К. т. н. Г. М. Бутырин, к. т. н. А. К. Проценко, к. т. н. Г. Е. Мостовой

ОАО «НИИграфит», Москва, Россия

УДК 661.66

ИЗУЧЕНИЕ ПОРИСТОЙ СТРУКТУРЫ, ПРОНИЦАЕМОСТИ И ПРОЧНОСТИ МАТЕРИАЛА МАРОК УПА-3 И УПА-4

Представлены результаты исследования изменений показателей пористой структуры, газопроницаемости и механических свойств материалов УПА-3 и УПА-4 на основе трикотажных и тканевых наполнителей различной текстильной структуры из углеродных волокон (на основе окисленного полиакрилонитрила и вискозы) в зависимости от степени предварительного обжатия и длительности уплотнения пиролитическими углеродом и графитом.

Ключевые слова: пористая структура, плотность, пористость, поры-ловушки, транспортные поры, газопроницаемость, пределы прочности при сжатии, растяжении и изгибе, теплопроводность, уплотнение пиролитическими углеродом и графитом.

введение

иролитический армированный углерод марок УПА-3 и УПА-4 является углерод-углеродным композиционным материалом (УУКМ) на основе углеродного волокнистого армирующего наполнителя и комбинированной матрицы на основе пиролитических углерода (ПУ) и графита (ПГ). Материал характеризуется высокой жаропрочностью, стойкостью к воздействию термических напряжений при больших перепадах температур. Это обусловлено высокоориентированной кристаллической структурой ПГ, формирующейся в процессе его получения при осаждении углерода на каркас изделия из углеродных волокон в виде трикотажа, трикотажного полотна или тканей, предварительно связанных ПУ, и последующего уплотнения такого каркаса ПГ, что делает внеш-

Рис. 1. Изделия из материала УПА-3

ние поверхности изделия практически беспористыми [1, 2].

Изделия из такого материала, выполненные в виде тиглей диаметром 500 и высотой 900 мм, чаш, катодов диаметром 200 и высотой 900 мм, труб диаметром 210, длиной 950 и толщиной стенок 12 мм и пластин размерами 800×400×17 мм, используются для плавки различных металлов и сплавов, как агрессивных, так и особо чистых; для перекристаллизации оксидов элементов группы актиния в инертной среде при температурах до 2000 °С или на воздухе до 550 °С.

Благодаря низкому содержанию в материале примесных элементов (сумма Fe, Al, Mg, Mn, Si, B составляет $5,3\cdot10^{-2}$ %) с использованием таких изделий можно получить слитки высокой чистоты, так как непористая внешняя поверхность изделий затрудняет диффузию в них примесей и увеличивает срок службы при высоких температурах (рис. 1) [1–3].

При изготовлении материала УПА-З вначале из волокна марки Олилон (окисленное ПАНволокно) механическим вязанием на двухфонтурной рашель-машине марки HDR-8 фирмы «Karl Mayer» (Германия) создают полотно с сетчатой структурой переплетения — трико-цепочка с ячейками овальной формы. Полученное полотно раскраивают по лекалам на требуемые элементы, из которых сшивают основу будущего изделия, которую фиксируют на шаблоне из графита и затем помещают в электровакуумную печь (ЭВП) для насыщения ПУ для получения формоустойчивого каркаса будущего изделия с минимальной конструктивной прочностью для его последующего уплотнения ПГ.

Для получения материала УПА-4 в качестве армирующих элементов обычно используют углеродные ткани на основе вискозы (типа Урал-ТМ/4 [4] или ТГН-2М [5]), по лекалам их также раскраивают на нужные элементы и затем сшивают в пакеты заданной толщины швейной нитью Урал-НШ-24 [4]. После обжатия и фиксации пакета между перфорированными графитовыми плитами по аналогии с УПА-3 проводят пиролиз сетевого газа в ЭВП для получения углерод-углеродных плит требуемых размеров, плотности, пористости, теплофизических и механических свойств.

При необходимости создания изделий (деталей), например в форме тел вращения, из тканей или трикотажа по лекалам выкраивают элементы будущего изделия, сшивают их на графитовом шаблоне, повторяя эту операцию до набора заданной толщины изделия и заканчивая ее на том же шаблоне сшивкой всего пакета слоев ткани (трикотажа) углеродной швейной нитью. Затем в ЭВП проводят операции осаждения ПУ и ПГ, получая оболочку, содержащую средний слой трикотажа, уплотненного ПУ, а также наружный и внутренний слои из ПГ, характеризующиеся выраженной анизотропией физико-механических и теплофизических свойств.

