НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

Д. т. н. **И. Д. Кащеев¹**, к. т. н. **К. Г. Земляной¹(⋈), С. А. Поморцев²**

¹ ΦΓΑΟУ ВПО «Уральский федеральный университет», г. Екатеринбург, Россия ² ООО «Огнеупор», г. Магнитогорск, Россия

УДК 622.336:666.76.001.8

ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ ГРАФИТОВ ДЛЯ ПРОИЗВОДСТВА ОГНЕУПОРОВ. Часть 2. Свойства периклазо- и корундоуглеродистых огнеупоров при введении в их состав графитов различных производителей*

Приведены результаты исследований влияния различных графитов ГЭ-1 и ГЧ (РФ), Falke 94100 и Falke 9280 (Бразилия), +592 (КНР), +595 (Мадагаскар), FLS 897 (Норвегия) на физико-химические свойства периклазо- и корундографитовых огнеупоров. Показано, что вид графита влияет на свойства шихты уже на стадии ее подготовки и на физико-химические свойства изделий.

Ключевые слова: периклаз, корунд, графит, прочность, пористость, стойкость к окислению.

сновными свойствами, обеспечивающими Стойкость углеродсодержащих огнеупоров в металлургических агрегатах, являются открытая пористость (кажущаяся плотность), предел прочности при сжатии (изгибе) и стойкость к окислению. Химическая стойкость углеродсодержащих огнеупоров обеспечивается углеродистым компонентом шихты, и как только углерод удаляется (выгорает, растворяется в металле/шлаке, расходуется на образование карбидов), коррозионная стойкость огнеупора резко снижается [1]. Стойкость обезуглероженного слоя можно повысить за счет чистоты исходных оксидных материалов — чем более чистые огнеупорные порошки использованы, тем выше стойкость футеровки [2], а также за счет повышения спекаемости минеральной фазы в процессе эксплуатации. Но основным фактором, влияющим на коррозионную стойкость углеродсодержащих огнеупоров, является устойчивость к обезуглероживанию.

В качестве углеродсодержащих материалов наибольшее применение получил природный чешуйчатый графит, поскольку он наиболее устойчив к окислению из-за упорядоченности его кристаллической структуры [3]. Наибольшей химической стойкостью к кислороду обладает природный графит, однако он имеет низкую механическую прочность. Кристаллический графит почти не обладает адсорбционной способностью,

⊠ К. Г. Земляной kir77766617@yandex.ru тогда как в тонкоизмельченном / мелкокристаллическом (его часто называют «аморфным») явления адсорбции становятся заметными. Одновременно с уменьшением размера зерна / кристалла возрастает химическая активность графита. Поэтому для технических задач целесообразно выделить тонкодисперсный графит в особый вид углерода — аморфный.

У графитовых материалов, с которыми обычно имеют дело, на кристаллическую структуру вещества налагается дисперсная структура. Это искажает основные свойства графита и сообщает ему новые свойства, которые не могут быть непосредственно сведены к его молекулярной структуре. Поэтому кроме основных свойств графита в общем случае необходимо учитывать его дисперсное состояние. Необходимо принимать во внимание, что при извлечении графита из природных графитсодержащих пород наиболее эффективным методом обогащения является флотация. В качестве флотореагентов применяют ПАВ, хорошо смачивающие поверхность графитовой чешуйки, а для депрессирования пены используют соду, жидкое стекло, известь и другие электролиты. Поэтому после извлечения графитов флотацией необходима их очистка от введенных ПАВ и депрессантов, которые полностью удалить не всегда возможно, и они остаются на поверхности чешуек графита, обогащая ее щелочными и щелочноземельными катионами. Таким образом, свойства и стойкость графитсодержащих огнеупоров во многом определяются свойствами используемого графита.

Сравнение свойств периклазоуглеродистых (ПУ) и корундоуглеродистых (КУ) образцов с графитами ГЭ-1, ГЧ, Falke 94100, Falke 9280, FLS 897, +595 производства Мадагаскара и +592 производства КНР, основные свойства которых приведены в части 1 статьи [4], осуществляли на опытных об-

^{*} Часть 1 опубликована в журнале «Новые огнеупоры» № 11 за 2015 г.

