Магистр наук по обогащению полезных ископаемых **А. Намираниан,** адъюнкт-профессор, инжиниринг в горном деле и металлургии **М. Калантар** (🖂)

Йездский университет, г. Йезд, Иран

удк 666.762.15:622.7(55) ОБОГАЩЕНИЕ И МУЛЛИТИЗАЦИЯ АНДАЛУЗИТА MISHDOVAN

Результаты минералогических исследований методами дифракционного рентгеновского анализа (XRD), рентгенофлуоресцентного анализа (XRF) и с помощью техники прозрачных шлифов (thin section) показали, что основные минералы месторождения (регион Bafqh-Yazd, 5-10 % минералов группы силлиманита с 18–20 % Al₂O₃) следующие: кварц, силлиманит, слюда (биотит и мусковит), гранат, кианит, андалузит и некоторые непрозрачные (опаковые) минералы. Исследования обогашения минерального сырья выявили, что кианитовый концентрат из этой руды может быть получен с помощью различных методов, таких как магнитная сепарация, вибрационный стол и флотация. Результаты экспериментов показали, что при использовании вибрационного стола был получен концентрат с содержанием Al₂O₃ 42 % и извлечением 54 %. Чтобы отделить железосодержащие минералы (содержание Fe₂O₃ довести до уровня ниже 1 %), концентрат был обработан методом высокоинтенсивной магнитной сепарации с увеличением содержания Al₂O₃ до 62 %. Применяя метод флотации к тонкой фракции (75-150 мкм) образца, получили концентрат, содержащий 46,3 % Al₂O₃ с извлечением 47,56 %. Процесс муллитизации кианитового концентрата был также изучен при различных условиях термообработки (1400-1600 °С, выдержка 0,5-3,5 ч) и размерах частиц (38-300 мкм). Исследования изменений микроструктуры и фаз методами сканирующей электронной микроскопии (SEM) и XRD показали, что полная трансформация кианита в муллит происходила при термической обработке в интервале 1500-1550 °C в течение 2,5 ч. При 1550 °C результаты процессов муллитизации и уплотнения были улучшены вследствие уменьшения размеров частиц материалов с 300 до 38 мкм.

Ключевые слова: кианит, магнитная сепарация, вибрационный стол, флотация, муллитизация.

введение

Месторождение Mishdovan расположено в 100 км к востоку от г. Йезд (Yazd), Иран. Изучение результатов работ по разведке месторождения показало, что в этом месторождении находится около 1,6 млн т запасов, содержащих 5-10 % минералов группы силлиманита (10-17 % Al₂O₃). В отличие от других месторождений силлиманита в Иране, которые относятся к месторождениям андалузитового типа, месторождение Mishdovan состоит из минералов группы силлиманита и кианита [1].

Кианит, андалузит и силлиманит представляют собой безводные алюмосиликатные минералы с одинаковой химической формулой Al₂SiO₅, но различаются кристаллической структурой, физическими свойствами и огнеупорностью (1770–1830 °C) [2]. Эти минералы применяют в производстве высокоглиноземистых (50–70 % Al₂O₃) и муллитовых огнеупоров [3]. Огнеупорные изделия на основе кианита используют в футеровке доменных и дуговых пе-

> ⊠ М. Калантар E-mail: Mkalantar@yazduni.ac.ir

чей, нагревательных колодцев, нагревательных печей на предприятиях черной металлургии, вращающихся печей цементной промышленности и печей для производства извести [4]. Руды, содержащие кианит или его полиморфные минералы, как правило, содержат некоторое количество примесей, таких как Fe₂O₃, CaO, MgO, Na₂O, K₂O и TiO₂. Примеси снижают термомеханические свойства и температуру плавления огнеупорной продукции [5]. Поэтому используемая руда должна содержать более 54 % Al₂O₃ и менее 42 % SiO₂, 1 % Fe₂O₃, 2 % TiO₂ и 1 % CaO и MqO [6]. Руды большинства кианитовых месторождений не соответствуют этим требованиям и потому для промышленных нужд необходимо их обогащение. При производстве групп минералов силлиманита и кианита товарного сорта применяют несколько методов обогащения минерального сырья: ручная сортировка, гравитационная сепарация, магнитная сепарация, флотация и прокаливание (roasting) [7-12]. Высокомуллитовые огнеупоры, как правило, можно получить путем обжига природных минералов силлиманитовой группы, поскольку сырьевые материалы содержат безводные алюмосиликатные полиморфные модификации андалузита, кианита и силлиманита одинакового состава (Al₂O₃·SiO₂) [13, 14]. Такие минералы отсутствуют на хорошо известной бинарной диаграмме фазового состояния кремнезем – глинозем при давлении 1 ат [15,