Известно, что в таких изделиях по окончании их уплотнения ПУ и ПГ возникают внутренние напряжения, обусловленные анизотропией свойств ПГ-покрытия при его охлаждении от конечной температуры осаждения (1800–2000 °C) до комнатной.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

С целью набора статистики для всех поступавших на исследование образцов определяли кажущуюся ρ_{κ} и пикнометрическую ρ_{Π} плотности, открытую пористость $\Pi_{\text{отк}}$ методом гидростатического взвешивания в соответствии с методикой ГОСТ 2409. Предварительно, при метрологической аттестации методики применительно к графитам и другим углеродным материалам, было найдено, что абсолютная погрешность при определении ρ_{κ} и ρ_{Π} составляет ±0,007 и ±0,002 г/см³, а $\Pi_{\text{отк}}$ — ±0,3 % [6].

Измерения выполняли на большом количестве образцов (>200 шт.), используя в качестве замещающей среды изооктан эталонный (2,2,4-триметилпентан, C₈H₁₈; ГОСТ 12433) с низким поверхностным натяжением $\sigma = 18,77 \cdot 10^{-3}$ Н/м при 20 °С и известной температурной зависимостью его плотности с погрешностью ±0,00005 г/см³ [7], применяя вакуумное насыщение им исследуемых образцов. Для взвешиваний использовали электронные микровесы типа 2004МР6 фирмы «Sartorius» (Германия), позволявшие оценивать массу 10 и 100 г с точностью ±0,09 и ±0,2 мг. По степени воздействия на организм человека в соответствии с ГОСТ 12.1.007 изооктан относят к 4-му классу опасности — в противовес метиловому и этиловому спиртам. ПДК изооктана в воздухе рабочего помещения составляет 300 мг/м³.

Пористую структуру образцов материалов УПА-З и УПА-4 исследовали методом ртутной порометрии (МРП) [8-10]. При этом определяли удельный объем пор V и характер его распределения по размерам эквивалентных радиусов *R*_{экв} [8]; объемы пор-ловушек (поры бутылочной формы) V* и пор-капилляров, или транспортных пор, $\Delta V = V - V^*$ [9–11], а также размер максимально преобладающих в материале пор R_{\max} и величину удельной поверхности S_{vд} (модель цилиндрических пор). Объем пор-ловушек определяли по массе или объему оставшейся в образце ртути после сброса давления с конечного рабочего до атмосферного или взвешиванием извлеченного из дилатометра образца. Поры-ловушки и другие поры соединяются между собой и с внешней поверхностью образца с помощью пор-капилляров.

В работе использовали автоматический прибор «Auto Pore 9200» фирмы «Micromeritics» (США), для хранения и обработки информации снабженный ПК с соответствующим программным обеспечением. Заложенный в приборе емкостной метод определения объема проникшей в поры образца ртути под возрастающим давлением обеспечивает разрешающую способность ±1 % от объема капилляра дилатометра (в зарубежной литературе — пенетрометр) 0,38, 1,1 и 1,8 см³, а по давлению (расчет R_{3KB} [8]) ±10 % от шкалы вакуумметра 100–400 мкм рт. ст. и ±1 % от полной шкалы манометров низкого (0–0,21) и высокого (0–2,07, 2,07–27,6, 27,6–414 МПа) давлений прибора.

Образцы сечением 10×10 и длиной 20–30 мм материалов УПА-3 и УПА-4 для исследований вырезали из технологических припусков (ТП) натурных изделий или из опытных плит с различной степенью их предварительного обжатия $Z = 16\div10$ мм и продолжительностью процесса уплотнения ПУ (ПГ) $\tau = 360\div990$ ч.

Коэффициент газопроницаемости K_{Γ} при 20 °С, характеризующий сквозную (активную) пористость материалов, определяли методом «течения в вакуум» [12], используя метрологически аттестованную методику и установку [13] для измерения скорости повышения давления в предварительно вакуумированном сосуде известной вместимости, отделенном от атмосферы образцом исследуемого материала заданных размеров (диаметром 36 и высотой 4–16 мм). Погрешность определения для материалов с величиной $K_{\Gamma} \geq (12\pm 4) \cdot 10^{-5}$ см²/с; $K_{\Gamma} \approx 0,13$ составила ±0,08;

с $K_{\rm r} \approx 1.8 - \pm 0.1$ и с $K_{\rm r} \leq 13.3 - \pm 2$ см²/с. Промежуточные значения $K_{\rm r}$ определяли методом интерполяции. Относительная погрешность определения $K_{\rm r} \leq 12$ %.