разцах, изготовленных с одинаковой минеральной частью в одинаковых условиях. Для изготовления образцов использовали плавленые периклаз и корунд (табл. 1), в качестве связки — связующее фенольное порошкообразное (СФП) марки Р-050 по ТУ 6-05751768-35-94, в качестве растворителя — этиленгликоль по ГОСТ 19710, в качестве антиоксиданта — алюминиевый порошок АПВ-П по ТУ 1790-46652423-01-99. Состав шихт, мас. %, представлен ниже:

Порядок смешения компонентов шихты указан в табл. 2. Смешение шихт производили в лабораторном планетарном смесителе VLF-700. В

Таблица 1. Химический состав и свойства порошков периклаза и корунда

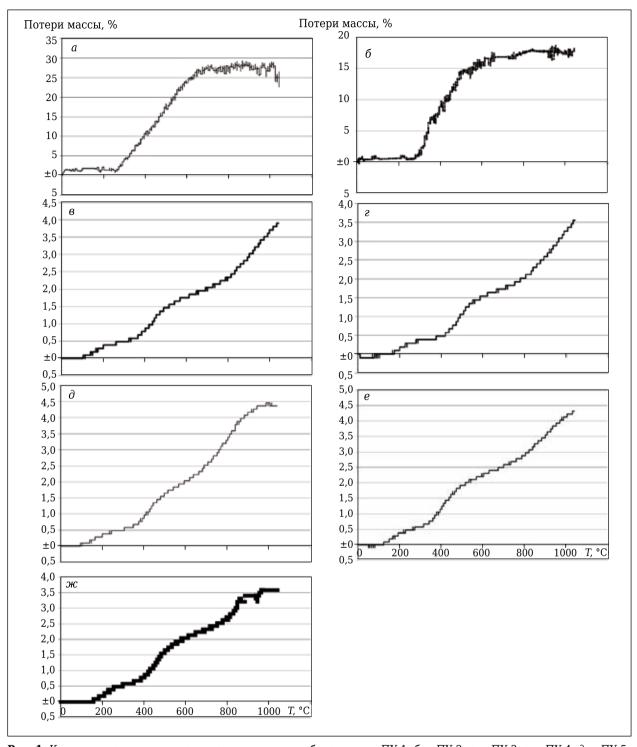
Мажариан	$oxed{ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							ρ _{каж} , г/см ³
материал	Al_2O_3	MgO	SiO_2	CaO	Fe ₂ O ₃	$\Delta m_{\pi p \kappa}$	%	г/см3
Периклаз	0,11	97,00	0,69	1,44	0,58	0,07	1,90	3,46
Корунд	94,00	1,00	2,50	0,70	1,20	0,05	2,10	3,94

Таблица 2. Порядок смешения шихты

№ п/п	Подаваемые компоненты	Длительность смешения, мин
1	Заполнитель фракций 3–1 и 1–0 мм и этиленгликоль	3–4
2	Графит и антиоксидант	4-5
3	Заполнитель фракции <0,063 мм и СФП	4–5

составе шихт меняли только графит. Смешанные шихты выдерживали в герметично закрытой таре в течение 2–3 ч и далее из них формовали образцы в виде цилиндров диаметром и высотой 50 мм на прессе ИП-50 под давлением 100,0 МПа. Сформованные образцы термообрабатывали до 280 °С в течение 24 ч со скоростью подъема температуры 25 °С/ч и подвергали коксующему обжигу при 1000 °С с выдержкой 2 ч в герметично закрытых тиглях в коксовой засыпке.

НОМЕНКЛАТУРА ОБРАЗЦОВ


Периклазоуглеродистые массы: $\Pi1$ — контрольный графит (ГЭ-1); $\Pi2$ — тайгинский графит химического обогащения (ГЧ); $\Pi3$ — графит бразильский Falke 94100; $\Pi4$ — графит бразильский Falke 9280; $\Pi5$ — графит КНР +592; $\Pi6$ — графит мадагаскарский +595; $\Pi7$ — графит норвежский FLS 897. Корундоуглеродистые массы: K1 — контрольный графит (ГЭ-1); K2 — графит КНР +592; K3 — графит мадагаскарский +595; K4 — графит норвежский FLS 897; K5 — графит бразильский Falke 9280.