16]. Это связано с тем, что рассматриваемые три соединения — это образующиеся под высоким давлением формы алюмосиликата 1 : 1, которые первоначально формировались в земле при повышенной температуре и под высоким давлением [17]. Они нестабильны. Когда идет нагрев при давлении 1 ат, эти соединения превращаются в продукт с соотношением муллит : кремнезем 3 : 2 при 1300-1600 °C. Процесс зависит от полиморфной модификации, гранулометрического состава и уровня содержания примесей [18]. Кремнезем, образовавшийся во время этой термической трансформации, частично взаимодействует с примесями, главным образом с щелочами и оксидом железа, образуя жидкую фазу и в конце концов — силикатную стеклофазу, которая ухудшает качество продукта из-за снижения показателей таких высокотемпературных свойств, как предел прочности при изгибе при повышенных температурах и термостойкость огнеупоров [19]. В результате полного превращения образуется около 80 % муллита и 20 % стекла [20]. Задача этой работы, заключалась в исследовании обогашения и механизма муллитизации кианитовой руды Mishdovan.

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ

Минералогические исследования были проведены при систематическом отборе проб с поверхности обнаженной горной породы, из траншей и разведочных шурфов (test pits). В лабораторию были переданы 16 образцов для изучения прозрачных шлифов и 19 образцов для анализа методами XRF и XRD. Образцы были взяты из смешанного и просеянного образца массой 300 кг. В данном исследовании после отбора проб, дробления и подготовки определили степень выделения в свободном состоянии (the degree of liberation) микроскопическими исследованиями шлифов. Затем образцы разделили на две фракции грохочения для обогащения руды. Образцы с размером зерен 150-350 мкм были подвергнуты переработке с использованием как гравитационного (вибрационный стол), так и магнитного методов (высокоинтенсивный магнитный сепаратор). Для фракции 75-150 мкм применили флотационный метод.

Для получения желаемого продукта при переработке руды с помощью вибрационного стола было необходимо подобрать его требуемые эксплуатационные параметры. В этой работе наклон и частота колебаний (the slope and frequency of vibration) стола были рассмотрены как переменные параметры. Постоянными параметрами были: расход воды 12 л/мин, содержание твердой фазы в пульпе 45 %, амплитуда колебаний 15 мм, масса подаваемого образца 500 г. Эксперименты по обогащению руды проводили при углах наклона 6, 10 и 14° с постоянной частотой 60 Гц. Затем испытания проводили с оптимальным наклоном 14°, но с различными частотами — 50, 60 и 70 Гц.

Концентрат, полученный с помощью вибрационного стола, был обогащен методом высокоинтенсивной магнитной сепарации с углом наклона лопасти (blade angle) 70° и силой тока 4,8 А. Кроме того, промежуточный продукт магнитной сепарации обогащали магнитным методом с углом наклона лопасти 80° и силой тока 4,8 А. Провели также флотационные испытания подаваемого материала с размером частиц 75-150 мкм при содержании твердой фазы 25 %. Основываясь на типе жильных минералов и теме данного исследования, выполнили испытания методом обратной флотации, чтобы удалить оксид железа и слюду из подаваемой массы. Затем AERO 825, AERO 801 и FS-2 были использованы в качестве коллекторов, MIBC — как пенообразователь (frother) и H₂SO₄ как регулятор pH. Дозы коллекторов, пенообразователя и рН-регулятора были выбраны 1000, 150 и 4500 г/т соответственно. При испытаниях предварительной флотации продолжительность обработки составляла 4 мин, пена собиралась в течение 2 мин. Последующие флотационные испытания проводили при изменении типа коллектора и дозировки пенообразователя, времени обработки и времени пенообразования.

Для усиления прохождения реакций при испытаниях все порции (серии) концентрата перемалывали истиранием в водной среде с использованием корундовых шаров в течение определенного периода в мельнице быстрого помола. Полученные шламы высушивали при 110 °С до порошкообразного состояния, смешивали с органической связкой и подвергали одноосному прессованию под давлением 80 МПа. Сырые образцы после сушки обжигали в электрической печи со скоростью нагрева 5 °С/мин до 1100 °С и со скоростью З °С/мин до конечной температуры обжига. Кинетика муллитизации была изучена в температурном интервале 1400-1600 °С и при времени выдержки 0,5-3,5 ч для нескольких видов концентратов кианита со средним размером частиц 38, 150 и 300 мкм. На обожженных образцах определяли кажущуюся плотность, твердость, микроструктуру и термостойкость. Кажущуюся плотность и открытую пористость как сырых образцов, так и спеченных определяли с использованием принципа Архимеда в ксилоле и водной среде соответственно. Порошковые рентгеновские дифрактограммы (X-ray powder diffraction pattern) сырьевых материалов и обожженной продукции были получены на рентгеновском дифрактометре (X-ray diffractometer, 40 кВ, 38 мА) с использованием Ni-фильтрованного Со-излучения (l = 0,179 нм). Дифрактограммы были записаны для 20 в диапазоне 0-70°. Количество муллита для каждого спеченного образца определяли рентгеновским количественным анализом с использованием в качестве эталона чистого 3/2-муллита. Пики высокой интенсивности ({210}, $2\theta = 26,267$, d = 0,338 нм), получаемые для изучаемых образцов, сравнивали с эквивалентным пиком эталонного образца. Анализ микроструктуры был проведен методом сканирующей электронной микроскопии (SEM, Philips XL30) с использованием золотого покрытия, напыленного на полированную поверхность спеченных образцов после химического травления (chemical etching, раствор 10 % HF в течение 30 с).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Минералогические исследования

