Д. т. н. Е. И. Суздальцев (🖂), А. С. Ермолаев

ОАО «Обнинское научно-производственное предприятие «Технология», г. Обнинск Калужской обл., Россия

УДК 666.266.6

ИССЛЕДОВАНИЕ СПЕКАНИЯ ЗАГОТОВОК ИЗ ЗАКРИСТАЛЛИЗОВАННЫХ ОТЛИВОК, ПОЛУЧЕННЫХ ИЗ СЛИВОВ ЛИТИЙАЛЮМОСИЛИКАТНОГО СТЕКЛА ПОСЛЕ ФОРМОВАНИЯ

Приведены результаты исследований спекания заготовок из закристаллизованных отливок, полученных из сливов литийалюмосиликатного стекла после формования.

Ключевые слова: стеклокерамика, литийалюмосиликатное стекло (LAS-стекло), плотность, пористость, водопоглощение, рентгенофазовый анализ, микроструктура.

В настоящее время в ОНПП «Технология» используют керамические технологии получения изделий из стеклокерамики ОТМ-357 и ОТМ-357-О (основная фаза β-сподумен) [1–4]. В соответствии с этими технологиями изделия получают шликерным литьем в гипсовые формы. Шликер готовят из крупки исходного стекла (ОТМ-357) и боя предварительно обожженной крупки или отходов после обжига (ОТМ-357-О). При этом отходы сливов после формования не используют, хотя массовая доля литниковых сливов может достигать 15 % массы заготовки в зависимости от формы изделия.

Использование предварительно закристаллизованного литийалюмосиликатного (LAS) стекла позволяет сократить длительность термообработки с 70 до 24-30 ч за счет более высокой скорости нагрева. Но так как предварительную кристаллизацию LAS-стекла проводят при 1170-1250 °С в течение 4-8 ч, это требует дополнительного использования высокотемпературных печей обжига и увеличивает длительность обжига одного изделия до 10 ч. Авторы статьи [5] исследовали возможности снижения температуры предварительной кристаллизации исходного LAS-стекла для сокращения длительности термообработки. Кроме того, была показана возможность использования для изготовления заготовок LAS-стекла, предварительно закристаллизованного при 850-900 °C, что обеспечивает снижение уровня температур его термообработки с 1180–1250

до 850-900 °C. В результате этого появляется возможность проводить термообработку не в высокотемпературных печах обжига, а в низкотемпературных (до 1000 °C) с сокращением длительности термообработки в высокотемпературных печах.

Ранее были проведены более глубокие исследования процесса кристаллизации исходного LAS-стекла в интервале 850–900 °С. Результаты этих исследований показали, что образцы из LAS-стекла в этом интервале температур кристаллизуются в виде твердого раствора β-эвкриптита, окончательное формирование кристаллической структуры которого проис-

Рис. 1. Рентгенограммы образцов, термообработанных при 1225, 1250 и 1275 °С с выдержкой при конечных температурах от 0 до 5 ч: 1 — твердый раствор β -сподумена; 2 — рутил; 3 — алюмотитанат (a — с алюмотитанатом, δ — без алюмотитаната)

НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

Рис. 2. Относительная интенсивность основных пиков твердого раствора β-сподумена (*a*), рутила (*б*) и алюмотитаната (*в*) образцов, термообработанных при 1225, 1250 и 1275 °C с выдержкой τ при конечных температурах от 0 до 5 ч

ходит при 850–875 °C с выдержкой 1–3 ч. Поэтому оптимальным режимом предварительной кристаллизации LAS-стекла для окончательного формирования кристаллической структуры в виде твердого раствора β-эвкриптита и энергосбережения является термообработка при 850 °C с выдержкой на конечной температуре 2 ч.

