. Влияние соотношения размеров частиц фракций бинарной смеси порошков SiC составов D, F–L на изменение механических свойств: предела прочности при статическом изгибе (*a*), микротвердости основной фазы (*б*), критического коэффициента интенсивности напряжения (*в*)

Рис. 7. Микроструктура образцов составов I (*a*); D (б) и F (в)

понижению $\sigma_{\text{изг}}$ до 330 и 308 МПа соответственно при сохранении K_{1c} на уровне 4,6-4,5 МПа·м^{1/2}.

ЗАКЛЮЧЕНИЕ

В результате проведенных экспериментальных исследований определены двухфракционные составы (D, I, F) при отношении объемных долей фракций V₂/V₁ в интервале 0,3:0,7-0,4:0,6 и размеров зерен фракций порошков d₁/d₂, равных 9, 3 и 14. Из шихт экспериментальных составов методом полусухого прессования заготовок с последующим реакционным спеканием была

Библиографический список

1. **Келина, И. Ю.** Ударопрочные керамические материалы на основе SiC и B₄C / И. Ю. Келина, Н. А. Голубева, В. В. Ленский [и др.] // Вопросы оборонной техники. Сер. 15. Композиционные неметаллические материалы в машиностроении. — М. : НТЦ «Информтехника», 2012. — Вып. 1 (164) - 2 (165). — С. 59-69.

2. **Кинджери, У. Д.** Введение в керамику / У. Д. Кинджери ; пер. с англ. — М. : Стройиздат, 1967.

3. Дыбань, Ю. П. Влияние фракционного состава формовочных смесей на свойства самосвязанного карбида кремния / Ю. П. Дыбань, З. В. Сичкарь, получена керамика со следующими максимальными характеристиками: кажущаяся плотность 3,11 г/см³, предел прочности при статическом изгибе 380 МПа, критический коэффициент интенсивности напряжений 4,9 МПа·м^{1/2}, микротвердость основной фазы 26 ГПа. Достигнутый уровень свойств на экспериментальных образцах превосходит характеристики разработанного ранее материала ОТМ-923 на основе запорожских порошков и свидетельствует о возможности создания новых материалов с более высокими показателями физико-механических свойств.

Л.А. Шипилова // Порошковая металлургия. — 1982. — № 6. — С. 48-55.

4. **Майстренко, А. Л.** Формирование высокоплотной структуры самосвязанного карбида кремния / А. Л. Майстренко, В. Г. Кулич, В. Н. Ткач // Сверхтвердые материалы. — 2009. — № 1.

Получено 09.09.14 © Е.С.Антонова, Н.А.Голубева, И.Ю.Келина, Л.А.Плясункова, Т.Е.Стахровская, А.С.Нечепуренко, 2014 г.