Согласно результатам дифракционного рентгеновского анализа XRD, составляющие минералы кианитовых отложений — это кварц, силлиманит, слюда (биотит и мусковит), гранит, кианит, андалузит и опаловые минералы (табл. 1). Результаты дифракционного рентгеновского анализа XRD образца № 19 в табл. 1 показаны на рис. 1.

Кварц — это основной минерал, который вместе с плоскими минералами, такими как биотит и мусковит, при сжимающем усилии образовал сланцевую (shisty) структуру и структуру lypidoblastic (рис. 2).

Таблица 1. Результаты дифракционного рентгеновского анализа (XRD) для исследуемых образцов

Номер	Результаты XRD
ооразца	
1	Кварц, мусковит, клинохлор, альбит (упорядо- ченный), пирофиллит
2	Кварц, альбит, мусковит, клинохлор
3	Кварц, альбит (кальциан), мусковит
4	Кварц, кальцит, каолинит, андрадит, мусковит, анортит (упорядоченный)
5	Кварц, гроссуляр, мусковит, каолинит, альбит (кальциан)
6	Кварц, мусковит, ставролит, альбит (кальциан), клинохлор
7	Кварц, клинохлор, мусковит, альбит (кальциан), гроссуляр
8	Кварц, ставролит, мусковит, альбит
9	Кварц, клинохлор, анортит, мусковит, альбит
10	Кварц, альбит, мусковит
11	Галит, кварц, магнезиорибекит, альбит, муско-
	вит, томсонит, клинохлор
12	Кварц, альбит, мусковит, шамозит
13	Кварц, ставролит, мусковит, клинохлор
14	Кварц, клинохлор, мусковит
15	Кварц, мусковит, флогопит, клинохлор
16	Кварц, мусковит, авгит, ставролит, анортит
17	Кварц, мусковит, бассанит, ставролит, гипс, альбит
18	Кварц, мусковит, клинохлор, альбит
19	Кварц, кианит, ставролит, парагонит, мусковит

Рис. 1. Типичный XRD-спектр образца, взятого на месторождении (образец № 19 в табл. 1)

Рис. 2. Оптическая структура (хрl-трансмиссия) прозрачных шлифов образцов: *a* — ориентированные минералы, такие как кварц, биотит и мусковит; *б* — графит в силлиманите — хиастолит; *в* — преобразование андалузита в силлиманит (все шлифы изучены в XPl-свете)

Большинство силлиманитовых минералов содержат органические включения в форме регулярных крестообразных символов (regular croix symbol) (хиастолит). Андалузит превращался в силлиманит вследствие прогрессирующего метаморфизма (см. рис. 2). Согласно результатам XRF-анализа (табл. 2), содержание Al₂O₃ незначительно, однако содержание оксида железа и SiO₂ существенно. Поэтому перед муллитизацией необходимо обогащение руды. Минералы группы андалузита с размером частиц менее 355 мкм достигали подходящей степени свободы 82 %. Соответствующие результаты представлены в табл. 3, микроструктура показана на рис. 3.

Изучение обогащения минерального сырья

XRF-анализ исходного сырья для исследований по обогащению дал следующие результаты, %: SiO₂ 52,09, Al₂O₃ 27,35, Fe₂O₃ 6,65, CaO 1,15, Na₂O 1,71, K₂O 2,47, MgO 1,16, TiO₂ 0,81, MnO 0,06, P₂O₅ 0,37, SO₃ отсутствует, $\Delta m_{прк}$ 5,73.