Оценку механических свойств материалов — пределов прочности при растяжении σ_{pcr} , сжатии σ_{cx} , изгибе $\sigma_{изг}$, сдвиге $\sigma_{cдв}$ и срезе σ_{cp} выполняли на образцах размерами $10 \times 10 \times 20$ и $8 \times 8 \times 40$ мм, используя универсальные испытательные машины «Zwick-1474» фирмы «Zwick/Roell» (Германия) и «Instron» (Великобритания), с относительной погрешностью определения ±1 %.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Плотность, пористость и параметры пористой структуры для образцов материала УПА-4, вырезанных из ТП изделий или плит, с главной осью их

Рис. 2. Характер распределения V в области пуазейлевских пор с $R_{_{3 \text{KB}}} \ge 3,5$ мкм для образцов материала УПА-4 с разной степенью обжатия плит Z (a - 16; $\delta - 13$; e - 10 мм) и длительностью процесса τ их уплотнения (указана на кривых, ч): a, δ , e - образцы плит серий 2, 3 и 5 соответственно

Таблица 1. Характеристика пористой структуры образцов плит из материала УПА-4 с различной степенью обжатия и длительностью уплотнения пиролитическим углеродом

	τυ	Плотнос	сть, г/см ³	Открытая Объе		ъем пор, см	ьем пор, см ³ /г		- 2.
Образец	г, ч, ПУ	ρ_{κ}	ρπ	пористость, %	V	V^*	ΔV	R _{max} , мкм	S _{уд} , м²/г
Степень предварительного обжатия Z = 16 мм плит серии 2									
1	360	1,19	1,591	25,20	0,253	0,055	0,198	55,10	11,05
2	450	1,16	1,586	26,86	_	_	_	_	_
3	540	1,16	1,580	26,58	_	_	_	_	_
4	630	1,17	1,582	26,04	_	_	_	_	_
6	720	1,19	1,585	24,92	0,246	0,116	0,130	54,89	7,40
7	810	1,21	1,577	23,27	_	_	_	_	_
7	810	1,21	1,576	23,22	_	_	_	_	_
8	900	1,23	1,601	23,17	_	_	_	_	_
9	990	1,24	1,598	22,40	0,229	0,065	0,164	55,51	9,01
Среднее \overline{x}		1,20±0,03	1,586±0,009	24,63±1,66	0,243±0,012	0,079±0,033	0,164±0,034	55,17±0,32	9,15±1,83
Коэффициент вариации w, %		2,5	0,8	6,7	4,9	41,8	20,7	0,6	20,0
· · ·		Степень	предварит	ельного об	жатия Z =	13 мм плит	а серии З		
1	360	1,17	1,543	24,17	0,255	0,069	0,186	55,51	7,70
2	450	1,20	1,540	22,08	_	_	_	_	_
4	540	1,24	1,550	20,00	_	_	_	_	_
5	630	1,25	1,556	19,67	_	_	_	_	_
6	720	1,27	1,570	19,11	0,187	0,053	0,134	54,89	12,00
7	810	1,29	1,576	18,15	_	_	_	_	_
8	900	1,32	1,596	17,29	0,141	0,104	0,037	55,10	10,30
9	990	1,36	1,596	14,79	_	_	_	_	_
Среднее \overline{x}		1,26±0,06	1,566±0,022	19,41±2,87	0,194±0,057	0,075±0,057	0,119±0,076	55,17±0,32	10,00±2,17
Коэффициент вариации w, %		4,9	1,4	14,8	29,4	76,0	63,9	0,6	21,7
-		Степень	предварит	ельного об:	жатия Z =	10 мм плип	1 серии 5		
1	360	1,20	1,536	21,88	0,230	0,069	0,161	54,89	9,57
2	450	1,24	1,531	19,01	_	_	_	_	_
4	540	1,28	1,540	16,88	_	_	_	_	_
6	720	1,28	1,535	16,61	0,166	0,051	0,115	54,89	11,70
7	810	1,32	1,531	13,78	_	_	_	_	_
9	990	1,37	1,542	11,15	0,111	0,043	0,068	36,87	12,25
Среднее \overline{x}		1,28±0,06	1,536±0,005	16,55±3,78	0,169±0,060	0,054±0,013	0,115±0,047	48,88±10,40	11,17±1,42
Коэффициент вариации w, %		4,6	0,3	22,8	35,5	24,1	40,9	21,3	12,7

Рис. 3. Зависимость σ_{cm} от Π_{otk} для образцов материала УПА-4, вырезанных вдоль осевого (+) и окружного (0) направлений

симметрии (по длине образца), параллельной оси у (основе ткани), оси x (утку ткани) и по оси z перпендикулярно слоям ткани, т.е. толщине плиты, в зависимости от значений Z и т приведены в табл. 1.

Из анализа данных табл. 1 следует, что ввиду высокой стабильности величин ρ_{Π} (коэффициент вариации w равен 0,8, 1,4 и 0,3 % для плит с Z = 16, 13 и 10 мм соответственно) между ρ_{κ} и $\Pi_{\text{отк}}$ имеет место прямая связь для выборки n = 22образца, выражаемая уравнением $\Pi_{\text{отк}} = -65,29\rho_{\kappa} +$ + 101,68 с коэффициентом корреляции r = -0,97. Такая связь существует также между V и ρ_{κ} для образцов, исследованных МРП (n = 9), и описывается уравнением $V = -0,767\rho_{\kappa} + 1,159$ с r = -0,98.