Кажущуюся плотность, водопоглощение и открытую пористость образцов исследовали по ГОСТ 2409 методом насыщения в керосине, предел прочности при сжатии — по ГОСТ 4071.1. Стойкость к окислению образцов углеродсодержащих изделий определяли термовесовым анализом на установке, состоящей из вертикальной муфельной печи, весовой части с непрерывной записью результатов на компьютер. Образцы нагревали со скоростью 9 °С/мин до 1050 °С и контролировали суммарную потерю массы, скорость потери массы и толщину обезуглероженного слоя. Результаты определения физико-химических свойств приведены в табл. 3, результаты определения окисляемости представлены на рис. 1 и 2 и в табл. 4.

Технологические исследования показывают, что вид графита влияет на физико-механические

Таблица 3. Физико-химические свойства опытных образцов

C	Насыпная	Свойства* образцов							
Состав (графит)	плотность шихты,	после термообработки				после коксования			
	г/см ³	$\rho_{\text{каж}}$, г/см ³	$\Pi_{\scriptscriptstyle{ m OTK}}$, %	W, %	σ _{сж} , МПа	$\rho_{\text{каж}}$, г/см ³	$\Pi_{ ext{otk}}$, %	W, %	σ _{сж} , МПа
	Образцы периклазоуглеродистого состава								
ПУ-1 (ГЭ-1)	1,02	3,02	13,0	3,6	48	2,97	15,0	4,3	30
ПУ-2 (ГТобог)	1,09	3,01	12,0	3,3	44	2,95	16,0	4,6	20
ПУ-3 (Falke 94100)	1,13	3,03	12,0	3,3	51	2,98	15,0	4,2	30
ПУ-4 (Falke 9280)	1,15	3,00	13,0	3,7	51	2,95	15,0	4,3	32
ПУ-5 (+592)	1,10	2,99	14,0	3,8	46	2,92	18,0	4,9	26
ПУ-6 (+595)	1,16	3,01	12,0	3,9	58	2,95	15,0	4,2	33
ПУ-7 (FLS 897)	1,16	3,00	12,0	3,4	51	2,96	15,0	4,2	34
Образцы корундоуглеродистого состава									
КУ-1 (ГЭ-1)	0,86	3,09	18,0	4,0	30	2,79	20,0	6,1	16
КУ-2 (+592)	0,92	3,04	20,0	5,3	30	2,75	23,0	6,9	17
КУ-3 (+595)	1,24	3,10	18,0	4,7	41	2,80	21,0	6,2	21
KY-4 (FLS 897)	1,29	3,11	17,0	4,7	43	2,81	21,0	6,2	20
КУ-5 (Falke 9280)	1,29	3,13	17,0	4,5	42	2,86	20,0	5,8	22
$+$ $\rho_{\text{каж}}$ — кажущаяся плотность; $\Pi_{\text{отк}}$ — открытая пористость; W — влажность; $\sigma_{\text{сж}}$ — предел прочности при сжатии.									

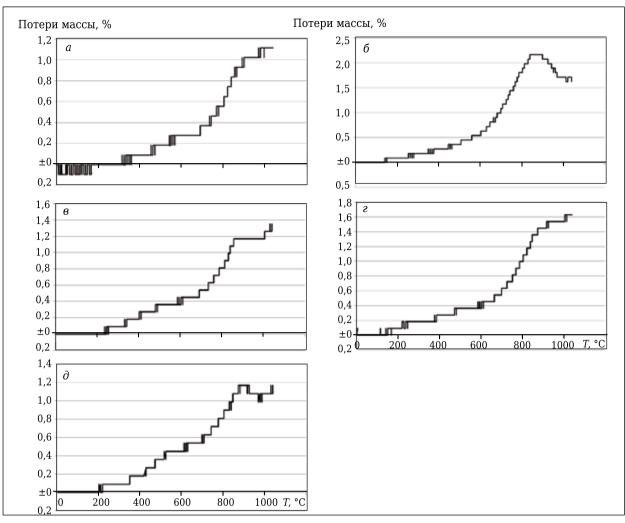


Рис. 1. Кривые окисляемости периклазоуглеродистых образцов: a — ПУ-1; δ — ПУ-2; ϵ — ПУ-3; ϵ — ПУ-4; δ — ПУ-5; ϵ — ПУ-7

свойства углеродсодержащих изделий и их стойкость к окислению. Уже на стадии смешения шихты в смесителе происходит формирование структуры масс с различными свойствами. Так, насыпная плотность масс, готовых к формованию, у периклазоуглеродистых образцов колеблется от 1,02 (ПУ-1) до 1,16 г/см³ (ПУ-7), у корундографитовых образцов — от 0,86 (КУ-1) до 1,29 г/см³ (КУ-5)

(см. табл. 3). Присутствие в составе графитов ГЭ-1 и ГЧ большого количества тонких фракций (<0,15 мм) обусловливает менее плотную структуру шихты, которая в процессе формования отрицательно сказывается на плотности готового изделия. Дополнительная химическая очистка природного графита ГЧ не приводит к улучшению свойств огнеупорных шихт с его использованием.