Гравитационное разделение

Основываясь на содержании Al_2O_3 в концентрате, полученном с помощью вибрационного сто-

Таблица 2. Рез у	ультать	ы рентг	енофлу	оресце	ентного	анализ	a (XRF)	образ	цов, %			
Номер образца	SiO_2	Al ₂ O ₃	Na ₂ O	MgO	K ₂ O	TiO ₂	MnO	CaO	P ₂ O ₅	Fe ₂ O ₃	SO_3	$\Delta m_{ m пpk}$
1	63,99	20,13	0,98	1,33	4,52	0,74	0,03	0,61	0,06	4,02	0,00	3,48
2	62,68	16,63	1,08	1,59	4,35	0,88	0,03	0,62	0,07	5,10	0,00	3,82
3	74,91	10,61	1,63	1,35	1,92	0,40	0,05	1,94	0,08	3,72	0,03	3,27
4	55,29	20,29	0,94	1,37	2,52	0,86	0,08	4,72	0,12	7,08	0,00	6,59
5	61,90	18,29	1,24	1,36	3,32	0,93	0,06	0,96	0,13	6,62	0,02	4,84
6	61,24	19,92	1,65	2,32	2,33	0,86	0,11	0,91	0,16	6,81	0,02	3,49
7	65,76	16,91	1,06	1,78	3,21	0,93	0,08	0,31	0,12	6,30	0,00	3,44
8	63,46	18,07	1,64	1,95	2,46	0,79	0,12	0,82	0,15	6,67	0,04	3,55
9	61,86	19,57	1,10	1,90	3,07	0,92	0,11	0,93	0,17	6,96	0,00	3,28
10	63,13	13,36	1,41	2,49	3,50	0,90	0,15	0,65	0,20	7,99	0,00	3,09
11	29,80	5,02	10,89	1,94	1,29	0,29	_	3,78	0,09	3,18	7,18	22,82
12	85,71	6,58	1,97	0,68	0,93	0,27	0,02	0,59	0,06	1,90	0,03	1,13
13	63,44	19,76	0,77	1,10	2,66	0,91	0,10	0,33	0,09	7,04	0,01	4,61
14	62,99	17,55	1,49	2,32	3,00	0,82	0,15	0,98	0,21	7,56	0,04	2,72
15	61,59	18,78	0,92	1,81	4,00	0,89	0,12	0,81	0,32	7,62	0,01	2,95
16	64,77	17,45	0,66	1,68	3,06	0,75	0,11	0,65	0,24	6,86	0,03	3,62
17	54,74	12,23	0,77	1,43	2,56	0,72	0,14	5,79	0,21	6,50	4,56	10,04
18	53,76	20,45	1,64	1,55	4,23	0,83	0,13	2,20	0,17	7,27	0,84	6,29
19	46,60	37,03	1,36	1,24	2,64	0,27	0,04	0,87	0,09	6,45	0,52	2,42

Рис. 3. Микроструктура: *а* — «висячий замок» (padlock) биотита с силлиманитом во фракции 355–500 (ppl 100); *б* — полное выделение андалузита из других минералов во фракции 250–355 мкм; Ап — андалузит; В — биотит, S — силлиманит

ла, наклон 14° был выбран как оптимальный (табл. 4). Для испытаний с оптимальным наклоном 14°, но с различными частотами 50, 60 и 70 Гц была выбрана частота 50 Гц (табл. 5). Полученный концентрат содержит 42,91 % Al₂O₃ с извлечением 39,3 %.

Таблица 3. Степень выделения (в свободном состоянии) кианита для различных фракций

	Размер ч	Howon	
Степень выделения, 70	МКМ	меш	помер
43	1400-2000	14-10	1
54	1000 - 1400	18-14	2
60	710-1000	25-18	3
70	500-710	35–25	4
75	355-500	45-35	5
82	250-355	60-45	6
95	180-250	80-60	7

Магнитная сепарация

Концентрат с вибрационного стола был обогащен с помощью высокоинтенсивной магнитной сепарации до 62,12 % Al₂O₃ (табл. 6). Концентрат, содержащий 52,55 % Al₂O₃, был получен из промежуточного продукта с использованием магнитного

Таблица 4. Результаты испытаний на вибрационном столе при различных наклонах поверхности для фракции 150-355 мкм

	Macco	эвая до	оля, %			Извлоноцию	VROCTLI	Проможитонний	Kouuourpar	Наклон
K ₂ O	Na ₂ O	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	Продукт	Al ₂ O ₃ , %	мас. %	продукт, мас. %	мас. %	град
1,45	1,21	8,4	32,9	49,2	Концентрат	47,19	42,5	21	36,5	6
1,71	1,4	6,32	22,9	54,1	Промежуточный продукт	18,9				
3,44	2,13	5,3	20,3	61,24	Хвосты	33,91				
1,22	1,23	7,35	36,1	47,44	Концентрат	44,66	40,7	25,2	34,1	10
1,8	1,54	6,85	30	52,5	Промежуточный продукт	27,43				
3,55	2,24	6,34	18,9	60,1	Хвосты	27,91				
1,17	1,05	7,53	40,5	42	Концентрат	34,92	51,2	25	23,8	14
1,76	1,5	7,18	33,14	49,1	Промежуточный продукт	30,02				
3,49	2,6	5,7	18,9	62,1	Хвосты	35,06				

