М. Ю. Бамборин (🖾), к. т. н. В. А. Воронцов, д. т. н. С. А. Колесников

ОАО «НИИграфит», Москва, Россия

УДК 661.66.001.5

ИССЛЕДОВАНИЕ ФОРМИРОВАНИЯ ФИЗИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ НА ГРАНИЦЕ СТРУКТУРНЫХ ФАЗ УГЛЕРОДНАЯ МАТРИЦА – УГЛЕРОДНОЕ ВОЛОКНО ЭЛЕКТРОФИЗИЧЕСКИМИ МЕТОДАМИ В УГЛЕРОД-УГЛЕРОДНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛАХ С РАЗЛИЧНЫМ УРОВНЕМ ПЛОТНОСТИ

Исследовано изменение удельного электрического сопротивления в четырехмерно армированных углерод-углеродных композиционных материалах с разным уровнем плотности, а также влияние технологических параметров на фактор физического взаимодействия на границе раздела фаз углеродная матрица – углеродное волокно. Установлено ранжирование факторов, определяющих уровень поверхностного электрического сопротивления материала. Определены физико-механические свойства углерод-углеродных композитов с различным уровнем поверхностного электрического сопротивления.

Ключевые слова: высокотемпературная обработка, углерод-углеродные композиты, прочность композита, электрическое сопротивление, структурные характеристики.

Углерод-углеродные композиционные материалы (УУКМ), представляющие собой гетерогенную структуру, состоят из волокон, матрицы и пор. Структурные превращения, происходящие в углеродистом материале в зависимости от температуры и времени изотермической выдержки отражаются в изменениях физических и химических свойств.

Высокотемпературная обработка (ВТО) заготовок — неотъемлемая часть технологии углеродных материалов — является тем этапом технологических процессов производства углеродных композитов, с помощью которого регулируют не только теплопроводность, но и истинную плотность углеродного материала, его электропроводность, а также скорость окисления и другие показатели механических и химических свойств [1–5].

Цель настоящей работы — исследование электрофизическими методами физического взаимодействия углеродной матрицы и углеродного волокна в материале с различным уровнем плотности.

Объектом исследования служил композит четырехмерного армирования на основе углеродной конструкционной нити из полиакрилонитрильного (ПАН) волокна марки УКН-5000 и

> ⊠ M. Ю. Бамборин E-mail: bamborin m@hotmail.com

углеродной матрицы из кокса каменноугольного пека. Карбонизацию проводили в печах под давлением. Принципиальная технологическая схема изготовления УУКМ описана ранее [6, 7]. После заключительного числа циклов пропитки и карбонизации под давлением заготовки проходили ВТО при температуре около 2200 °С, достаточной для достижения истинной плотности углеродного вещества матрицы ≤2,1 г/см³. Затем заготовки подвергали заключительной ВТО при значительно меньшей температуре, достаточной только для завершения процессов карбонизации.

МЕТОДИКИ ИССЛЕДОВАНИЯ

Определение параметров кристаллической решетки графита

Выполнение рентгенофазового анализа, а также определение размеров кристаллов и области когерентного рассеяния, межплоскостных расстояний в структуре природного графита и исследуемого компонента УУКМ проводили по методике, представленной в статье [8].

Анализом диаграмм «интенсивность рефлекса — угол падения луча» в образцах УУКМ выявлено бимодальное распределение. По сопоставлению с калибровочными зависимостями для отдельных компонентов композита (углеродное волокно, кокс каменноугольного пека) соответствующие пики диаграммы отнесли к его компонентам. В результате в настоящей работе оценивали степень различия кристаллического состояния армирующего наполнителя композита и его матрицы.

Определение средней величины теплопроводности

Среднюю величину теплопроводности измеряли в стационарном осевом тепловом потоке по методике МИ 00200851-125-2007. Метод основан на сравнении теплопроводности исследуемого образца с теплопроводностью эталонных материалов. Для устранения конвекции измерительную кювету помещали в термостат. Максимальная расчетная погрешность эксперимента с учетом измерительных устройств и различия термосопротивления эталона и исследуемых образцов не превышала 7 %.

Определение предела прочности при растяжении орст

Предельное сопротивление прочности при растяжении определяли на образцах-лопатках размерами 100×25×10 мм. Метод основан на расчете предела прочности при растяжении как частного от деления величины разрушающей образец нагрузки на первоначальную площадь поперечного сечения рабочей части образца. Принцип метода заключается в приложении к образцу растягивающей нагрузки при заданной скорости перемещения активной траверсы испытательной машины до разрушения и измерения этой величины.

