К. С. Кампос¹, Г. Ф. Б. Ленц е Сильва², Э. Х. М. Нуньес¹, В. Л. Васконселос¹

- ¹ Факультет металлургии и технологии материалов Федерального университета штата Минас-Жерайс, Бразилия
- ² Факультет металлургии и технологии материалов Университета Сан-Паулу, Сан-Паулу, Бразилия

УДК 666.762.92.094.2(81)

ПОЛУЧЕНИЕ ДИБОРИДОВ ЦИРКОНИЯ, ТИТАНА И МАГНИЯ МЕТАЛЛОТЕРМИЧЕСКИМ ВОССТАНОВЛЕНИЕМ

Керамические композиции на основе карбидов, нитридов и боридов широко используются вследствие их исключительной устойчивости к износу, ползучести при высоких температурах, термоудару и окислению. Чтобы обеспечить эти свойства, необходимо получить бездефектную микроструктуру из порошкообразных исходных материалов, характеризующихся однородностью и высокой удельной поверхностью. В этой работе дибориды циркония, титана и магния были изготовлены методом металлотермического восстановления. Полученные материалы проанализировали с помощью рентгеновской дифракции (X-ray diffraction XRD), лазерной гранулометрии, сканирующей электронной микроскопии (SEM) и энергодисперсионной спектроскопии (EDS). Термодинамические расчеты были проведены с использованием термохимического программного комплекса и баз данных FactSage[®]. Наблюдали, что значительная часть образцов, полученных в этой работе, имела высокое содержание MgO в структурах. Потенциальной областью применения этих материалов может быть их использование как антиоксидантов в периклазоуглеродистых огнеупорах, поскольку такое промышленное применение не требует удаления оксида магния. Точно установлено, что дибориды магния, циркония и титана обладают высокой стабильностью в восстановительной среде.

Ключевые слова: бориды, огнеупоры, металлотермическое восстановление, характеристика.

введение

Основные преимущества керамических композиций на основе карбидов, нитридов и боридов по сравнению с металлами состоят в их исключительной устойчивости к износу, ползучести при высоких температурах, термоудару и окислению [1–3]. Согласно Chorley и Lednor [4], чтобы обеспечить эти свойства, необходимо получить бездефектную микроструктуру из однородных исходных материалов с высокой удельной поверхностью.

Точно установлено, что металлические элементы из четвертого, пятого и шестого столбцов Периодической системы элементов образуют относительно большое количество разнообразных соединений на основе бора. Они составляют класс перспективных материалов для высокотемпературных областей применения в нескольких отраслях промышленности, таких как литейное производство и огнеупорная промышленность [5]. ТіВ₂ широко используется как баллистическая броня (ballistic armour), катоды и кожухи термопар (thermocouple sheaths) в электролизерах для плавки алюминия по технологии Hall-Heroult, тигли для расплавленных металлов, лодочки для термовакуумной металлизации (metal evaporation boats) и износостойкие покрытия для режущих инструментов [6-8]. ZrB₂ — материал, представляющий особый интерес для использования в ракетах-носителях многоразового применения (reusable launch vehicles) и гиперзвуковых летательных аппаратах (hypersonic vehicles), особенно в острых передних кромках (sharp leading edges) и других поверхностях с высокой температурой [9-11]. MgB₂^{*1} хорошо известен как важный сверхпроводящий материал [12-14]. Также заслуживает внимания использование этих материалов в качестве антиоксидантов для углеродсодержащих огнеупорных материалов [15-17].

Для обработки TiB₂, ZrB₂ и MgB₂ используют несколько методов. Tani и Wada [18] получили образцы на основе TiB₂ с помощью карботермической реакции между материалами TiO₂, B₄C и C. Chamberlain и др. [19] изготовили образцы из ZrB₂ спеканием без давления. В этом процессе для увеличения движущей силы спекания используются такие спекающие добавки, как карбид бора и углерод. Однако механическая стабильность материалов, изготовленных таким образом, ниже, чем у горячепрессованных образцов [20]. Giunchi [21] сообщил о синте-

37

^{*1} Мд находится во втором столбце Периодической системы элементов.