	Macco	овая до	оля, %			Извлоночио	VROCTH	Промежутопный	Kouuoutnat	Частота
K ₂ O	Na ₂ O	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	Продукт	Al ₂ O ₃ , %	мас. %	продукт, мас. %	мас. %	Гц
1,32	1,24	7,43	42,91	39,25	Концентрат	39,3	56,7	18,1	25,2	50
1,89	1,44	7,15	34,51	45,87	Промежуточный продукт	22,7				
3,8	2,1	5,96	18,44	60,6	Хвосты	38				
1,51	1,35	7,24	36,9	45,15	Концентрат	27,48	47,55	30,3	22,15	60
1,91	1,5	7,16	31,51	48,87	Промежуточный продукт	31,58				
3,55	2,17	5,8	25,6	53,4	Хвосты	40,94				
1,8	1,37	6,7	33,57	48,11	Концентрат	32,13	39,79	30,31	29,9	70
2	1,48	7,24	32,4	49,9	Промежуточный продукт	31,44				
3,1	1,62	7,01	28,6	50,2	Хвосты	36,43				

Таблица 5. Результаты испытаний на вибрационном столе при различных частотах вибрации для фракции 150-355 мкм

сепаратора с бо́льшим углом наклона лопасти 80° (табл. 6, 7). При смешивании двух концентратов 62,12 % (первый концентрат) и 52,55 % Al_2O_3 (второй концентрат) был получен окончательный концентрат 57,28 % Al_2O_3 . Результаты по окончательному концентрату, полученному смешиванием первого и второго концентратов, %: Al_2O_3 57,28, SiO_2 36,19, Fe_2O_3 0,81, K_2O 0,87, Na_2O 0,66.

Флотация

Рентгенофлуоресцентный анализ (XRF) флотационного сырья (flotation feed) показывает следующие результаты, %: SiO₂ 46,88, Al₂O₃ 26,95, Fe₂O₃ 8,49, CaO 1,00, Na₂O 2,01, K₂O 1,43, MgO 1,5, TiO₂ 0,8, MnO 0,064, P₂O₅ 4,8, SO₃ отсутствует, $\Delta m_{прк}$ 5,59. XRF-анализом флотационных концентратов выяснено, что наиболее высокое содержание Al₂O₃ 46,3 % с извлечением 47,56 % соответствует условиям испытания № 3 в табл. 8 (коллектор: AERO825, AERO801 и FS-2 и pH = 2,7).

Таблица 6. Результаты испытаний методом магнитной сепарации концентратов с вибрационного стола*

	Массовая доля, % Извлече-						
Na ₂ O	K ₂ O	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	ние Al ₂ O ₃ , %	Mac. %	Продукт
0,44	0,79	0,51	32,1	62,12	26,56	20,53	Концентрат
1,1	1,19	5,52	37,1	49,61	62,41	60,4	Промежуточ- ный продукт
3,71	1,18	34,69	23,81	27,75	11,03	19,07	Хвосты
* Угол	п накл	юна л	опасти	и 70°,	сила тока	a 4,8 A.	

Таблица 7. Результаты испытаний методом магнитной сепарации промежуточного продукта испытаний исходной магнитной сепарации (второго концентрата)*

	Macc	овая до	оля, %		Извлече-		
Na ₂ O	K ₂ O	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	ние Al ₂ O ₃ , %	Mac. %	Продукт
0,87	0,95	1,1	40,19	52,55	23,52	21	Концентрат
1,4	1,3	3,51	40	48,59	67,53	65,2	Промежуточ- ный продукт
4,12	1,19	18,22	37,69	30,43	8,95	13,8	Хвосты
* Угол	т накл	юна л	опаст	и 80°,	сила тока	a 4,8 A.	

На основе результатов этого исследования предложена карта технологического процесса обогащения минерального сырья (рис. 4). На этой карте для каждого этапа представлен баланс массы, основанный на массе подаваемого сырья, извлечении и содержании Al₂O₃.