Таким образом, цель настоящей работы исследование процесса спекания заготовок из закристаллизованных при 850 °С в течение 2 ч отливок, полученных из сливов LAS-стекла после формования. Исследования проводили на рентгеновском дифрактометре ДРОН-6 с помощью пакета программ PDWIN и на сканирующем электронном микроскопе EVO-40 XVP (СЭМ). Для определения керамических показателей (плотности, пористости, водопоглощения) были использованы стандартные методы, приборы и установки. В качестве образцов для рентгенофазового анализа (РФА), СЭМ и опре-

Рис. 3. Плотность, водопоглощение и пористость образцов, термообработанных при 1225 (1), 1250 (2) и 1275 °C (3) с выдержкой при конечных температурах от 0 до 5 ч

деления керамических показателей использовали заготовки, полученные шликерным литьем в гипсовые формы и термообработанные при 1225, 1250 и 1275 °C с выдержкой на конечных температурах от 0 до 5 ч. Шликер готовили из закристаллизованных при 850 °C в течение 2 ч отливок из сливов LAS-стекла после формования изделий. Режимы термообработки образцов при высоких температурах подбирались в соответствии с данными, приведенными в статье [5].

Результаты РФА (рис. 1) образцов показали, что в образцах, термообработанных при 1225, 1250 и 1275 °С с выдержкой на конечных температурах от 0 до 5 ч, основной кристаллической фазой являются твердые растворы β -сподумена; в этих образцах присутствуют также рутил и алюмотитанат.

Сравнение относительных интенсивностей основных пиков твердого раствора β-сподумена, рутила и алюмотитаната (отношение интенсивности основного пика к максимальной интенсивности основного пика кристаллической фазы) показало (рис. 2), что относительная интенсивность пика твердого раствора В-сподумена не изменяется в зависимости от режима термообработки. Содержание алюмотитаната уменьшается при повышении температуры и длительности обжига и он уже не наблюдается при 1250 °С с выдержкой на конечной температуре от 2 до 5 ч и при 1275 °C с выдержкой на конечной температуре 1 и 2 ч. Содержание рутила увеличивается при повышении температуры и длительности обжига и достигает своего максимального значения в образцах, термообработанных при 1250 °C с выдержкой на конечной температуре от 2 до 5 ч. Таким образом, можно сделать вывод, что образцы, термообработанные при 1250 °С с выдержкой на конечной температуре от 2 до 5 ч, имеют стабильный фазовый состав в виде твер-

дого раствора β-сподумена и рутила. Результаты определения плотности, пористости и водопоглощения образцов показали (рис. 3), что плотность образцов увеличивается при росте температуры термообработки с 1225 до 1275 °С и длительности выдержки от 0 до 5 ч. Плотность достигает значения (2,478 ± 0,002) г/см³ при 1250 °С и (2,497 ± 0,002) г/см³ при 1275 °С. Пористость и водопоглощение образцов уменьшаются при росте температуры термообработки с 1225 до 1275 °С и длительности выдержки от 0 до 5 ч и стремятся к нулю.

Результаты исследования микроструктуры образцов показали (рис. 4), что они состоят из игольчатых, призматических и блочных кристаллов и равномерно распределенных пор. При повышении температуры термообработки с 1225 до 1275 °С и длительности выдержки от 0 до 5 ч количество и размеры пор заметно сокращаются и формируется блочная кристаллическая структура с четкими игольчатыми и призматическими кристаллами. При этом в образцах, термообработанных при 1275 °C с выдержкой от 0 до 2 ч, наблюдаются особенности (неоднородности) микроструктуры в виде сферических частиц (см. рис. 4, ж). Причина формирования этих сферических частиц и их влияние на свойства материала требуют более глубоких исследований.