Что касается объема транспортных пор ΔV , служащих путями доставки сетевого газа в объем пористой структуры плит для осаждения ПУ, то он уменьшается с ростом Z и т, и это существенно снижает эффективность процесса уплотнения, на что указывает медленное снижение пористости образцов плит серии 2: $\Pi_{\text{отк}}$ на ~2,8 %, V на 0,034 см³/г. Далее, с ростом Z и т $\Pi_{\text{отк}}$ снижается примерно на 9,4 % и V на 0,114 см³/г; $\Pi_{\text{отк}}$ на 10,7 % и V на 0,119 см³/г для образцов плит серий 3 и 5 соответственно, как это видно также на рис. 2. При этом имеет место уменьшение величин $\overline{\rho}_{\pi}$ (от 1,586 до 1,566 и 1,536 г/см³) из-за зарастания устьев пор-ловушек слоями отлагающегося на их

поверхности ПУ, которые вследствие этого превращаются в замкнутые поры [14], недоступные для метана, изооктана и ртути в нашем случае.

На рис. 2 показаны структурные кривые распределения V по размерам $R_{
m экв}$, покрывающие область только крупных (пуазейлевских по классификации [15, 16]) пор с $R_{
m экв} \ge 3,5$ мкм для образцов материала УПА-4, вырезанных из 3 партий плит с разной степенью обжатия Z и уплотненных ПУ в течение 360, 720 и 990 ч соответственно (см. табл. 1). При этом на область указанных пор приходится >90 % V в образцах из плит серии 2; от 74 до 84 % и от 80 до 90 % из плит серий 3 и 5.

Из характера кривых распределения V по размерам $R_{3 \text{кв}}$ (см. рис. 2, *а*) следует, что интенсивность процесса уплотнения плит ($\Pi_{\text{отк}}$ примерно 25 %) весьма незначительна: прироста плотности практически нет, снижение $\Pi_{\text{отк}}$ на 0,3 % и V на 0,07 см³/г было достигнуто за весьма длительный (630 ч) процесс уплотнения, который нельзя считать рентабельным.

Снижение толщины плит всего на 3 мм резко меняет характер процесса уплотнения. Так, за дополнительные 360 ч уплотнения ПУ (образцы 1–6 плит серии 3) V сокращается примерно на 0,07 см³/г, $\Pi_{\text{отк}}$ на 5 %, а $\Delta \rho_{\text{к}}$ при этом равен 0,1 г/см³ (см. рис. 2, б). Увеличение продолжительности уплотнения до 900 ч снижает V еще на ~0,05 см³/г, $\Pi_{\text{отк}}$ на 4,3 %, $\Delta \rho_{\text{к}}$ возрастает еще на 0,1 г/см³. Для более плотного материала (плиты серии 5) процесс идет более интенсивно, чем для плит серии 3, как это видно из характера кривых распределения V по размерам $R_{3кв}$ (см. рис. 2, в).

Кроме того, при анализе образцов другой партии (4 плиты) с разными значениями Z и т было найдено, что максимальной плотностью и минимальной пористостью отличались образцы материала, ось которых параллельна направлению оси y (осевое направление, количество образцов n = 39): $\bar{\rho}_{\rm K} = 1,39 \pm 0,03$ г/см³; $\Pi_{\rm отк} = 3,7 \pm 0,9$ %, а связь между $\Pi_{\rm отк}$ и $\rho_{\rm K}$ выражалась уравнением

$$\Pi_{\text{отк}} = -24,7\rho_{\text{K}} + 38,01, r = 0,88.$$

Для образцов, вырезанных параллельно оси *х* (окружное направление, *n* = 42) показатели хуже:

Таблица 2. Среднеарифметические величины плотности, пористости и предела прочности при сжатии образцов материала УПА-4

Направление	Плотно	ость, г/см ³	Открытая	Предел прочности	Число образцов <i>п</i>
вырезания образцов	$\overline{\rho}_{\kappa} \pm s (w, \%)$	$\overline{\rho}_{\pi} \pm s (w, \%)$	пористость П _{отк} ± s, % (w, %)	при сжатии $\overline{\sigma}_{\mathrm{cж}} \pm s,$ МПа (<i>w</i> , %)	
По оси у (осевое)	1,28±0,05 (4,2)	1,564±0,011 (0,7)	18,12±3,25 <i>(18)</i>	50,07±14,87 (29,7)	22
По оси х (окружное)	1,29±0,07 (5,2)	1,556±0,014 (0,9)	17,31±4,00 (23)	45,16±15,66 (34,7)	14

