Д. т. н. **У. Ш. Шаяхметов,** к. т. н. **А. Р. Мурзакова** 🖂

ФГБОУ ВПО «Башкирский государственный университет», г. Уфа, Республика Башкортостан

УДК 666.762.1.017:620.173.25

ВЫСОКОТЕМПЕРАТУРНАЯ ДЕФОРМАЦИЯ И ПОЛЗУЧЕСТЬ НАНОСТРУКТУРИРОВАННОЙ КОМПОЗИЦИОННОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ

Экспериментально исследована высокотемпературная деформация и ползучесть наноструктурированной композиционной керамики на основе оксида алюминия. Разработаны керамические композиционные составы на основе оксида алюминия и неорганического связующего и изучены физико-химические закономерности высокотемпературных процессов при их формировании. Результаты исследования позволяют прогнозировать поведение керамики в службе и оптимизировать технологию изготовления керамических материалов с заданными свойствами.

Ключевые слова: наноструктурированная композиционная керамика, неорганическое связующее, оксид алюминия.

Керамические материалы широко применяются в различных отраслях техники, часто в экстремальных условиях при воздействии термических, механических и других видов нагрузок. При разработке керамических материалов необходимо соблюдать взаимосвязь конструкция – условия эксплуатации – материал. Для керамики особое практическое значение имеет определение прочностных показателей в широком интервале температур. Для определения областей техники, в которых целесообразно использовать керамические композиционные материалы, необходимо изучение деформационных свойств материалов в режиме ползучести и механизмы ползучести при высоких температурах.

Деформируемость относится к процессам, характеризующим поведение материала при приложении внешней механической нагрузки в течение длительного времени. Деформацию и время до разрушения обычно называют долговечностью или длительной прочностью. Фактически ползучесть и долговечность являются показателями, характеризующими поведение материала под нагрузкой вплоть до разрушения в стационарных условиях высоких температур [1]. Определение ползучести и долговечности керамических материалов позволяет прогнозировать поведение материалов в условиях службы.

> ⊠ А. Р. Мурзакова E-mail: mursalina@bk.ru

Наноразмерные структуры, возникающие непосредственно на поверхности твердой фазы, а также в прилегающем слое жидкой фазы, являются определяющими для свойств получаемого материала. Их изучение позволит создавать новые технологии и новые материалы с более высоким уровнем физико-технических свойств. Процессы нанотехнологии перспективны для получения безобжиговых нанокомпозитов. Известно, что повышенные температуры ускоряют диффузионный массоперенос и агрегацию, что приводит к росту наночастиц за пределы наноразмеров. При низких температурах сохранение наноразмеров облегчается. В то же время известно, что наночастицы оказывают сильное влияние на всю систему, т. е. на весь материал, и придают ему новые свойства. Это открывает пути к получению новых нанокомпозитов. Особенность структуры нанокомпозитов заключается в том, что в отличие от традиционной керамики наночастицы обеспечивают спекание и образование прочной структуры в композитах при низких температурах.

Наноструктуры определяют свойства фосфатных материалов, которые известны и широко применяются. В то же время применение новых методов исследования наносистем позволит разрабатывать новые композиты с заданными свойствами. В настоящее время осуществляется изготовление керамических композитов и изделий на неорганических связующих. Изделия малоэнергоемки, технология их безотходна, они находят применение взамен спеченной керамики.

Разработаны безобжиговые композиционные материалы (КМ) на основе оксида алюминия и фосфатных связующих (ФС), которые имеют полимерное строение. Твердение этих материалов обеспечивается коллоидными системами (наносистемами).

Модельные эксперименты по изучению ползучести проведены на составах системы тонкомолотый α -Al₂O₃ – H₃PO₄ с удельной поверхностью порошка 2,1 м²/г в зависимости от напряжения от 0,04 до 3,2 МПа, температуры испытания и температуры предварительной обработки образцов для определения особенностей и закономерностей ползучести КМ на ФС. Изучено также влияние на ползучесть дисперсности порошка α -Al₂O₃, вида и содержания фосфатного связующего. Исследования выполнены на образцах диаметром 20 и высотой 30 мм при использовании трехпозиционной установки, диаметром 36 и высотой 50 или 76 мм при использовании однопозиционной установки.

Изучение ползучести проводили на воздухе в интервале 900-1550 °С через каждые 50 °С. Основные испытания проводили при 28-ч изотермической выдержке под нагрузкой, из которой от 6 до 10 ч приходилось на период неустановившейся ползучести. Для расчета скорости ползучести в установившийся период є́ использовали данные деформации под нагрузкой за 16-ч период выдержки, т. е. в процессе изотермической выдержки от 12 до 28 ч. Продолжительность отдельных испытаний доходила до 160 ч. В некоторых случаях испытания на ползучесть проводили в течение 12-16 ч.