№ 1 2016 **Hobbie Ofheyhopbi** ISSN 1683-4518 **19**

Рис. 2. Кривые окисляемости корундоуглеродистых образцов: a — KУ-1; b — KУ-2; b — KУ-3; c — KУ-4; b — KУ-5

Таблица 4. **Результаты анализа окисляемости исследуемых образцов**

Состав (графит)	Общая потеря массы, %	Скорость потери мас- сы, 10-3 г/°С	Толщина обезуглеро- женного слоя, мм						
Образцы периклазоуглеродистого состава									
ПУ-1 (ГЭ-1)	22,4	57,00	10						
ПУ-2 (ГТобог)	10,5	28,00	11						
ПУ-3 (Falke 94100)	3,9	3,75	5						
ПУ-4 (Falke 9280)	3,6	3,85	5						
ПУ-5 (+592)	4,4	5,17	7						
ПУ-6 (+595)	3,5	3,70	6						
ПУ-7 (FLS 897)	3,4	4,15	7						
Образцы корундоуглеродистого состава									
КУ-1 (ГЭ-1)	1,15	0,95	8						
KY-2 (+592)	2,25	1,24	6						
KY-3 (+595)	1,38	0,80	5						
KY-4 (FLS 897)	1,63	1,14	6						
KY-5 (Falke 9280)	1,18	1,74	4						

Наличие повышенного количества тонких фракций влияет и на предел прочности при сжатии сформованных образцов как после термообработки, так и после коксующего обжига. Например, предел прочности при сжатии после термообработки периклазоуглеродистых образцов составляет от 48 (ПУ-1) до 58 МПа (ПУ-6), корундографитовых — от 30 (КУ-1) до 43 МПа (КУ-4) (см. табл. 3). Влияние на прочность термообработанных масс вида графита более заметно на корундографитовых массах, чем на периклазоуглеродистых.

В процессе коксования прочностные свойства для различных графитов выравниваются при общем снижении предела прочности закоксованных образцов в сравнении с термообработанными (см. табл. 3). Предел прочности при сжатии закоксованных периклазоуглеродистых изделий колеблется от 20 и 26 (ПУ-2 и ПУ-5) до 33 и 34 МПа (ПУ-6 и ПУ-7), т. е. снижение прочности образцов с графитами ГЭ, ГЧ и +592 (КНР) в сравнении с образцами с графитами +595 (Мадагаскар), Falke 94100 и Falke 9280 (Бразилия) составляет примерно 40 %, в то время как у корундографитовых

закоксованных образцов прочность изменяется от 16 (КУ-1) до 22 (КУ-5) МПа (см. табл. 3), т. е. примерно на 30 %. Корундографитовые шихты менее чувствительны к виду графита, чем периклазоуглеродистые. Керамические свойства как периклазо-, так и корундоуглеродистых образцов выше у образцов, содержащих более чистые графиты (+595, FLS 897, Falke 94100).

Окисление является сложным физикохимическим процессом, зависящим как от вида графита, так и от структуры образца, сформированного с участием того или иного графита. Вид и ход кривой изменения потерь массы у всех образцов примерно одинаков (см. рис. 1 и 2). У периклазоуглеродистых масс выделяется индукционный период, когда потери массы либо отсутствуют, либо весьма незначительны. Этот период соответствует температуре нагрева до 150-200 °C. Дальнейший нагрев (>200 °C) сопровождается небольшими потерями массы (~0,5 %) вплоть до температуры около 300 °C. На этом участке нагрева, по нашим представлениям, происходит остаточное удаление летучих компонентов смолы и этиленгликоля. Интенсивные потери массы наблюдаются при нагреве начиная с 400 °C. Они связаны с деструкцией полимерной связки и получением в дальнейшем коксового остатка. Процесс деструкции полимерной связки заканчивается к 600 °C. На кривых потери массы в районе этой температуры наблюдается изгиб, и начиная с 800 °C потери массы возрастают в связи с окислением продуктов разложения смолы. Высокая удельная поверхность этих продуктов вызывает заметное повышение скорости окисления (потерь массы). Потери массы стабилизируются на уровне 3,5-4,5 % к температуре 1000 °C для периклазоуглеродистых масс (см. рис. 1), т. е. режим окисления переходит из кинетического в диффузи-