	Предел прочности, МПа						
Показатели	$\sigma_{c m}$	σ_{pct}	σ_{M3F}	$\sigma_{c {\rm ZB}}$	σ_{cp}		
	Материал УПА	-4 на основе тр	икотажа				
Направление вырезания образцов:							
осевое, у:	62,6±14,1	$18,9\pm 3,4$	52,7±19,9	$6,3\pm1,4$	8,8±2,9		
n	77	12	53	28	21		
w, %	2,5	18,0	37,8	22,2	33,0		
окружное, х:	55,6±11,1	$17,8\pm4,4$	40,4±10,8	$5,4\pm1,4$	8,3±1,5		
n	84	7	37	19	15		
w, %	20,0	24,7	26,7	25,9	18,1		
Анизотропия	1,13	1,06	1,30	1,18	1,06		
	Материал У	ПА-4 на основе	ткани				
Направление вырезания образцов:							
осевое, у:	80,7±77,7	57,2±24,0	51,6±35,3	_	_		
n	137	68	193	_	_		
w, %	96,3	42,0	68,4	_	_		
окружное, х:	56,1±30,3	58,2±55,2	38,5±16,4	_	_		
n	142	52	115	—	—		
w, %	54,0	94,9	42,6	—	—		
Анизотропия	1,44	0,98	1,34	—	_		
Отношение модулей упругости по оси у и x Е ^у /Е ^x , ГПа	19,9/14,9	19,3/12,2	21,5/18,1	_	_		
Анизотропия	1,34	1,58	1,19	—	_		

Таблица 3. Показатели прочности материала УПА-4 на основе трикотажа и ткани

 $\overline{\rho}_{\rm K} = 1,36\pm0,03$ г/см³, $\Pi_{\rm отк} = 4,3\pm0,9$ %, а связь $\Pi_{\rm отк} = f(\rho_{\rm K})$ более слабая:

$$\Pi_{\text{отк}} = -28,01\rho_{\text{K}} + 42,46, r = 0,78$$

Анализ очередной партии материала УПА-4 (5 плит) показал, что образцы (*n* по 22 образца), ось которых параллельна оси *z*, имели $\overline{\rho}_{\kappa} = 1,32\pm0,02$ г/см³ и $\Pi_{\text{отк}} = 14,1\pm1,3$ %, а ось которых параллельна оси *y* — 1,23±0,03 и 18,2±1,9 соответственно. Связь между $\Pi_{\text{отк}}$ и ρ_{κ} для этих групп образцов выражена уравнениями:

$$\begin{split} \Pi_{\text{otk}} &= -64,94\rho_{\text{k}} + 99,77, \ r = -0,95, \\ \Pi_{\text{otk}} &= -56,88\rho_{\text{k}} + 89,07, \ r = -0,94. \end{split}$$

Необходимо подчеркнуть, что речь идет о «вскрытой» пористости, которая открывается при вырезке образцов из ТП изделий (плит) для определения их свойств, внешняя поверхность которых практически беспориста, что отмечалось ранее.

В табл. 2 приведены величины $\overline{\rho}_{\kappa}$ и $\overline{\rho}_{\pi}$, $\Pi_{\text{отк}}$ и предела прочности при сжатии $\overline{\sigma}_{\text{сж}}$, а также среднеквадратичной ошибки *s* и *w* [17] для образцов, вырезанных из 4 партий плит (6, 8, 9 и 12) материала УПА-4.

Анизотропия прочности равна 1,11, а зависимость $\sigma_{\rm Cm}$ от $\Pi_{\rm отк}$ образцов, вырезанных параллельно оси x, выражена уравнением $\sigma_{\rm Cm} =$ = -3,87 $\Pi_{\rm отк}$ + 108,69, r = -0,94; для образцов, вырезанных параллельно оси y (n = 22), она менее

Таблица 4.	Плотность,	, открытая	пористость
и газопрон	ицаемость	материала	УПА-4 *

Образец	Сектор выреза-	Плотность, г/см ³		Открытая порис-	Коэффициент газопрони-		
ооразод	ния об- разца	ρ_{κ}	ρπ	тость П _{отк} , %	цаемости <i>K</i> _г , см²/с		
6	3	1,28	1,566	18,26	20,79		
10	3	1,26	1,570	19,75	21,01		
38	3	1,22	1,566	22,10	22,23		
10	4	1,26	1,566	19,54	20,59		
11	4	1,24	1,567	20,87	20,33		
12	4	1,24	1,567	20,88	19,91		
1	20	1,23	1,585	22,40	17,76		
2	20	1,23	1,579	22,10	≫12,00		
3	20	1,23	1,583	22,30	21,65		
4	20	1,23	1,577	22,00	≫14,84		
5	20	1,24	1,583	21,67	9,58		
40	22	1,27	1,580	19,62	15,26		
47	22	1,23	1,578	22,05	18,30		
50	24	1,27	1,603	20,77	14,31		
52	24	1,27	1,606	20,92	13,72		
Среднее		1,25	1,578	21,02	18,11		
S		±0,02	±0,013	±1,25	±3,81		
w, %		1,6	0,8	5,9	21,0		
* $\rho_{\rm fx}$ р _п и $\varPi_{\rm ork}$ определяли на 15 образцах, $K_{\rm r}$ — на 13.							