Исследования муллитизации

Концентрат после магнитного сепаратора содержал 52,28 % Al₂O₃, а концентрат после флотации — 46,3 % Al₂O₃, поэтому исходя из пропорций в исходном сырье с целью изготовления образца

Рис. 4. Предложенная технологическая карта обогащения андалузита Mishdowan

18

Номер	Konnowrop	лЦ	Н Продукт	Macca, %	Содержание, %					Извлечение
испытания	Konnektop	pm			Si_2O_2	Al ₂ O ₃	Fe ₂ O ₃	K ₂ O	Na ₂ O	Al ₂ O ₃ , %
1	AERO825 и	4,7	Концентрат	49	47,5	36,33	2,97	1,2	1,3	58,36
AERO801			Хвосты (пена)	51	50,85	24,9	9,72	1,55	2,65	41,64
2	FS-2	4,9	Концентрат	32	46,43	40,2	2	1,18	1,1	48,36
			Хвосты (пена)	68	50,88	20,2	15,26	1,65	3,05	51,64
3	AERO825 и	2,7	Концентрат	28,25	42,4	46,3	0,9	1,18	0,47	47,56
	AERO801 и FS-2		Хвосты (пена)	71,75	45,14	20,1	21,1	2,17	2,7	52,44

Таблица 8. Результаты флотационных испытаний фракции 75–150 мкм с использованием различных коллекторов и pH

для процесса муллитизации смешивали 450 г магнитного концентрата с 50 г флотационного концентрата. Рентгенофлуоресцентный анализ (XRF) образца концентрата, отобранного для мулитизации, дал следующие результаты, %: Al₂O₃ 56,18, SiO₂ 36,81, Fe₂O₃ 0,82, K₂O 0,90, Na₂O 0,64.

Рентгенограмма этого концентрата показана на рис. 5. Расчетным путем установлено, что концентрат содержит примерно 88 % кианита, связанного с небольшим количеством корундового заполнителя (~4 %) и 8 % мусковита как примеси. Уровень качества концентрата, выбранного в этой работе для муллитизации, был аналогичен качеству концентрата, использованного другими исследователями (табл. 9).

Во время процесса спекания вследствие химической реакции между SiO₂ и щелочными примесями образуется жидкая фаза, которая способствует уплотнению по механизму SPD (Solution – Precipitation – Diffusion — растворение – осаждение – диффузия). С другой стороны, термическое разложение кианита с образованием муллита приводит к объемному расширению, что снижает уплотнение. Как показано в табл. 10 и на рис. 6, кажущаяся плотность вначале с увеличением выдержки и повышением темпера-

Рис. 5. Рентгенограмма кианитового концентрата

Таблица 9. Состав образцов, полученный из различных ссылок

	Courres							
Na ₂ O	Na ₂ O K ₂ O Fe ₂ O ₃ SiO ₂ Al ₂ O ₃							
0,32	0,19	1,37	36,97	57,95	[6]			
0,24	0,14	0,4	38,87	59,2	[8]			
—	0,02	0,31	40,3	57,6	[9]			
0,14	0,25	0,48	37,10	60,65	[10]			

туры спекания растет до определенного уровня (1550 °C, 2,5 ч). В дальнейшем происходит снижение плотности вследствие пережога и избыточного количества образующейся жидкости. Для образца, обожженного при температуре выше 1550 °C при продолжительности выдержки больше 2,5 ч, наблюдали вспучивание (bloating) поверхностей и повышение пористости (см. рис. 6) вследствие вздутия стеклофазы. Динамика изменения уплотнения образцов с различным размером частиц, спеченных в изотермических условиях при 1550 °C, показывает, что уплотнение выше для частиц размером 38 мкм (см. табл. 10).

На рис. 7 суммируются результаты муллитизации кианитового концентрата 38 мкм в различных условиях. Показана динамика муллитизации в зависимости от продолжительности выдержки при различных температурах. При 1600 °С муллитиза-

Рис. 6. Влияние температуры спекания на кажущуюся плотность и пористость образцов

Таблица 10. Физические и механические свойства
образцов, спеченных в различных условиях

Темпе- ратура обжига, °С	Вы- держ- ка, ч	Размер частиц, мкм	Dth, %	<i>HV,</i> МПа	ΔT _c , °C
1400	1	<38	60	2800	250
1450	1	<38	75	3000	275
1500	1	<38	85	3480	298
1550	12	<38	92,593,7	42805690	300336
	2,53		9594,6	63006150	379361
1600	1	<38	88	6500	340
1650	2,5	38<75	9592	63005800	379350
		150<300	8985	50904300	365280

ция проходит очень быстро, и полная муллитизация достигается в течение первого часа выдержки. При 1550 °С полная муллитизация достигается только через 2 ч. При температуре ниже 1500 °С через 2,5 ч достигается степень муллитизации лишь ниже 75 %. Рентгенограмма подтверждает приведенные выше результаты (рис. 8, *a*-*в*).