Первоначально определяли температуру начала деформации под стандартной нагрузкой 0,2 МПа. Модельный состав имел деформацию 0,6 % при 1285 °C (начало размягчения) и 4 % при 1345 °C. Исходя из этих данных, был выбран температурный интервал испытаний на ползучесть от 900 до 1550 °C.

Результаты изучения деформации при нагреве под нагрузкой со скоростью 4 град/мин и в режиме ползучести при выбранных температурах, а также некоторые характеристики композиции до и после испытаний на ползучесть приведены в таблице. При нагреве до 1050 °С под нагрузкой от 0,2 до 0,8 МПа деформация не наблюдается, но ползучесть в изотермических условиях происходит начиная с 900 °С. При повышении температуры до 1100 °С деформация до начала установившейся ползучести увеличивается при всех нагрузках, особенно значительно при нагрузке 0,8 МПа. При 1150 °С и нагрузках 0,4 и 0,8 МПа деформация увеличивается в 10-15 раз по сравнению с деформацией при 1100 °C. Рост деформации наблюдается до 1250 °С. Затем до 1400 °С она остается примерно постоянной. В интервале 1400-1550 °С ∆є₁ возрастает монотонно и незначительно.

Кинетические кривые деформации при температурах 1100, 1150, 1250 °С и нагрузках 0,2, 0,4 и 0,8 МПа представлены на рис. 1. При 1100 °С и нагрузке 0,8 МПа (см. рис. 1, a, кривая 3) в течение первых 12 ч изотермической выдержки деформация незначительна, при дальнейшей выдержке происходит резкое увеличение деформации в неустановившемся режиме ползучести, что свидетельствует о смене механизма деформирования. По-видимому, в начальный период деформации определяющую роль играет диффузионно-вязкое течение, а через 12 ч активизируется механизм проскальзывания зерен, значительно увеличивающий скорость деформации. При более высоких температурах (см. рис. 1, б, в) механизм проскальзывания является основным в области температур 1150–1250 °С.

Действие механизма проскальзывания обусловлено наличием в составе композиции фосфатов алюминия в форме Al(PO₃)₃, которые взаимодействуют с Al₂O₃ при температурах выше 900 °C. Температура плавления эвтектики между Al(PO₃)₃ и AlPO₄ 1212 °C [2]. Скорость разложения Al(PO₃)₃ до 1200 °C мала. Например, потеря массы за 1 ч в результате реакции

Рис. 1. Деформация композиции α-Al₂O₃-H₃PO₄ (T : Ж = = 2 : 1) при температурах, °C: 1100 (*a*), 1150 (*б*), 1250 (*в*) и под нагрузками, указанными на кривых, МПа

Условия испытания		Характеристики деформации			Характеристики после испытаний на ползучесть		
температура, °С	нагрузка, МПа	Δε1, %	Δε2, %	દં, %/પ	П _{отк} , %	ρ _{каж} , г/см ³	W, %
900	0,2	0,120	0,015	0,00094	34,0	1,69	20,2
900	0,4	0,140	0,035	0,00220	34,1	1,68	20,2
900	0,8	0,200	0,055	0,00344	34,8	1,66	20,0
1000	0,2	0,125	0,025	0,00156	34,9	1,66	20,1
1000	0,4	0,145	0,065	0,00406	34,4	1,68	20,4
1000	0,8	0,250	0,075	0,00470	33,7	1,68	19,9
1050	0,2	0,170	0,030	0,00188	35,0	1,66	20,9
1050	0,4	0,200	0,070	0,00438	34,8	1,67	20,9
1050	0,8	0,280	0,087	0,00544	34,4	1,67	21,1
1100	0,2	0,170	0,121	0,0075	32,8	1,69	19,3
1100	0,4	0,340	0,801	0,0500	33,5	1,73	19,3
1100	0,8	0,750	7,880	0,4925	30,8	1,83	16,8
1150	0,2	0,332	1,760	0,1100	28,8	1,86	15,5
1150	0,4	5,372	3,091	0,1940	30,2	1,89	15,9
1150	0,8	11,000	4,161	0,2609	27,1	1,97	13,7
1200	0,2	4,949	1,350	0,0844	30,0	1,86	16,1
1200	0,4	11,300	1,005	0,0625	28,9	1,95	14,8
1200	0,8	14,211	0,800	0,0500	13,6	2,71	14,9
1250	0,2	6,609	0,930	0,0581	29,5	1,90	15,4
1250	0,4	13,321	0,660	0,0412	27,6	2,07	13,3
1250	0,8	20,130	0,870	0,0544	21,7	2,13	10,1
1300	0,2	7,961	0,288	0,0181	28,5	1,92	14,8
1300	0,4	14,681	0,576	0,0362	25,5	2,01	12,6
1300	0,8	21,310	0,624	0,0390	21,5	2,14	13,0
1350	0,2	8,105	0,432	0,0270	31,1	2,02	15,4
1350	0,4	14,981	0,432	0,0271	28,6	2,09	13,6
1350	0,8	21,115	1,072	0,0670	24,3	2,20	11,0
1400	0,2	8,105	0,299	0,0187	31,7	2,01	15,7
1400	0,4	16,111	0,464	0,0290	27,8	2,13	13,0
1400	0,8	21,350	0,690	0,0430	23,1	2,26	10,2
1450	0,2	8,205	0,096	0,0060	30,9	2,00	15,3
1450	0,4	16,250	0,295	0,0187	26,8	2,13	12,5
1450	0,8	23,515	0,585	0,0380	23,4	2,26	10,3
1500	0,2	8,300	0,229	0,0143	30,0	2,02	14,1
1500	0,4	16,700	0,304	0,0190	22,9	2,78	10,8
1500	0,8	26,415	0,688	0,0430	18,0	2,90	7,9
1550	0,2	8,700	0,608	0,0380	26,5	2,10	14,0
1550	0,4	17,300	0,864	0,0540	20,0	2,80	10,0
1550	0,8	26,700	1,216	0,0761	17,9	2,94	7,9