Рис. 4. Температурная зависимость теплопроводности λ , измеренная вдоль осевого направления (1) и в направлении, перпендикулярном толщине (слоям ткани, 2) материала УПА-4, а также параллельном (1') и перпендикулярном (2') поверхности осаждения ПГ материала УПА-3

четкая: $\sigma_{\rm Cж} = -3,64 \Pi_{\rm отк} + 120,26, r = -0,85$, хотя показатели их свойств более стабильны. Эта зависимость показана на рис. 3, из которого следует, что величина $\sigma_{\rm Cж}$ для образцов, ось которых параллельна оси y, на ~10 % больше, чем для образцов, ось которых параллельно оси x: все точки по окружному направлению лежат на прямой или ниже нее.

Другие показатели прочности материала УПА-4 на основе трикотажа и ткани (Урал-Т-22) определяли на образцах стандартных формы и размеров, используя аттестованные методики института или стандарты. Полученные результаты сведены в табл. 3. Материал на основе трикотажа менее изотропен и имеет бо́льшую стабильность прочностных свойств (исходя из w) в сравнении с образцами с тканевым наполнителем, которые отличаются повышенным пределом прочности при растяжении для обоих направлений вырезания образцов, и близкими величинами бизг и бож в окружном направлении. Пределы прочности при сжатии и растяжении образцов материала на тканевой основе, вырезанных параллельно оси у, превышают таковые для образцов на трикотаже в 1,3 и 3 раза соответственно.

Величину $K_{\rm r}$ измеряли на образцах диаметром 36 мм и толщиной по месту вырезания из 5 секторов ТП детали из материала УПА-4, предварительно определяя их $\rho_{\rm K}$, $\rho_{\rm m}$ и $\Pi_{\rm отк}$. Результаты приведены в табл. 4.

Из данных табл. 4 следует, что деталь из материала УПА-4 отличается повышенной пористостью ($\bar{\rho}_{\rm K} < 1,4$ г/см³), а наличие проколов (отверстий) в местах прошивки пакета слоев ткани швейной нитью «Урал-НШ-24», которые не до конца заполнены ПУ, явилось причиной ее высокой проницаемости, что не позволило найти корреляционную связь между K_{Γ} и (или) $\Pi_{\rm отк}$, $\rho_{\rm K}$, так как наличие на поверхности образцов даже одного такого отверстия резко повышает величину K_{Γ} материала.

Аналогичную картину наблюдали при анализе результатов измерения K_r двух партий образцов диаметром 36 и толщиной 3,0—3,5 мм из фрагментов 3 (n = 6) и 16 (n = 13) детали из материала УПА-4. Результаты и данные для детали на основе материала УПА-3 (n = 10) приведены в табл. 5.

Для образцов из фрагмента 3 материала УПА-4 зависимость $\Pi_{\text{отк}}$ от $\rho_{\text{к}}$ имеет вид: $\Pi_{\text{отк}} =$ = -73,59 $\rho_{\text{к}}$ + 112,05, r = -1,0, а зависимость между $K_{\text{г}}$, $\Pi_{\text{отк}}$ и $\rho_{\text{к}}$, к сожалению, отсутствует. Для образцов фрагмента 16 связь между $\Pi_{\text{отк}}$ и $\rho_{\text{к}}$ выражена уравнением $\Pi_{\text{отк}} = -74,5\rho_{\text{к}} + 114,5$, r = -0,96. Связь между $K_{\text{г}}$ и $\Pi_{\text{отк}}$ очень слабая (r = -0,64) из-за отмеченных выше причин ($\overline{\rho}_{\text{к}} <$ < 1,4 г/см³; наличие не заполненных до конца ПУ отверстий на поверхности образцов).

Следует отметить, что при необходимости увеличения толщины изделий из УПА-3 в некоторых случаях использовали склейку нескольких деталей в одно целое специальными клеями (адге-

Исследуемый объект	Число образцов <i>п</i>	Число Плотность ± s, г/см ³		-Пористость $\Pi_{\text{отк}} \pm s$,	Коэффициент газо- проницаемости			
		Рк	Рп		$\Lambda_{\Gamma} \pm S, CM / C$			
		Mame	риал УПА-З					
Фрагмент:								
3	6	$1,35\pm0,01$	1,546±0,001	$12,70\pm0,46$	2,34±0,45			
w, %		0,5	0,1	3,7	19,1			
16	13	$1,31\pm0,02$	1,575±0,007	17,05±1,43	10,29±3,51			
w, %		1,5	0,4	8,4	34,2			
Материал УПА-4								
Деталь	10	2,03±0,02	2,082±0,025	2,91±0,53	$(2,93\pm0,90)\cdot10^{-3}$			
w, %		1,3	1,2	18,2	30,9			

