ПРОИЗВОДСТВО И ОБОРУДОВАНИЕ

К. т. н. О. А. Коновалова¹ (⊠), В. Ю. Загороднов¹, С. М. Каримов², А. В. Амелин³, А. М. Коверзин³

¹ ООО СМЦ, г. Новокузнецк, Россия

² ООО «Сибпроект», г. Новокузнецк, Россия

³ ОАО ЕВРАЗ ЗСМК, г. Новокузнецк, Россия

УДК 666.76.022.68:666.364

ИСПОЛЬЗОВАНИЕ ЛОМА ОГНЕУПОРНЫХ ИЗДЕЛИЙ В ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ФЛЮСА*

Разработана технология изготовления флюса с использованием лома огнеупорных изделий. После предварительного измельчения лома и магнезиального наполнителя были отформованы брикеты по технологии полусухого вибропрессования. В качестве связующего использовали смесь магнезиального и силикатного гидравлического связующего. Брикетированный флюс испытывали на металлургической площадке ЕВРАЗ ЗСМК при конвертерной плавке. Получены положительные акты об испытаниях.

Ключевые слова: лом огнеупорных изделий, флюс, наполнитель, связующее, вибропрессование, брикеты.

мые в разных тепловых агрегатах при высоких температурах и имеющие огнеупорность выше 1580 °C [1]. Это особый вид конструкционных материалов, которые благодаря ряду специфических свойств, таких как огнеупорность, механическая прочность, термостойкость, стойкость к воздействию агрессивных сред, применяются в футеровке различных тепловых агрегатов.

В отличие от огнеупорных изделий к флюсам предъявляются противоположные требования. Флюсы — материалы, применяемые в металлургических процессах для образования и регулирования состава шлака в соответствии с требованиями к его физическим и химическим свойствам [2]. По физико-химическим характеристикам флюс должен отвечать следующим требованиям: быть однородным по химическому составу; не содержать примесей, ухудшающих процесс сверх допустимого; иметь запас прочности, чтобы противостоять дополнительному износу при перегрузках без образования мелкой фракции; содержать минимальное количество влаги; иметь высокую плотность, достаточный срок годности (быть негигроскопичным), определенный гранулометрический

О. А. Коновалова E-mail: koa@sibproject.biz состав. В эксплуатации флюс должен легко и максимально усваиваться шлаком, моделируя тем самым его физико-химические свойства. Для максимального усвоения и быстрого растворения флюса в шлаке для его изготовления используют материалы «мягкого» обжига (температура обработки 800–1100 °C), отходы огнеупорных производств (пыль электрофильтров) и металлургических (железная окалина, графитовая спель и т. д.).

Цель работы — разработка технологии изготовления флюса с использованием лома огнеупорных изделий методом полусухого вибропрессования. Известно, что в зависимости от исходного сырья и требований к флюсу его изготавливают гранулированием, обжигом во вращающейся печи и брикетированием. В ходе разработки технологии необходимо было решить следующие задачи: установить физикохимические характеристики флюса; подобрать состав, отвечающий требованиям; сбрикетировать шихту методом полусухого вибропрессования; подготовить опытно-промышленную партию флюса; провести испытания; оценить пригодность флюса в технологии конвертерной плавки.

Современное значение флюса в технологии выплавки стали имеет особое значение. Стойкость футеровки конвертера определяется технологией проведения плавки, в том числе шлаковым режимом и технологией горячих ремонтов (подварками), торкретированием зон локального износа. В последние годы уход за футеровкой конвертера осуществляется шлакообразующими материалами-флюсами. Степень износа футеровки в значительной мере

^{*} По материалам Международной конференции огнеупорщиков и металлургов (3—4 апреля 2014 г., Москва).

Таблица 1. Физико-химические показатели опытных партий

1	по партиям
69,0	$69,0-84,0^*$
8,0	3,0-7,0
7,0	3,0-8,0
0,25	0,06-0,11
10,0	6,2-9,0
2,5	2,3-3,8
6,0	5,0-15,0
	8,0 7,0 0,25 10,0 2,5

 $^{^*}$ Широкий разбег содержания MgO по партиям обусловлен внесением корректировок в технологический процесс после испытания опытной партии $\mathbb M$ 1.

Таблица 2. Отдельные технологические параметры плавок с использованием флюса опытных партий (№ 1–3) и серийного

Технологический параметр	№ 1	№ 2	№ 3	Серийный флюс
Число плавок	81	99	91	79
Химический состав чугуна, мас. %:				
Si	0,45	0,43	0,56	0,45
Mn	0,52	0,54	0,57	0,52
S	0,02	0,017	0,017	0,018
P	0,13	0,091	0,095	0,096
Химический состав металла (выпуск), мас. %:				
C	0,07	0,07	0,06	0,07
Mn	0,13	0,13	0,11	0,13
S	0,021	0,023	0,022	0,022
P	0,020	0,019	0,015	0,017
Средний расход флюса на плавку, кг/т	7,9	8,9	14,1	7,3
Химический состав шлака, мас. %:				
CaO	42,1	37,6	34,5	39,4
MgO	7,3	8,5	9,5	8,2
SiO ₂	15,1	16,0	13,7	16,3
FeO	21,3	21,6	30,0	21,7
MnO	5,4	6,8	5,7	6,4

определяется степенью растворения в шлаке содержащегося в футеровке MgO. Основной износ футеровки происходит в начальный период продувки плавки. Присадка в конвертер магнезиальных флюсов в количестве, превышающем степень растворения MgO в шлаке, способствует насыщению шлака оксидами магния и препятствует растворению огнеупора футеровки [3].