зе MgB₂ по технологии, основанной на реактивной инфильтрации жидкого Mg в порошкообразный брикет бора. Процесс самораспространяющегося высокотемпературного синтеза также широко применяется при изготовлении этих материалов [22–25]. Технология базируется на том принципе, что при зажигании исходные реагенты самопроизвольно трансформируются в продукты вследствие экзотермического характера реакции [26].

В этой работе дибориды циркония, титана и магния изготовили с использованием процесса металлотермического восстановления. Полученные материалы проанализировали с помощью рентгеновской дифракции, лазерной гранулометрии, сканирующей электронной микроскопии и энергодисперсионной спектроскопии. Термодинамические расчеты были проведены с применением термохимического программного комплекса и баз данных FactSage[®] [27, 28].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные материалы (табл. 1) взвешивали и затем перемешивали в планетарной шаровой мельнице Fritsch Pulverisette 7 с частотой вращения 400 об/мин в течение 30 мин. Полученную смесь помещали в графитовый тигель и нагревали в печи Lindberg/Blue furnace. Термическая обработка была проведена в среде аргона при 1400 °С в течение 1 ч при скорости нагрева 10 °С/мин. Аргон, использованный в этой работе, был получен от компании «White Martins».

Таблица 1. Использованные исход	ные материалы
---------------------------------	----------------------

•		••	•
Исходный материал	Химическая чистота, %*1	Средний размер частиц, мкм ^{*2}	Поставщик
ZrO ₂	≥99	4,8	Universal American Inc. (CША)
TiO ₂	≥94	0,4	Cristal Global (CIIIA)
B ₂ O ₃	97	86,4	Brasilbor (Бра- зилия)
Металличе- ский Mg	99	110,4	Rima (Бразилия)
Аморфный эле- ментарный В	95–97	6,2	SB Boron Corporation (CIIIA)

^{*1} Данные, предоставленные поставщиками.

*2 Данные, полученные гранулометрическим анализом.

	Таблица 2. Файлы	JCPDS, использованные	в этой работе
--	-------------------------	-----------------------	---------------

Кристаллическая фаза	Карта JCPDS	Кристаллическая фаза	Карта JCPDS
ZrO ₂	00-024-1165	MgB ₄	00-015-0299
ZrB ₂	00-034-0423	Mg ₂ B ₂ O ₅	00-015-0537
TiB ₂	00-008-0121	Mg ₃ B ₂ O ₆	00-038-1475
MgO	00-043-1022 / 00-045-0946	С	00-025-0284
MgB ₂	00-006-0640	B ₈ C	00-026-0232

Согласно данным поставщика, он содержит около 2 ppm кислорода. Химические реакции, связанные с синтезом диборидов циркония и титана при 1400 °C, представлены ниже:

$$ZrO_2$$
 (тв) + B_2O_3 (ж) + 5Mg (газ) \rightarrow ZrB_2 (тв) + 5MgO (тв) (1)

И

Mq (ж)

$$TiO_2$$
 (тв) + $2B_2O_3$ (ж) + 9Mg (газ) → TiB_2 (тв) +
+ $8MgO$ (тв) + MgB_2 (тв). (2)

Диборид магния был также получен путем взвешивания, перемешивания и нагрева исходных материалов (см. табл. 1). Этап перемешивания был осуществлен в вышеупомянутой планетарной шаровой мельнице при частоте вращения 400 об/мин в течение 5 мин. Термическую обработку выполняли в трубной печи (Analógica Instrumentação e Controle, модель AN1080) при скорости нагрева 10 °С/мин. Образцы подвергали термообработке в среде аргона при 950 °С в течение 2 ч. Химические реакции, связанные с синтезом образцов диборида магния MgB₂ при 950 °С, представлены ниже:

$$+ 2B (TB) \rightarrow MgB_2 (TB)$$
(3)

И

 $4Mg (x) + B_2O_3 (x) \rightarrow MgB_2 (tb) + 3MgO (tb).$ (4)

Определение кристаллических фаз, присутствующих в полученных материалах, было выполнено с