Таблица 5. Плотность, пористость и газопроницаемость элементов деталей из материалов УПА-4 и УПА-3

рения							
**	ТКЛР, 10 ⁻⁶ К ⁻¹ , при температуре измерения, °С						
Направление измерения	20-200	20-400	20-600	20-800	20-1000	20-1500	20-2000
Параллельно поверхности осаждения (α)	0,5-0,7	1,1–1,2	1,2–1,6	1,3–1,8	1,3–2,1	1,7-2,4	2,0-3,0
Перпендикулярно поверхности осаждения (α [⊥])	8,8–9,0	8,8–9,7	8,9–9,7	9,0-9,8	9,6–9,8	10,5	11,8

Таблица 6. Средние значения ТКЛР (α) материала УПА-3 в зависимости от температуры измерения

зивами) [18]. Герметичность таких деталей оценивали по величине $K_{\rm r}$. Так, для выборки n = 4 образцов диаметром 36 и высотой 10 мм, ось симметрии диска которых была параллельна склеенным слоям (и потоку флюида), $K_{\rm r} = (3,36\pm0,53)\cdot10^{-2}$ см²/с, для выборки образцов, ось которых перпендикулярна их толщине, $\overline{K}_{\rm r}$ изменялся в интервале от $(2,68\pm1,44)\cdot10^{-3}$ (n = 6) до $(4,07\pm0,62)\cdot10^{-4}$ см²/с (n = 4), т. е. газопроницаемость рабочей поверхности на 1–2 порядка ниже, чем для склеенных поверхностей.

Данные по теплопроводности образцов материала УПА-4, вырезанных в различных направлениях, представлены на рис. 4. Значения температурного коэффициента линейного расширения (ТКЛР) в качестве справочных данных для материала УПА-3 приведены в табл. 6.

Таким образом, величина анизотропии $\overline{\alpha}$ из соотношений величин $\alpha^{\perp}/\alpha^{\parallel}$ для каждого из 7 интервалов измерений α (n = 14) составляет 7,4±3,7 (w = 49,5 %), что характерно для чисто ПГ в гораздо большей мере: α_c/α_a равно >1000, >210 и 13–18 для интервалов температур 293–400; 293–800 и 293–2300 К [19, 20] соответственно. В нашем случае анизотропия α сглажена наличием между двумя слоями ПГ армирующего трикотажного наполнителя на основе углеродного волокна.

ЗАКЛЮЧЕНИЕ

Проведен анализ изменений показателей плотности, пористой структуры и механической прочности материалов марок УПА-4 и УПА-3 в зависимо-

Библиографический список

1. Пироуглерод армированный УПА-3Э: проспект НИИграфит. — М.: Внешторгиздат, 1989. — Изд. № 6676MB. — 2 с.

2. Пироуглерод армированный марки УПА-ЗЭ. Данные о продукции : информлисток. — М. : НИИграфит, б/г. 19. — 1 с.

3. Свойства конструкционных материалов на основе углерода : справочник / под ред. В. П. Соседова. — М. : Металлургия, 1975. — 336 с.

4. **Казаков**, **М. Е.** Получение углеродных волокнистых материалов на основе вискозного волокна / *М. Е. Казаков*; под ред. Г. И. Кудрявцева // Армирующие химиче-

сти от степени предварительного обжатия плит (каркасов) и длительности их уплотнения пиролитическими углеродом и (или) графитом.

Показана нецелесообразность использования предварительно слабо обжатых плит на основе тканей различной текстильной структуры из углеродных волокон для создания УУКМ из-за высокой исходной открытой пористости (>25 %) и наличия сквозных пор при прошивке пакетов, до конца не блокируемых матрицей из ПУ, что ведет к повышенной газопроницаемости конечного материала.

Высокая стабильность значений ρ_{Π} материала обеспечивает корреляционную связь между $\Pi_{\text{отк}}$ и ρ_{κ} с $r \ge -0.94$. Менее четкая связь отмечена между $\sigma_{\text{сж}}$ и $\Pi_{\text{отк}}$ (r от -0.84 до -0.94), на которую оказывает влияние также направление вырезания образцов для испытаний.

Материал УПА-4 на основе трикотажа имеет меньшую степень анизотропии по ряду показателей прочности по сравнению с тканевым вариантом, который отличается повышенным пределом прочности при растяжении в осевом и окружном направлениях вырезания образцов, а пределом прочности при сжатии в окружном направлении и близкими величинами предела прочности при изгибе.

Материал УПА-3 характеризуется высокой плотностью и низкой пористостью, его коэффициент газопроницаемости на 3–5 порядков ниже, чем у материала УПА-4.

ские волокна для композиционных материалов. — М. : Химия, 1992. — С. 263-291.

