В. А. Кукарцев, к. т. н. А. К. Абкарян

ФГАОУ ВПО «Сибирский федеральный университет», г. Красноярск, Россия

УДК 666.363.3.043.1:669.186.3

ИССЛЕДОВАНИЕ РЕНТГЕНОВСКИМИ МЕТОДАМИ ВЛИЯНИЯ ТЕМПЕРАТУРЫ НА МЕЖПЛОСКОСТНЫЕ РАССТОЯНИЯ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ ПЕРВОУРАЛЬСКОГО КВАРЦИТА, ИСПОЛЬЗУЕМОГО ДЛЯ ФУТЕРОВКИ ИНДУКЦИОННЫХ ПЕЧЕЙ

Исследовано влияние температуры на изменение межплоскостных расстояний кристаллической решетки кварцита, применяемого в футеровке индукционных и тигельных печей промышленной частоты (ИЧТ), методами рентгенофазового анализа (РФА). Выявлена закономерность изменения межплоскостных расстояний. Построен график этих изменений. Определена связь изменений в кристаллической решетке со свойствами материала, влияющими на стойкость футеровки индукционных печей.

Ключевые слова: кварцит, межплоскостное расстояние, кристаллическая решетка, футеровка, индукционная печь промышленной частоты.

Основным материалом для футеровки индукционных тигельных печей промышленной частоты является кварцит. На футеровку этих печей воздействуют следующие факторы:

 термические: высокая температура жидкого металла, резкие колебания температуры при нагреве и охлаждении, особенно при загрузке холодной шихты;

 механические: высокое давление жидкого металла, воздействие твердой шихты при загрузке в печь, эрозионное воздействие движущегося расплава под влиянием электромагнитных сил, сжимающие и растягивающие усилия при повороте печи, вибрация индуктора;

 – химические: реакции между расплавом, шлаком и материалом футеровки.

Исходя из этого изготовленная футеровка после уплотнения и спекания должна обеспечить устойчивость к воздействию жидкого расплава при его рабочей температуре и случайном ее превышении; выдержку рабочих температурных циклов и повторное расплавление металла после затвердевания; достаточную механическую прочность в холодном состоянии и при рабочей температуре плавки без значительной потери механических свойств; возможность удаления футеровки без повреждения индуктора после окончания срока службы; достаточно большой температурный градиент между расплавом и индуктором, так как металл в случае его проникновения в футеровку должен «застрять» в ней раньше возможного повреждения индуктора; сопротивляемость эрозии и коррозии.

Кремнезем именно тот материал, который (с учетом его стоимости) при определенных условиях может отвечать вышеприведенным требованиям. Это обеспечивается его полиморфизмом, т. е. модификация и объем кремнезема изменяются в зависимости от температуры. Основное влияние оказывает его переход в более легкие модификации, который сопровождается увеличением объема, что компенсирует усадку футеровки при спекании и обеспечивает стабильный объем при большом числе теплосмен.

Технологические свойства кварцита определяются его химическим составом и в еще большей мере структурой и минеральным составом. На сегодняшний день в России разрабатываются Первоуральское (гора Караульная), Бакальское (Саткинский район) и Бобровское (Троицкий район) месторождения кварцита на Южном Урале,

					-		
Месторождение	SiO ₂	Al ₂ O ₃	CaO	MgO	TiO ₂	Fe ₂ O ₃	P2O5
Первоуральское	99,0-99,4	0,5-0,86	0,01–0,3	0,01-0,02	0,01-0,09	0,15-0,4	0,015-0,025
Бакальское	97,0	1,16	0,05	0,08	0,04	0,87	0,025
Бобровское	98,7	0,02	0,16	-	-	0,78	-
Гора Хрустальная	99,4	0,07	0,3	-	-	0,21	-
Гора Караульная	98,2	0,86	0,2	-	-	0,24	-
Антоновское	98,4	0,53	0,45	0,6	0,025	0,45	0,008
Черемшанское	99,3	0,3	0,6	0,3	0,06	0,55	0,02

Химический состав кварцита разрабатываемых месторождений России, %

Рис. 1. Изменение межплоскостного расстояния d_{cp} , плотности элементарной ячейки Dx, объема элементарной ячейки V в зависимости от температуры нагрева кварцита марки ПКМИ-2

Гора Хрустальная (ст. Решёты) и Гора Караульная (Шайтанский увал) на Среднем Урале, а также Антоновское месторождение в Кемеровской области и Черемшанское в Бурятии. Химический состав этих кварцитов различен (см. таблицу).

Характерными температурными точками полиморфных превращений в кварците, по разным источникам, являются 117, 270, 573, 1025 и 1470 °С. При правильной эксплуатации индукционной тигельной печи промышленной частоты, предназначенной для выплавки чугуна, необходимо также знать, как будет работать футеровка при следующих температурах:

1550 °C — выдержка футеровки по окончании ее спекания;

1000-1050 °C — охлаждение печи при выпуске первой порции металла (без подзавалки);

1450-1470 °C — слив металла в зависимости от его марки;

800-900 °C — охлаждение футеровки при сливе металла и загрузке новой порцией шихты.