Исходя из сырьевой базы, были установлены требования к физико-химическим показателям флюсов, которые приведены ниже:

Массовая доля (на прокаленное вещество), %:
МдО, не менее69,0
СаО, не более8,0
SiO ₂ , не более7,0
S, не более0,25
$\Delta m_{ m прк}$, не более10,0
Массовая доля влаги при отгрузке, %, не более2,5
Предел прочности при сжатии брикета, МПа,
не менее

Исходными материалами для производства флюса являлись лом огнеупорных изделий, предварительно измельченный до фракции мельче 10 мм, магнезиальный наполнитель фракций мельче 5 мм и мельче 0,088 мм. Содержание MgO в исходном сырье в пределах 65-90 %. В качестве связующего использовали смесь магнезиального и силикатного гидравлического связующего. Состав шихты, мас. %: лом огнеупорных изделий фракции мельче 8 мм 63-73, магнезиальный наполнитель фракции мельче 5 мм 10-20, мельче 0,088 мм 10-12, силикатное связующее 5-7. Компоненты шихты загружали в смеситель, перемешивали в сухом виде, далее увлажняли водой в количестве 7-10 % в зависимости от влажности исходных материалов. Готовая масса поступала для брикетирования на вибропресс «Рифей-Универсал» методом полусухого вибропрессования. Массу загружали в металлическую форму,

№ 1 2015 HOBble OTHEYNOPЫ ISSN 1683-4518 **15**

вибрировали не менее 3 с, а затем еще 5 с с одновременной допрессовкой верхним пуансоном. Давление прессования 15–20 МПа. Полуфабрикаты выгружали на деревянные кассеты и выдерживали во влажных условиях при 40–60 °С не менее 1 сут. Предел прочности при сжатии брикета после выдержки в течение первых суток 5–7 МПа, в течение 3 сут 10–15 МПа. Кажущаяся плотность брикета 2,2–2,5 г/см³. Фактические физико-химические показатели опытных партий приведены в табл. 1.

Флюс испытывали партиями по 100–250 т. Всего было испытано 630 т флюса в разных цехах металлургической площадки № 1 ЕВРАЗ ЗСМК. Присадку флюса в конвертер производили по действующей технологии (на лом до начала прогрева). Шлакообразование и поведение ванны по ходу продувки не отличались от плавок с использованием серийных материалов. Повышения содержания водорода в отходящих газах по показаниям газоанализатора отмечено не было. Среднее содержание MgO в конвертерном шлаке 8,5–9,5 %. Рафи-

нирующая способность шлака не ухудшилась, коэффициент распределения серы и фосфора на опытных плавках ниже, чем на сравнительных. Сравнительные характеристики технологических параметров плавок с использованием опытно-промышленных партий флюса приведены в табл. 2. Остальные параметры (химический состав чугуна и металла) от партии к партии существенно не изменялись, что свидетельствует об однородном химическом составе флюса. При использовании опытных партий флюса проблем с транспортировкой по трактам подачи не возникало (прочность брикета обеспечила отсутствие образования мелкой фракции при транспортировке и перевалке).

Таким образом, была доказана возможность использования лома огнеупоров в технологии производства флюса, разработана технология изготовления флюса, в которой был успешно опробован метод полусухого вибропрессования. Физико-химические показатели флюса отвечают всем требованиям, а его служебные свойства по результатам испытаний удовлетворяют технологии проведения конвертерной плавки.

Библиографический список

- 1. *Стрелов, К. К.* Теоретические основы технологии огнеупорных материалов / К. К. Стрелов, И. Д. Кащеев. М.: Металлургия, 1996. 608 с.
- 2. **Зборщик, А. М.** Конспект лекций по дисциплине «Металлургия стали» / А. М. Зборщик. Донецк : ГВУЗ «ДонНТУ», 2008. 238 с.
- 3. **Ивко, В. В.** Испытание самораспадающихся магнезиальных гранул СМГ-10С для модификации

конвертерного шлака в ОАО «Днепропетровский металлургический комбинат им. Дзержинского» / В. В. Ивко, А. А. Ситало, Б. Ю. Гребенюк // Новые огнеупоры. — 2005. — \mathbb{N} 6. — С. 43–49.

Получено 03.04.14 © О. А. Коновалова, В. Ю. Загороднов, С. М. Каримов, А. В. Амелин, А. М. Коверзин, 2014 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

2-й Иранский симпозиум по огнеупорам

19-20 мая 2015 г.

г. Исфахан, Иран

www.conf-refractory.org/en/