Характеристики деформации под нагрузкой композиции α-Al₂O₃-H₃PO₄ (T : Ж = 2 : 1) и некоторые ее свойства после испытаний на ползучесть*

* Образцы до испытания на ползучесть, подвергнутые предварительной термообработке при 300 °C: открытая пористость Π_{отк} = 34,4 %, кажущаяся плотность ρ_{каж} = 1,68 г/см³, водопоглощение W = 20,5 %, предел прочности при сжатии σ_{сж} = 29,7 МПа; Δε₁ — относительное изменение высоты образцов в процессе нагрева под нагрузкой до температуры испытаний и в течение первых 12 ч изотермической выдержки, т. е. за период неустановившейся ползучести; Δε₂ — относительное изменение размеров образцов в период установившейся ползучести (после 12 ч от начала изотермической выдержки до 28 ч), έ — ползучесть за 16 ч в установившемся режиме. $Al(PO_3)_3 = AlPO_4 + P_2O_5^{\uparrow}$

составляет 0,35 % при 1000 °C, 0,7 % при 1100 и 1,2 % при 1200 °C [3].

Выделяющийся P_2O_5 интенсивно взаимодействует с Al_2O_3 , образуя $AlPO_4$, который медленно кристаллизуется в течение нескольких часов (не менее 10 ч) при температурах его образования. При непрерывном нагреве со скоростью 2–4 град/мин и выдержке в течение 1 ч через каждые 100 °С рентгенографически $AlPO_4$ обнаруживается при температурах, превышающих примерно на 200 °С температуру его образования.

На термограммах изменение массы в области 1000-1400 °С не обнаружено. При протекании химических реакций подвижность атомов и дефектов увеличена [4]. Образование аморфных фаз снижает эффективную вязкость и когезионную прочность межзеренной фазы при 1100-1300 °С, что обусловливает активизацию механизма проскальзывания при сравнительно небольших напряжениях и резкий рост ползучести в этом интервале.

Следует отметить, что в композиции α-Al₂O₃ - H₃PO₄ (T : Ж = 2 : 1), как показывают расчеты, после полного удаления воды (к 800 °C) содержание фосфатов алюминия составляет 28,7 % по реакции

 $Al_2O_3 + 6H_3PO_4 = 2[Al(PO_3)_3] + 9H_2O^{\uparrow}$

и около 40 % по реакции

 $Al_2O_3 + 2H_3PO_4 = 2AlPO_4 + 3H_2O\uparrow.$

Поскольку, по данным рентгенофазового, ИК-спектрального и бумажно-хроматографического анализов, при 800-1000 °С в композиции содержатся орто- и метафосфатанионы, можно считать, что содержание фосфатов колеблется от 28,7 до 40 %.

Следовательно, в рассматриваемой композиции α-Al₂O₃ – H₃PO₄ состав и свойства фосфатов алюминия существенно влияют на деформационные процессы, в том числе на высокотемпературную ползучесть композиции.