Определение удельного электросопротивления Ps токовихревым методом

Удельное электрическое сопротивление определяли на образцах углеродного материала с механически обработанной ровной поверхностью (*Rz* не более 60). Метод основан на измерении величины электрического сопротивления в приповерхностном слое углеродного материла (УГМ) при помощи датчика вихревого тока, создающего на поверхности УГМ возбуждение, сила которого различна в местах изменения структуры материала.

Вихретоковый дефектоскоп используется для обнаружения поверхностных и подповерхностных дефектов в изделиях из ферромагнитных и немагнитных материалов. Дефектоскоп предназначен для неразрушающего контроля, основанного на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых в объекте контроля этим полем. Преимущества токовихревого метода контроля заключаются в возможности измерения через зазор от долей миллиметра до нескольких миллиметров (без контакта преобразователя и объекта) и минимальных требований к состоянию поверхности.

На первом этапе исследовали уровень поверхностного удельного сопротивления углеродных материалов различной структуры. Результаты представлены в табл. 1. Карбонизованная фенолоформальдегидная смола (техническое наименование стеклоуглерод) является прототипом углеродных матриц с низким уровнем совершенства кристаллической структуры. Графитовые конструкционные материалы (ВПГ и РБМК) могут служить прототипом углеродной матрицы из каменноугольного пека в составе УУКМ. Разные показатели удельного электрического сопротивления при одинаковых исходных сырьевых материалах свидетельствуют о различии структуры материалов из-за неодинаковой температуры их обработки. Пиролитический графит (УПВ-1) с высокой степенью текстурирования может служить модельным углеродным веществом (прототипом) для углеродных высокомодульных и высокопрочных волокон. Как видно из данных табл. 1, уровни удельного сопротивления перечисленных материалов разнятся в несколько раз.

В табл. 2 приведены результаты измерения удельного электрического сопротивления для разных образцов одного и того же углеродного вещества. Как видно, стандартное отклонение о результатов множественных измерений (число измерений N = 72) и для других совокупностей измерений, как правило, составляет не более 6 % от среднего результата *Ps.* Результаты последовательных множественных (N = 6) измерений *Ps*

Материал	Особенности структуры	Среднее значение <i>Ps,</i> мкОм·м	Стандартное отклонение σ, мкОм·м	Коэффициент вариации, %	Уровень Ps, най- денный методом пропускания тока, мкОм·м
МПГ-6	Мелкозернистый изотропный графит на основе непрокаленного нефтяного кокса	14,7	0,25	1,70	14–15
ВПП	Высокоплотный графит на основе прокаленного нефтяного кокса	10,2	0,25	2,40	8-9
РБМК	Радиационно стойкий особо чистый графит на основе нефтяного пека	13,1	0,2	1,53	11–14
Десна Т-1	Высокоплотный УУКМ трехмерного армирования	16,09	0,37	1,27	11-21
УПВ-1	Пиролитический графит	4,98	0,104	2,09	3,8-4,5
ТРГ-1	Терморасширенный графит	19,4	0,8	4,12	14-18
СУ-2500	Стеклоуглерод (высокотемпературно обрабо- танный кокс фенолоформальдегидной смолы)	29,6	0,49	1,66	41–45

Таблица 1. Уровень поверхностного удельного сопротивления различных углеродных материалов, определенный токовихревым методом

Совокупность	Среднее Стандартно значение <i>Ps</i> , отклонени		Коэффициент	Статистическое сопоставление с общей совокупностью*					
(число ооразцов)	мкОм∙м	мкОм∙м	вариации, %	$F_{\rm \phi a \kappa au}$	$F_{ addel{tadj}}$	$t_{ m dakt}$	$t_{ m табл}$	заключение	
Из 12 деталей (N = 24)	18,92	0,763	4,03	_	_	_	_	—	
1-я из двух комплектующих деталей одной сборки (N = 12)	18,05	1,138	6,15	2,225	2,74	1,11	2,074	Значимо не разнятся	
2-я из двух комплектующих деталей одной сборки (N = 12)	17,6	0,871	4,94	1,3	2,74	4,299	2,074	Средние значимо разнятся	
3-я из двух комплектующих деталей одной сборки (N = 12)	18,9	0,490	2,59	2,425	2,74	1,11	2,074	Значимо не разнятся	
4-я из двух комплектующих деталей одной сборки (N = 12)	21,15	0,555	2,60	1,89	2,74	9,658	2,074	Средние значимо разнятся	
Одна деталь из 1-й сборки (N = 6)	17,1	0,606	3,54	1,585	2,74	5,791	2,074	Средние значимо разнятся	
Одна деталь из 2-й сборки (N = 6)	19,0	0,577	3,04	1,749	2,74	0,264	2,074	Значимо не разнятся	
Одна деталь из 4-й сборки (N = 6)	20,8	0,606	3,54	2,225	2,74	5,982	2,074	Средние значимо разнятся	
* <i>F</i> — критерий Фишера; <i>t</i> —	критерий Сти	ьюдента.							