На рис. 9 показано постепенное развитие муллитизации в зависимости от продолжительности выдержки при изотермической (1550 °C) обработке кианитовых концентратов с различным размером частиц. Кинетика муллитизации зависит от размера зерен кианитового концентрата: муллитизация протекает быстрее при размере частиц 38 мкм, чем при размере 150 мкм и муллитизация протекает медленнее при размере частиц 300 мкм, чем при размере 150 мкм. Рентгенограмма образца с размером частиц 300 мкм и условиями спекания 1550 °С / 2 ч показывает, что муллитизация не завершена, так как имеются пики силлиманита, в то время как для частиц размером 38 мкм при тех же условиях спекания муллитизация была закончена (см. рис. 8, в, г). Муллитизация всегда происходит быстрее для кианитового концентрата с меньшим размером частиц. Эффект размеров закономерен лишь при использовании частиц мельче 150 мкм. Это связано с более высокой удельной поверхностью частиц мельче 150 мкм.

После обжига при 1400 °С с выдержкой 2 ч в образце видны крупные кристаллы муллита с высоким отношением сторон (игольчатой формы), что соответствует росту первичного муллита в стекловидной матрице (рис. 10, *a*). При более высокой температуре и более длительной выдержке (1600 °С / 2,5 ч) более мелкие кристаллы вторичного муллита зарождались в промежуточной жидкости при растворении глинозема (рис. 10, *б*).

Кроме того, при этой температуре остаточный корунд обнаруживался методом рентгеновской дифракции (XRD) в существенно меньших размерах (см. рис. 8, а-в). Наличие корунда в исходном кианитовом концентрате (см. рис. 5) снижает количество силикатной фазы вследствие образования муллита. После обжига при 1550 °C / 2,5 ч структура зерна выглядела как смесь равноосного кристалла вторичного муллита и игольчатого кристалла первичного муллита с высоким соотношением сторон (рис. 10, в). Черные пустоты на микрофотографии рис. 9, а, б связаны с растворением силикатной фазы в HF во время химического вышелачивания. Муллитизированный образец демонстрирует типичные характеристики композитных материалов (муллит - стекло). Наличие жидкой фазы приводит к залечиванию начальных трещин в зернах андалузита в процессе муллитизации, затем появляется композит муллит стекло без трещин. Микротрещины отклоняются (изменяются) и задерживаются в стеклозонах. Такие результаты открывают новые возможности для развития огнеупоров с оптимизированной

Рис. 7. Результаты муллитизации кианитового концентрата с размером частиц 38 мкм в зависимости от продолжительности выдержки при различных температурах

Рис. 8. Рентгенограмма образца, спеченного при различных температурах, продолжительности выдержки 2 ч и размере частиц 38 мкм: *а* — 1400 °C; *б* — 1500 °C; *в* — 1550 °C; *г* — 1550 °C, 300 мкм; М — муллит; S — силлиманит; С — корунд

Рис. 9. Развитие муллитизации в зависимости от продолжительности выдержки при изотермической (1550 °C) обработке кианитовых концентратов с различным размером частиц

20

микроструктурой при использовании кианитовых сырьевых материалов.

ЗАКЛЮЧЕНИЕ

Оптическая микроскопия и исследования методом рентгеновской дифракции (XRD) показали, что основными минералами, составляющими месторождение кианита Mishdovan, были следующие: кварц, мусковит, биотит, альбит, каолинит и минералы силлиманитовой группы (5–10 %).

Путем использования вибрационного стола при наклоне 14° и частоте 50 Гц удалось увеличить содержание Al_2O_3 с 27,35 до 42,9 % при извлечении 39,3 %.

Путем смешивания концентратов в магнитном сепараторе (магнитная сепарация концентрата вибрационного стола и промежуточного) был получен концентрат, содержащий 58 % Al₂O₃, при извлечении 45 %.

При использовании метода флотации содержание Al₂O₃ увеличилось с 27,0 до 46,3 % и извлечение достигло 47,56 %.

Полная муллитизация и самое высокое уплотнение имеют место при 1550 °С / 2,5 ч, и только частицы мельче 150 мкм испытывают влияние размера частиц на скорость муллитизации.

Библиографический список

1. Exploitation studies of Mishdowan Kyanite deposits (bafgh-yazd). — Iranian Mineral Research and Application Centre, Tehran, Iran. — 2002.

2. **Shockelford, J. F.** Ceramic and glass materials: structure, properties and processing / *J. F. Shockelford, R. H. Doremus* : Springer, 2008.

3. *Schneider, S. J.* Ceramics and glasses / *S. J. Schneider* : ASM International, 2000.

4. *Ildefonse, J. P.* Mullitization of andalusite in refractory bricks / *J. P. Ildefonse //* Key Engineering Materials. — 1997. — Vols. 132–136. — P. 1798–1801.