С целью выявления закономерностей измекристаллической нения решетки кварцита BO время его нагрева при спекании и изменении температурного режима во время эксплуатации были проведены исследования по схеме, °С: нагрев 25-30 → 117 → 270 → \rightarrow 573 \rightarrow 870 \rightarrow 1025 \rightarrow 1470 \rightarrow → 1550, охлаждение 1470 →

→ 1025 → 870, нагрев 1025 → 1470 → 1550. Цикл охлаждение - нагрев повторялся несколько раз. В качестве опытного материала использовали кварцит марки ПКМИ-2, производимый Первоуральским динасовым заводом по ТУ 1511-022-00190495-2003 (рис. 1). На каждой точке нагрева проводили фазовый анализ исследуемого материала на рентгеновском дифрактометре BRUKER D8 ADVANCE с фокусировкой по Брэггу Брентано, снабженном высокотемпературной камерой НТК 16. Использовали рентгеновскую трубку с медным анодом, регистрация дифракционного спектра осуществлялась высокоскоростным позиционно-чувствительным детектором VANTEC-1. Съемку проводили на углах сканирования 20 = 10 ÷ 90° с шагом 0,007°. Дифрактограмма исходного кварцита показана на рис. 2.

Дифрактограмма, полученная при 870 °С, показала увеличение среднего значения межплоскостного расстояния $d_{\rm cp}$ по сравнению с исходным состоянием на 14 %: при 25 °С $d_{\rm cp}$ = 1,9899 Å*, а при 870 °С $d_{\rm cp}$ = 2,33049 Å. Последующие дифрактограммы, соответствующие заданным температурным точкам, показали, что значение $d_{\rm cp}$ не меняется (см. рис. 1).

Наряду с изменением межплоскостного расстояния происходит уменьшение плотности элементарной ячейки Dx: при 25 °C Dx = 2,666 г/см³, при 870 °C Dx = 2,548 г/см³. Плотность уменьшилась на 4,6 % (см. рис. 1). Кроме того, происходит изменение объема элементарной ячейки V: при 25 °C V = 112,28 Å³, при 870 °C V = 117,45 Å³. Объем увеличился на 4,6 % (см. рис. 1).

Одновременно с этими изменениями происходят изменения размеров самой решетки. При 25 °С a = b = 4,903, c = 5,393 Å, при 870 °С a = b = 4,994, c = 5,438 Å — размеры a и b увеличились на 1,86 %, размер c увеличился на 0,83 %.

Рис. 2. Дифрактограмма исходного кварцита марки ПКМИ-2: ■ — кварцит; *d* — межплоскостное расстояние, Å

Рис. 3. Дифрактограмма фазовых превращений кварцита марки ПКМИ-2 при 1550 °C: ■ — кварцит; *d* — межплоскостное расстояние, Å

При 1550 °С появляется фаза кристобалита, однако при таких режимах нагрева ее количество незначительно и она не оказывает существенного влияния на изменения в кварците (рис. 3).

Увеличение объема кварцитовой футеровки во время ее спекания и сохранение его при рабочих температурах выплавки сплавов значительно снижают опасность образования трещин при резких колебаниях температуры, компенсируют усадку футеровки в процессе спекания, а также создают в определенном слое расширяющуюся зону в виде буферного или сыпучего слоя (рис. 4).

Рис. 4. Оптимальное по толщине расположение слоев в стенке кварцитового тигля, *b* — толщина футеровки

ЗАКЛЮЧЕНИЕ

Постоянство характеристик кварцита при рабочих режимах плавки и слива металла (870-1550 °C) подтверждается проведенными исследованиями (см. рис. 1).

Буферный слой из сыпучего материала предотвращает проникновение металла к индуктору, находится на холодной стороне стенки футеровки, состоит из несвязанных кварцевых зерен и имеет постоянную пористость (см. рис. 1). Наличие этого слоя из порошкообразной массы положительно с точки зрения возможности застывания и. следовательно, остановки

движения металла, проникшего через трещину в двух предыдущих зонах. Также этот слой хорошо поглощает силы, возникающие при термических деформациях. Кроме того, материал в монолитно спеченной зоне должен обладать высокой механической прочностью. Его низкая пористость способствует противостоянию металлу и шлаку за счет малой величины площади контакта. Это обеспечивается спеканием зерен кварцита с борной кислотой.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. **Платонов, Б. П.** Индукционные печи для плавки чугуна / Б. П. Платонов, А. Д. Акименко, С. М. Багуцкая [и др.]. — М. : Машиностроение, 1976. — 176 с.

2. **Уманский, Я. С.** Кристаллография, рентгенография и электронная микроскопия / *Я. С. Уманский, Ю. А. Скаков, А. Н. Иванов* [и др.]. — М. : Металлургия, 1982. — 632 с.

3. **Бетехтин, А. Г.** Курс минералогии : учеб. пособие / *А. Г. Бетехтин.* — М. : КДУ, 2007. — 721 с.

4. Обзор рынка технического кремния в СНГ, демонстрационная версия.

Москва, декабрь, 2007 г. Internet : www. –INFOMINE Research Group.

5. Сектор : энергетика, номер версии : 04, дата : 02 августа 2011 года, http://www.metalbulletin.ru/analytics/ black/389/ ■

> Получено 02.04.13 © В. А. Кукарцев, А. К. Абкарян, 2013 г.