Таблица 2. Результаты измерения токовихревым методом *Ps* УУКМ четырехмерного армирования марки КМ-ВМ-4Д

на одном образце материала имеют погрешность не более 4 % от средней величины.

Технологические операции. Принципиальная технологическая схема процесса и основного оборудования, на котором исследовали влияние высокотемпературной обработки на свойства углеродного композита, представлена в публикации [9].

Высокотемпературную обработку образцов УУКМ проводили в камере электровакуумной водоохлаждаемой печи (диаметр рабочей зоны 40 мм, ее длина 1300 мм). Температурный диапазон от (2170 ± 30) до (2900 ± 50) °С. На отдельных выбранных уровнях рабочих температур осуществляли изотермические выдержки от 1 до 17 ч (± 30 мин). Температуру внутри рабочей камеры печи измеряли при помощи оптического пирометра «Проминь», показатели фиксировались с поверхности графитового нагревателя через кварцевое стекло смотрового окна. Отклонение от истинного значения температуры, обусловленное такими факторами, как индивидуальная чувствительность оператора, поглощение среды и стекла в окне измерения, неточность учета степени черноты тела и другие, менее значимые факторы, составляло от -40 до +10 °C от номинального значения.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Работу проводили в двух направлениях:

 исследование изменения поверхностного электрического сопротивления в материале от количества производственных циклов пропитки – карбонизации под давлением;

- исследования на четырех видах материала: стандартном УУКМ (ТУ 1916-036-00200851-2010) марки КМ-ВМ-4D; УУКМ марки КМ-ВМ-4DT с повышенным уровнем теплопроводности; модельные образцы УУКМ структуры 4D, термически обработанные по экспериментальным режимам; УУКМ структуры 4D с пониженными физикомеханическими характеристиками.

Для последних образцов характерно «вытягивание» стержней из объема рабочей зоны во время испытаний при растяжении. Общий вид такого разрушения показан на рис. 1. Характер разрушения образцов свидетельствует о недостаточно высокой прочности компонентов композита на границах раздела углеродный жгут – углеродная матрица. Технологической причиной такого состояния материала была относительно пониженная температура до 2100 °С вместо (2170 ± 30) °С термической обработки на одном или двух промежуточных технологических переделах формирования углеродной матрицы. Как правило, эти отклонения происходили на первом или втором этапах обработки. Такие образцы материала характеризовались пониженной теплопроводностью, а также меньшей скоростью прохождения ультразвуковых волн (последнее в настоящей работе не анализируется). Это указывает на изменения в структуре углеродного вешества.

Результаты испытаний приведены в табл. 3-5. В табл. 3 представлены результаты испытаний

Рис. 1. Разрушение образца при растяжении без «вытягивания» стержней (*a*) и с «вытягиванием» (б)

УУКМ различной плотности. В табл. 4 приведены данные, полученные при отсутствии отступлений по температуре обработки на всех этапах формирования углеродной матрицы, а также результаты исследования свойств материала после дополнительной ВТО до температур, существенно превышающих стандартную. В табл. 5 представлены результаты испытаний образцов материала при отклонении предельной температуры обработки в меньшую сторону на одном или двух этапах формирования углеродной матрицы. В каждой из этих таблиц выделены результаты определения рентгеноструктурных характеристик, отнесенных к углеродному волокну (жирный шрифт) и углеродной матрице из каменноугольного пека. Меньший уровень кристаллического совершенства имеют углеродные волокна, как это показали одновременно экспонированные образцысвидетели. Графитация углеродного волокна (рост *g*, %) наблюдается только при значительном повышении температуры дополнительной обработки — выше 2300 °C. Углеродная матрица из каменноугольного пека более чувствительно откликается на вариацию температур обработки начиная с 2200 °C.