5. **Bouchetou**, *M.-L.* Mullite grown from fired andalusite grains: the role of impurities and of the high temperature liquid phase on the kinetics of mullitization and consequences on thermal shocks resistance / *M.-L. Bouchetou* // Ceramics International. — 2005. — Vol. 31, № 7. — P. 999–1005.

6. **Tripathi**, **H. S.** Effect of chemical composition on sintering and properties of Al_2O_3 -SiO₂ system derived from silimanite beach sand / *H. S. Tripathi*, *J. Banerjee* // Ceramic International. — 1999. — Vol. 25. — P. 19–25.

7. *Lepezin, G. G.* Prospects for organizing industrial production of Kyanite concentrates in the Urals / *G. G. Lepezin, V.A. Perepelitsyn, V. I. Pokusaev* // Refractories and industrial ceramics. — 1996. — Vol. 37, № 8. — P. 271.

8. *Fatama, D.* Removal of hematite from Bitlis-Hurmus kyanite for producing concentrates suitable for the refractory industry / *D. Fatama, H. Abakay* // Mineral Processing and Extractive Metallurgy. — 2005. — Vol. 114. — P. C47.

9. *Amanullah, S.* Beneficiation of Mica-Quartz-bearing Kyanite / *S. Amanullah, G. M. Rao, R. K. Satyana* // 9th Industrial Minerals International Congress, Sydney. — 1990. — № 271. — Р. 24.

10. **Bulut**, **G**. Flotation behavior of Bitlis kyanite ore / G. Bulut, C. Yurtsever // International Journal of Mineral Processing. — 2004. — Vol. 73. — P. 29–36.

Рис. 10. Микроструктура образца, спеченного при различных условиях обжига (сканирующий электронный микроскоп SEM): a - 1400 °C/2 ч; $\delta - 1600$ °C /2,5 ч; e - 1550 °C /2,5 ч

11. **Prabhakar, S.** Beneficiation of sillimanite by column flotation — a pilot scale study / *S. Prabhakar, R. Bhaskar, R. Subba* // International Journal of Mineral Processing. — 2006. — Vol. 81. — P. 159–165.

12. **Oelkers, E. H.** Experimental study of kyanite dissolution rates as a function of chemical affinity and solution composition / *E. H. Oelkers, S. Jacques //* Geochimica et Cosmochimica Acta. — 1999. — Vol. 63, № 6. — P. 785–797.

13. Joaquin, A. S. Mechanical activation of the decomposition and sintering of Kyanite / A. S. Joaquin, C. A. Ricardo, B. R. Heberto [et al.] // J. Amer. Ceram. Soc. -2002. - Vol. 85, \mathbb{N} 10. - P. 2425.

14. **Richard, C.** Nano-milling of the sillimanite mineral, kyanite, and its reaction with alumina to form mullite / *C. Richard* // J. Ceram. Proc. Res. — 2005. — Vol. 6, № 4. — P. 271–275.

15. **Takesshita**, M. Sintering and mullite formation from Kyanite-glass system / M. Takesshita, O. Matsuda, T. Watari [et al.] // J. Ceram. Soc. Japan. — 1993. — Vol. 101, № 11. — P. 1308–1312.

16. **Potter, M. J.** Materials review: Kyanite / *M. J. Potter* // Amer. Ceram. Soc. Bull. — 2001. — Vol. 80, № 8. — P. 77–79.

17. *Comodi, P.* High-Pressure behavior of kyanite: Compressibility and structural deformations / *P. Comodi, F. P. Zanazzi, S. Poli* [et al.] // American Mineralogist. — 1997. — Vol. 82. — P. 452–459.

18. **Sainz**, **M. A.** Microstructural evolution and growth of crystallite size of mullite during thermal transformation of kyanite / *M. A. Sainz*, *S. J. Bastida*, *A. Caballero* // J. Europ. Ceram. Soc. — 1997. — Vol. 17, № 11. — P. 1277–1284. 19. **Tomba**, **A.** Elongated mullite crystals obtained from high temperature transformation of sillimanite / *A. Tomba*, *M. A. Camerucci*, *G. Urretarizcaya* [et al.] // Ceramic International. — 1999. — Vol. 25. — P. 245–252. 20. **Tripathi**, **H. S.** Synthesis and mechanical properties of mullite from beach sand silimanite: Effect of TiO₂ / *H. S. Tripathi*, *J. Banerjee* // J. Europ. Ceram. Soc. — 1998. — Vol. 18. — P. 2081–2087. ■

Получено 14.05.14 © А. Намираниан, М. Калантар, 2014 г. Пер. — **И. Г. Очагова** (ОАО «Черметинформация»)