Анализ кривых деформации (см. рис. 1) свидетельствует, что при нагреве до 1100 °С и изотермической выдержке в течение 12 ч степень взаимодействия Al(PO₃)₃ с Al₂O₃ недостаточна, чтобы повлиять на скорость деформации. При 1100 °С и нагрузке 0,8 МПа после 12 ч выдержки начинается рост скорости деформации, а при 0,4 МПа заметное увеличение деформации наблюдается после 16 ч выдержки. При нагрузке 0,2 МПа действие этого механизма не проявляется до 28 ч выдержки. Повышение температуры нагрева и изотермической выдержки всего на 50° (см. рис. 1, δ) обусловливает начало проявления этого механизма уже при меньшей продолжительности изотермической выдержки. Например, при нагрузке 0,4 МПа (см. рис. 1, б, кривая 2) — через 4 ч выдержки. При изотермической выдержке до 22 ч проскальзывание зерен происходит при нагрузке 0,2 МПа. Результаты испытаний при 1250 °С показывают (см. рис. 1, в), что механизм проскальзывания при всех нагрузках является основным с начала изотермической выдержки.

Из кривых деформации при нагреве до 1300 °С под нагрузкой и в режиме ползучести следует (рис. 2), что процессы уплотнения в композиции α -Al₂O₃ – H₃PO₄ (T : Ж = 2 : 1) протекают интенсивно (см. рис. 2, кривая 5), обусловливая ее усадку, а приложенные нагрузки вызывают значительные деформации в режиме неустановившейся ползучести. При нагрузке 1,2 МПа (см. рис. 2, кривая 4) механизм проскальзывания начинает действовать при 1050 °С и в течение 16 ч изотермической выдержки деформация составляет 32 %. Высота образцов уменьшается с первоначального (30 мм) до 20,2 мм, диаметр — с 20 до 19 мм. Следовательно, в этом случае механизм проскальзывания зерен, имеющий превалирующее значение в процессе неустановившейся деформации и стремящийся увеличить диаметр образца, придать образцу бочкообразную форму, сменяется механизмом диффузионно-вязкого течения в режиме установившейся ползучести (при выдержках более 12 ч).

Рис. 2. Деформация композиции α -Al₂O₃ – H₃PO₄ (T : \mathcal{K} = 2 : 1) при нагреве и ползучести (1300 °C) под нагрузками, указанными на кривых, МПа

Экспериментальные исследования и расчетные значения параметров позволили установить две температурные области деформации, различающиеся характером закономерностей ползучести в зависимости от первичной температуры обработки фосфатных композиций. Первая область деформации характерна для композиций с неустойчивыми структурой и фазовым составом, когда их термообработка произведена при температурах от 300 до 800 °C. Вторая область деформации характерна для композиций со сравнительно стабильными структурой и фазовым составом. подвергнутых первичной термообработке при температурах выше 1000 °С. Это обусловливает характер закономерностей ползучести, приближающийся к закономерностям для керамики.

Эксперименты по изучению высокотемпературной деформации и ползучести наноструктурированной композиционной керамики на основе оксида алюминия были проведены с целью прогнозирования поведения ее в службе и для оптимизации технологии изготовления материалов с заданными свойствами. Разработаны наноструктурированные керамические композиционные составы на основе оксида алюминия и фосфатного связующего, из которых изготовлены огнеупорные изделия: керамические спираледержатели для нагревательных элементов, температура службы которых до 1900 °C (рис. 3), огнеупорные поризованные плиты (рис. 4), горелочные камни (рис. 5). По физико-техническим показателям данные изделия не уступают импортным аналогам.

Библиографический список

1. Шаяхметов, У. Ш. Деформация и ползучесть керамических материалов : учеб. пособие / У. Ш. Шаяхметов, В. С. Бакунов, А. Р. Мурзакова [и др.]. — Уфа : РИЦ БашГУ, 2013. — 82 с.

2. **Торопов, Н. А.** Диаграммы состояния силикатных систем : справочник / *Н. А. Торопов, В. П. Барза-ковский, В. В. Лапин* [и др.]. — Л. : Наука, 1969. — Вып. 1. — 372 с.

3. **Бакунов, В. С.** Влияние точечных дефектов на ползучесть керамики / В. С. Бакунов, А. В. Беляков // Огнеупоры и техническая керамика. — 1999. — № 5. — С. 11-20.

Рис. 3. Спираледержатель

Рис. 4. Поризованные плиты

Рис. 5. Горелочные камни

4. Шаяхметов, У. Ш. Технология изготовления и деформация под нагрузкой безобжиговых керамических композиций / У. Ш. Шаяхметов, Р. А. Амиров, Ф. Ш. Исхаков [и др.] // Современное состояние теории и практики сверхпластичности материалов : тр. Межд. науч. конф. — Уфа : Гилем, 2000. — С. 333-339. ■

> Получено 18.03.14 © У. Ш. Шаяхметов, А. Р. Мурзакова, 2014 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

24