Обработка результатов испытаний в виде зависимости электрического сопротивления от количества циклов пропитки и карбонизации под давлением (ПКД) – ВТО показана на рис. 2, от температуры обработки — на рис. 3, сопоставление $\sigma_{\rm pcr}$ материала с уровнем электрического сопротивления термообработанного материала

Рис. 3. Зависимость удельного электрического сопротивления от температуры обработки; наблюдается тенденция снижения *Ps* в зависимости от предельного уровня температуры обработки

Таблица З.	Свойства мате	риалов 4D-УУКМ.	прошедших	разное количество	циклов п	ропитки-ка	обонизации
гаолица эт	ebenerba riare						

	Кажу-	Показате в	ели углеро волокна	одного	Показатели углеродной матрицы							
Число циклов	щаяся плотность р, кг/м ³	межпло- скостное	размер кристал- лов, нм		межпло- скостное	степень	размер кристал- лов, нм		теплопро-	предел проч- ности при	удельное электросо-	
пкд		расстояние d_{002} , нм	L_c	La	расстояние d_{002} , нм	графита- ции <i>g</i> , %	L_c	La	водность л, Вт/(м·К)	растяжении σ _{рст} , МПа	противление <i>Ps,</i> мкОм·м	
1	1,130	0,349	4,0	0,4	3,41	35	29	17	8,7	10,5	26,2	
2	1,500	0,348	4,0	0,4	3,41	41	29	17	15,5	31,5	21,8	
3	1,750	0,348	5,0	0,4	3,39	50	31	24	28,3	70,7	20,0	
4	1,890	0,345	-	0,63	3,37	73	36	28	46,8	137,5	16,5	

НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

таолица	аолица 4. своиства 40-у у км после термической обработки											
05	Темпе- ратура	Выдерж-	Показатели углеродного волокна			Показатели углеродной матрицы						
Ооразец	обработ- ки, °С	ка, ч	d_{002} , нм	g,%	<i>L_c</i> , нм	d_{002} , нм	g,%	<i>L</i> _{<i>c</i>} , нм	<i>L</i> _{<i>a</i>} , нм	λ, Вт/(м·К)	σ _{рст} , МПа	<i>Ps,</i> мкОм∙м
	·			Свой	іства с	тандарп	1ного 4.	D-УУКМ	ſ			
1	2170	1	0,344	-	12,0	0,34	46	33	13	44,5	129,5	12,5
2	2150	1	0,347	-	6,0	0,34	51	33	19	45,8	146,6	14,3
3	2200	1	0,348	-	6,0	0,34	44	29	16	48,7	135,5	14,9
4	2300	1	0,347	-	6,0	0,339	60	40	21	50,0	144,7	16,4
5	2170	1	0,360	-	3,0	0,343	14	14	5	31,4	149,6	16,1
6	2170	1	0,352	-	5,0	0,342	23	23	9	30,3	133,3	15,9
7	2170	1	0,349	-	6,0	0,341	33	27	12	33,7	144,2	16,9
8	2170	1	0,349	-	5,0	0,34	45	31	18	39,2	188,3	17,6
9	2170	1	0,347	-	6,0	0,339	60	36	23	54,6	167,2	18
10	2170	1	0,346	-	7,0	0,338	65	41	28	65,8	166,9	18,2
11	2170	1	0,346	-	6,0	0,338	65	38	25	56,1	133,9	20
12	2170	1	0,346	-	6,0	0,338	67	41	28	57	137,2	20
13	2170	1	0,347	-	6,0	0,339	64	36	26	58,3	155,4	21,4
	Ce	зойства	4D-УУК	M, me	рмообр	аботанн	ого прі	і темпе	ратура	ıx до 25(00 °C	
14	2300	17	0,337	79	27,8	0,335	100	136	105	130,1	46,3	7,1
15	2600	10	0,338	67	18,0	0,335	102	111	140	34,7	67,2	8,5
16	2300	17	0,339	57	16,2	0,336	92	77	46	139,9	73,0	9,3
17	2500	10	0,34	50	14,3	0,336	92	77	34	133,2	75,0	10,6
18	2500	10	0,341	29	19,0	0,337	83	52	34	85,0	77,0	10,9
19	2400	10	0,343	32	26,7	0,337	86	54	33	88,0	80,5	11,0
20	2400	10	0,344	6	6,8	0,337	81	50	39	69,5	84,0	11,5
21	2400	10	0,345	-	6,5	0,337	77	44	35	66,7	87,5	12,0
22	2300	10	0,345	-	5,9	0,337	75	41	31	58,3	91,0	12,5

. . .