Окисление графитов ГЭ-1 и ГЧ в составе периклазоуглеродистых масс заметно отличается от других (см. рис. 1, *a*, *б*). На кривых нет четко выраженных этапов окисления образцов, кривые характеризуются большим углом наклона (высокой скоростью окисления), и потери массы стабилизируются на уровне примерно 18 (ГЧ) и 27 % (ГЭ-1) при 600–700 °С. Такой ход кривых потери массы объясняется прежде всего высокой дисперсностью этих

Библиографический список

- 1. **Бигеев, А. М.** Металлургия стали / А. М. Бигеев, В. М. Бигеев. М. : МГТУ, 2000. 544 с.
- 2. **Вислогузова, Э. А.** Анализ влияния качества периклазоуглеродистых огнеупоров на свойства футеровки конвертеров / Э. А. Вислогузова, И. Д. Кащеев, К. Г. Земляной // Новые огнеупоры. 2013. № 3. С. 129–133.
- 3. *Соловушкова, Г. Э.* Состояние дел и тенденции развития производства и использования углеродсодержащих и бескислородных огнеупоров, применяемых в черной металлургии / Γ . Э. Соловушкова // Огнеупоры. 1991. № 4. С. 35–40.

графитов (содержанием частиц <0,15 мм) и повышенным содержанием примесей, обусловливающих снижение скорости окисления, и образованием на поверхности чешуек графита защитного слоя стеклофазы. Процесс окисления переходит из кинетического режима в диффузионный уже при 800 °С. В этом случае высокая удельная поверхность влияет на скорость окисления уже при низких температурах (600–800 °С). Толщина обезуглероженного слоя образцов, содержащих графиты ГЭ-1 и ГЧ, почти в 2 раза выше, чем у образцов с остальными исследованными графитами (см. табл. 4).

Потери массы при окислении корундографитовых образцов составляют от 1,15 (КУ-1) до 2,25 % (КУ-2) (см. рис. 2). Можно выделить 3 характерных периода окисления: до 200, от 250 до 600 и от 600–700 до 900–1000 °С, которые обусловлены удалением остаточных летучих компонентов связки и полимеризацией смолы, ее деструкцией и последующим коксованием. При температуре около 900 °С процесс стабилизируется, а максимальные потери массы достигают 2,25 % (КУ-2), при этом толщина обезуглероженного слоя составляет от 4 (КУ-5) до 8 мм (КУ-1) (см. табл. 4). Как и в случае периклазоуглеродистых образцов наибольшая толщина обезуглероженного слоя наблюдается при использовании графита ГЭ-1.

ЗАКЛЮЧЕНИЕ

Исследованы графиты различных производителей. Показано, что вид (месторождение и подготовка) графита влияет на свойства шихты уже на стадии ее подготовки в смесителе. Так, насыпная плотность периклазографитовой массы колеблется от 1,02 (с графитом ГЭ-1) до 1,16 г/см³ (с графитом марки +595). Керамические свойства как периклазо-, так и корундоуглеродистых образцов выше у шихт с использованием более чистых графитов с наиболее совершенной кристаллической структурой (+595, FLS 897, Falke 9280).

Окисляемость изделий как периклазо-, так и корундоуглеродистого составов зависит от вида использованного графита. Чем более крупнокристаллический, совершенный и чистый графит использован в изделии, тем меньше скорость потери массы образцом и меньше толщина обезуглероженного слоя.

4. *Кащеев, И. Д.* Исследование структуры и свойств графитов для производства огнеупоров. Часть 1. Физикохимические исследования графитов различных месторождений / И. Д. Кащеев, К. Г. Земляной, В. М. Устьянцев, С. А. Поморцев // Новые огнеупоры. — 2015. — № 11. — С. 8-13.

Получено 17.08.15 © И. Д. Кащеев, К. Г. Земляной, С. А. Поморцев, 2016 г.

№ 1 2016 **Hobbie Ofheyhopbi** ISSN 1683-4518 **21**