Проведенные исследования процесса спекания термообработанных при 1225, 1250 и 1275 °C с выдержкой на конечных температурах от 0 до 5 ч заготовок из закристаллизованных при 850 °C в течение 2 ч отливок, полученных из сливов LAS-стекла после формования, показали, что:

Рис. 4. Микроструктура образцов, термообработанных при 1125 °С (*a*–*e*) без выдержки (*a*) и с выдержкой в течение 1, 2, 3 и 4 ч (*b*), 5 ч (*b*); при 1250 °С (*c*, *d*) без выдержки (*z*) и с выдержкой 1, 2, 3, 4 и 5 ч (*d*); при 1275 °С без выдержки и с выдержкой 1 и 2 ч (*e*); *ж* — особенности (неоднородности) микроструктуры образцов, термообработанных при 1275 °С (0,1 и 2 ч). Слева — ×2000 (*a*–*e*) и ×10000 (*ж*); справа — ×10000 (*a*–*e*) и ×30000 (*ж*)

 основной кристаллической фазой образцов являются твердые растворы β-сподумена с присутствием рутила и алюмотитаната;

образцы, термообработанные при 1250 °С с выдержкой на конечной температуре от 2 до

НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

5 ч, имеют стабильный фазовый состав в виде твердого раствора β-сподумена и рутила;

 микроструктура образцов состоит из игольчатых, призматических и блочных кристаллов и равномерно распределенных пор;

– образцы спекаются до плотности (2,478 \pm 0,002) г/см³ при 1250 °С и до (2,497 \pm 0,002) г/см³ при 1275 °С, нулевой пористости и нулевого водопоглощения.

Таким образом, оптимальным режимом спекания заготовок из закристаллизованных при 850 °C в течение 2 ч отливок, полученных из сливов LAS-стекла после формования, для

Библиографический список

1. **Пивинский, Ю. Е.** Кварцевая керамика и огнеупоры : справочное издание. В 2 т. Т. 2. Материалы, их свойства и области применения / Ю. Е. Пивинский, Е. И. Суздальцев ; под ред. Ю. Е. Пивинского. — М. : Теплоэнергетик, 2008. — 464 с.

2. Суздальцев, Е. И. Реотехнологические свойства водных суспензий на основе закристаллизованного литийалюмосиликатного стекла / Е. И. Суздальцев, Т. И. Рожкова, Т. В. Зайчук // Огнеупоры и техническая керамика. — 2003. — № 11. — С. 2–7.

3. **Суздальцев, Е. И.** Использование отходов при производстве стеклокерамики литийалюмосиликатного состава / Е. И. Суздальцев, Т. В. Зайчук, Т. И. Рожкова // Огнеупоры и техническая керамика. — 2003. — № 6. — С. 12–17.

4. Суздальцев, Е. И. Стеклокерамика с регулируемой ε на основе закристаллизованного литийалюмосиликатного стекла / Е. И. Суздальцев, Т. И. формирования стабильного фазового состава в виде твердого раствора β-сподумена и рутила, а также нулевой пористости и водопоглощения, является термообработка при 1250 °C с выдержкой на конечной температуре от 2 до 5 ч.

Полученные результаты свидетельствуют о необходимости более глубоких исследований этого материала в направлении определения уровня физико-технических свойств и возможности его применения для изготовления изделий радиотехнического назначения.

Рожкова, Т. В. Зайчук // Огнеупоры и техническая керамика. — 2004. — № 2. — С.16–19.

5. **Суздальцев, Е. И.** Исследование возможности снижения температуры предварительной кристаллизации литийалюмосиликатного стекла и его использования для изготовления изделий радиотехнического назначения / Е. И. Суздальцев, Д. В. Харитонов, А. С. Ермолаев // Новые огнеупоры. — 2013. — № 6. — С. 49–53.

Suzdal'tsev, E. I. Study of the Possibility of Reducing Preliminary Crystallization Temperature of Lithium Aluminosilicate Glass and its use for Preparing Components for Radio Engineering Purposes / *E. I. Suzdal'tsev, D. V. Kharitonov, A. S. Ermolaev //* Refractories and Industrial Ceramics. — 2013. — Vol. 54, № 3. — P. 238–242.

Получено 13.12.14 © Е.И.Суздальцев, А.С.Ермолаев, 2015 г.