при температурах до 2600 °С — на рис. 4. Изменение Ps в меньшую сторону происходит с повышением температуры термической обработки, и, напротив, этот показатель увеличивается в случае отклонений в режиме термообработки с понижением ее температуры.

Данные табл. 2 показывают, как с увеличением плотности и ростом предела прочности при растяжении происходит улучшение физического взаимодействия на границах структурных фаз углеродная матрица - углеродное волокно. Это является причиной понижения удельного электрического сопротивления, изображенного на рис. 2. Прохождение каждого дополнительного цикла приводит к понижению удельного электрического сопротивления в среднем на

	Таблица 5. Свойства	стандартного 4D-УУКМ	1 с плохим физическим	и взаимодействием*
--	---------------------	----------------------	-----------------------	--------------------

Образец	d ₀₀₂ , нм	<i>L</i> _{<i>c</i>} , нм	d ₀₀₂ , нм	g, %	<i>L</i> _{<i>c</i>} , нм	<i>L</i> _a , нм	λ, Вт/(м·К)	σ _{рст} , МПа	<i>Ps,</i> мкОм∙м
1	0,360	3,2	0,343	16	14	4	33,5	76,0	29,9
2	0,352	4,6	0,343	22	23	11	34,0	73,2	28,6
3	0,349	5,3	0,342	29	27	13	37,5	106,4	28
4	0,349	4,9	0,340	35	31	16	40,3	88,2	26,8
5	0,347	5,5	0,341	55	36	22	48,4	108,3	26,6
6	0,346	5,7	0,338	57	41	25	60,3	106,5	26,2
7	0,346	5,9	0,342	60	38	25	60,7	111,6	25,8
8	0,346	5,9	0,338	65	41	27	59,0	117,5	25,3
9	0,347	6,0	0,339	60	36	27	56,1	119,0	25
10	0,349	6,2	0,342	60	36	23	55,9	122,5	24,5
11	0,347	5,6	0,339	61	38	24	57,6	128,1	24
12	0,346	6,5	0,340	66	40	29	59,9	133,0	23,2
13	0,346	6,6	0,341	63	42	29	58,3	138,6	23
14	0,346	6,0	0,340	64	40	27	57	135,2	21,5
15	0,347	6,0	0,333	67	39	25	56,5	76,1	29,9
* Термичес	кая обработ	ка при 217	0°Сивыде	ржке 1 ч.					

Рис. 4. Сопоставление предела прочности при растяжении исследованного УУКМ с уровнем поверхностного удельного электрического сопротивления токовихревым методом в зонах 1–3

10-15 %, одновременно улучшаются физические и механические показатели УУКМ. Итоговый, четвертый цикл ПКД – ВТО выводит УУКМ на требуемый уровень плотности и приводит к завершенности формирования структуры УУКМ.

На рис. З видно, что при росте температуры обработки удельное сопротивление снижается, это имеет место для всех видов углеродных материалов [9]. Снижение Ps соответствует повышению совершенства кристаллической решетки (d₀₀₂, нм; g, %; L_c и L_a, нм). Для композиций, обработанных с относительным понижением температуры, наблюдается противоположная тенденция (см. табл. 3). Для этой совокупности образцов средняя величина степени графитации углеродной матрицы относительно занижена (42 против 49 %). Финишная температура обработки, одинаковая для обеих совокупностей, не обеспечивала одинаковую структуру углеродного вещества, если во время промежуточных операций было отклонение от стандартного режима.

Сопоставление уровня прочности при растяжении с результатами измерения удельного электросопротивления токовихревым методом (см. рис. 4) показывает, что зависимость имеет оптимизацию механической прочности, но при отклонении удельного электросопротивления на ± 10 мкОм·м от среднего значения для стандартного материала ~ 18 мкОм м уменьшение прочности достигает 50 %. Из полученных результатов следует, что измерение удельного электрического сопротивления токовихревым методом выявляет различие в структуре образцов УУКМ объемного армирования и может быть информативным неразрушающим методом оценки отклонения структуры материала от ее оптимальной формы. Так, увеличение на каждые 4 мкОм·м начиная с 12 мкОм·м дает прирост σ_{рст} на 3-4 МПа.