5. Графитированная ткань ТГН-2М : проспект НИИграфит. — М. : Внешторгиздат, 1989. — Изд. № 6673МВ. — 2 с.

6. **Бутырин**, **Г. М.** Использование изооктана при определении открытой пористости различных углеродных материалов / *Г. М. Бутырин, А. И. Положихин, Л. А. Зимина* [и др.] // Углеродные материалы : сб. науч. тр. — М. : НИИграфит, 1991. — С. 138–140.

7. **Варгафтик**, **Н.Б.** Справочник по теплофизическим свойствам газов и жидкостей / *Н.Б. Варгафтик.* — М. : Наука, 1972. — 720 с.

Washburn, E. W. Note on a method of determining the distribution of pore size in a porous material / E. W. Washburn // Proc. N. A. S. Physics. — 1921. — Vol. 7. — P. 115–116.

9. **Бутырин**, **Г. М.** Высокопористые углеродные материалы / Г. М. Бутырин. — М. : Химия, 1976. — 192 с.

10. **Плаченов**, **Т. Г.** Порометрия / Т.Г. Плаченов, С. Д. Колосенцев. — Л. : Химия, 1988. — 176 с.

11. **Зимина**, **Л. А.** Изучение пористой структуры крупногабаритных электродов методом ртутной порометрии / Л. А. Зимина, Г. М. Бутырин // Цветные металлы. — 1978. — № 8. — С. 54–57.

12. **Хевитт**, **Дж. Ф.** Перенос газа в графите / *Дж.* Ф. *Хевитт* // Химические и физические свойства углерода ; под ред. Ф. Уокера ; пер. с англ. под ред. Н. Н. Лежнева. — М. : Мир, 1969. — С. 78–124.

13. **Бутырин**, **Г. М.** Методика определения коэффициента газопроницаемости углеродных материалов: МИ 4807-129-86 / *Г. М. Бутырин*. — М. : НИИграфит, 1986. — 14 с.

 Manocha, L. M. High performance carbon-carbon composites / L. M. Manocha // Sadhana. — 2003. — № 28. — P. 349–358.

15. **Бутырин**, **Г. М.** Пористая структура искусственного графита и ее классификация по удельному объему и размерам пор / *Г. М. Бутырин*, *М. И. Рогайлин*, *Е. Ф. Чалых* // Химия твердого топлива. — 1971. — № 1. — С. 131–146.

16. **Rogailin**, **M. I.** Clasification of industrial graphite porous structure by specific volume and pore sizes / *M. I. Rogailin, G. M. Butyrin, E. F. Chalykh* // Pore Structure and Properties of Materials : Proc. Intern. Symp., IUPAC. Prague, Sept.18–21, 1973. Rep. Part III. Academia, Prague, 1974. — P. A103–A110.

17. **Зайдель**, **А. Н.** Элементарные оценки ошибок измерений / А. Н. Зайдель ; изд. З, испр., доп. — Л. : Наука, 1968. — 96 с.

18. *Kravetskii, G. A.* Adhesive bonding of carbon and ceramic materials / *G. A. Kravetskii, L. T. Anikin, A. V. Demin* [et al.] // Proc. 2nd Intern. Conf. on High-Temp. Ceramic-Matrix Composites, Santa Barbara, Aug. 21–24 // Amer. Ceram. Soc. – 1995. – P. 465–470.

19. *Емяшев, А. В.* Структурные параметры пирографита, легированного бором или кремнием, и некоторые его свойства / *А. В. Емяшев, Л. В. Лаврова //* Конструкционные материалы на основе графита. — М. : Металлургия, 1967. — Вып. 3. — С. 74–79.

20. **Дымов**, **Б. К.** Теплопроводность, удельное электросопротивление и тепловое расширение конструкционных материалов на основе графита в интервале температур 100-3000 К / *Б. К. Дымов, А. И. Лутков, В. И. Волга* [и др.] // Там же. — М. : Металлургия, 1971. — Вып. 6. — С. 45-58. ■

> Получено 06.11.12 © Г. М. Бутырин, А. К. Проценко, Г. Е. Мостовой, 2013 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Х Российская ежегодная конференция молодых научных сотрудников и аспирантов

приглашает принять участие в конференции молодых научных сотрудников и аспирантов академических институтов, государственных научных центров, предприятий, занимающихся проблемами металлургии и материаловедения, а также студентов старших курсов и молодых научных сотрудников высших учебных заведений.

Дата проведения — 22—25 октября 2013 г. Место проведения — Москва, ФГБУН «Институт металлургии и материаловедения им. А. А. Байкова РАН»

Сайт конференции: http://www.m.imetran.ru

Адрес: 119991, Москва, Ленинский проспект, 49, комната № 306 основного корпуса ИМЕТ РАН Тел.: (499) 135-94-84 E-mail: info@imetran.ru

42