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Особенностью трека электрического тока, индуцированного токовихревым способом, является последовательное пересечение в приповерхностном слое электропроводного, в данном случае УУКМ, углеродного волокна, жгутов из них, участков углеродной матрицы разных этапов формирования, а также преодоление контактного сопротивления в местах скопления пор. Глубина проникновения тока индукционной природы в глубину материала от поверхности пропорциональна проводимости вещества и, видимо, неоднородна по площади поверхности. Границы раздела углеродных волокон и углеродной матрицы с разными уровнями контактного сопротивления и сильно разнящихся кристаллической структурой, а также пористость, микротрещины на поверхностях раздела углеродных веществ с различными уровнями модулей упругости, температурных коэффициентов линейного расширения, коэффициентов Пуассона увеличивают гетерогенность вещества на пути прохождения электрического тока. В таком случае минимальная проводимость фрагмента структуры становится определяющей и измерение электропроводности токовихревым способом становится информативным методом выявления в материале участков с низкой электропроводимостью.

Относительное снижение прочности композита (см. рис. 3), повышение измеренного удельного сопротивления в зоне 3 рис. 4 и при этом появление механизма «выдергивания» стержней (см. рис. 1) свидетельствуют о развитии дефектности на границе раздела стержень – углеродная коксовая матрица.

При сопоставлении результатов удельного электрического сопротивления рис. 2 и 4 видно, что зона 3 рис. 4 находится в диапазоне первых двух циклов ПКД – ВТО, в котором уровень взаимодействия углеродной матрицы и углеродного волокна невысок.

ЗАКЛЮЧЕНИЕ

Для УУКМ со степенью графитации матрицы свыше 75 % неоднородность структуры понижает показатель поверхностного электрического сопротивления. Выявлена зависимость этого показателя от предела прочности при растяжении композиционного углеродного материала. При исследовании стандартного УУКМ марки КМ-ВМ-4D установлено, что рост механической прочности, как результат эффективного механического взаимодействия компонентов композита, находит свое отражение в изменении электрического сопротивления, определяемого токовихревым методом.

Анализ полученных результатов показал, что, используя метод определения поверхностного электрического сопротивления в УУКМ, можно неразрушающим способом отследить степень завершенности формирования внутренней структуры композиционного материала на различных стадиях технологического процесса производства как на образцах, так и на готовых деталях.

Библиографический список

1. **Нагорный, В. Г.** Свойства конструкционных материалов на основе графита : справочник / В. Г. Нагорный, А. С. Котосонов, В. С. Островский [и др.] ; под ред. В. П. Соседова. — М. : Металлургия, 1975. — 336 с.

2. Шулепов, С. В. Физика углеродных материалов / С. В. Шулепов. — Челябинск. : Металлургия, Челябинское отделение, 1990. — 336 с.

3. **Костиков, В. И.** Технология изготовления изделий из композиционных материалов на основе углерода / *В. И. Костиков //* Технология производства изделий и интегральных конструкций из композиционных материалов в машиностроении. — М. : Готика, 2003. — С. 187-218.

4. **Разумов, Л. Л.** Исследование свойств композиционного углерод-углеродного материала, термообработанного при повышенных температурах / *Л. Л. Разумов, С. К. Клюев, А. Б. Комаров* // Цветные металлы. — 1987. — № 10. — С. 67–70.

5. *Коломиец, В. А.* Освоение технологии производства графитов типа МПГ на основе сланцевого кокса в ОАО «Новочеркасский электродный завод» : автореф. дис. ... канд. техн. наук. — М., 2003. — 27 с.

6. **Фитцер, Э.** Углеродные волокна и углекомпозиты / *Э. Фитцер, Р. Дифендорф, И. Калнин* [и др.]; пер. с англ. под ред. Э. Фитцера. — М.: Мир, 1988. — 336 с.

7. *Golecki, I.* Properties of high thermal conductivity carbon-carbon composites for thermal management applications / *I. Golecki, L. Xue, R. Leung* [et al.] // High-temperature electronic materials, devices and sensors conference, 22–27 feb. 1998. — San Diego, CA, USA.

8. Бамборин, М. Ю. Влияние высокотемпературной обработки на рентгеноструктурные характеристики и теплопроводность углерод-углеродных композиционных материалов / М. Ю. Бамборин, Д. В. Ярцев, С. А. Колесников // Новые огнеупоры. — 2013. — № 8. — С. 27–32.

9. *Елисеев, Ю. С.* Неметаллические композиционные материалы в элементах конструкций и производстве авиационных газотурбинных двигателей : учебное пособие для вузов / Ю. С. Елисеев, В. В. Крымов, С. А. Колесников [и др.]. — М. : МГТУ им. Н. Э. Баумана, 2007. — 368 с. ■

Получено 13.08.13 © М. Ю. Бамборин, В. А. Воронцов, С. А. Колесников, 2014 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

28