> помощью дифрактометра PANalvtical X' Pert Pro, при Си Ка-излучении и скорости сканирования 0,127 град/с. В табл. 2 приведены использованные файлы ICPDS*2. Морфологические исследования были проведены на сканирующем электронном микроскопе JEOL JSM-6360 LV. Структурный анализ выполнен с использованием системы NORAN EDS, имеющейся на оборудовании сканирующего электронного микроскопа SEM. Исследования гранулометрического состава проведены на гранулометре CILAS 1064. Термодинамические расчеты выполнены с использованием термохимического программного комплекса и баз данных FactSage®.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. З приведены термодинамические данные, относящиеся к реакциям (1) – (4). Расчеты проведены с использованием термохимического программного обеспечения FactSage[®]. Следует отметить, что эти реакции возможны с точки

^{*2} JCPDS — Joint Committee on Power Diffraction Standarts, Объединенный комитет по химическому анализу с использованием порошковых дифракционных методов при Национальном бюро стандартов США.

Таблица 3. Термодинамические данные, относящиеся к реакциям (1) – (4)*

• • • •		• •		
Химическая реакция	Темпера- тура, °С	∆Н, кДж	ΔG , кДж	∆ <i>С_р,</i> Дж/К
(1)	1400	-1692,46	-566,61	39,15
(2)	1400	-3019,37	-1004,66	83,52
(3)	950	-128,64	-94,46	-9,97
(4)	950	-723,67	-526,34	-33,34
* Расчеты выполнены с использованием FactSage® (термохимическая программа и базы данных).				

зрения термодинамики. Наблюдали также, что реакция (3) термодинамически менее предпочтительна для изготовления материалов на основе MgB₂.

На рис. 1, *а* показана типичная дифрактограмма ZrB_2 -материалов, полученных при 1400 °С. Мы наблюдали, что ZrB_2 — это преобладающая фаза; присутствует также значительное количество MgO; ZrO_2 , $Mg_2B_2O_5$ и $Mg_3B_2O_6$ зарегистрировали как второстепенные компоненты. На рис. 1, *б* изображена фазовая диаграмма, полученная с по-

Рис. 1. Типичная дифрактограмма (XRD pattern) ZrB₂материалов, полученных при проведении этой работы (*a*), и фазовая диаграмма, которая получена из FactSage[®] для системы Mg–Zr–B–O при 1400 °C (*b*). Диаграмма построена с учетом молярного соотношения [Zr/(Mg+Zr)] между 0 и 1: 1 — Mg(B₆)₂ (тв) + ZrB₂ (тв); 2 — MgB₂ (тв) + + ZrB₂ (тв); 3 — MgB₄ (тв) + ZrB₂ (тв); 4 — Mg (газ) + ZrB₂ (тв); 5 — MgB₂ (тв) + ZrB₂ (тв); 6 — Mg₃B₂O₆ (тв) + ZrB₂ (тв); 7 — Mg₂B₂O₅ (ж) + ZrB₂ (тв); 8 — MgB₄O₇ (тв) + ZrB₂ (тв); 9 — MgO (тв) + ZrO₂ (тв); 10 — Mg₃B₂O₆ (тв) + ZrO₂ (тв); 11 — Mg₂B₂O₅ (ж) + ZrO₂ (тв); 12 — MgB₄O₇ (тв) + + ZrO₂ (тв)

Рис. 2. Типичная дифрактограмма образцов TiB₂, полученных при проведении этой работы (*a*), и фазовая диаграмма, которая получена из FactSage[®] для системы Mg-Ti-B-O при 1400 °C (*б*). Диаграмма построена с учетом молярного соотношения [Zr/(Mg+Zr)] между 0 и 0,3: 1 — Mg(B₆)₂ (тв) + TiB₂ (тв); 2 — MgB₂ (тв) + TiB₂ (тв); 3 — MgB₄ (тв) + TiB₂ (тв); 4 — Mg (газ) + TiB₂ (тв); 5 — MgB₂ (тв) + + TiB₂ (тв); 6 — Mg3B₂O₆ (тв) + TiB₂ (тв); 7 — Mg2B₂O₅ (ж) + + TiB₂ (тв); 8 — MgB₄O₇ (тв) + ZrB₂ (тв); 9 — MgO (тв) + TiB₂ (тв); 10 — MgO (тв) + TiO₂ (тв); 11 — MgO (тв) + Ti₂O₂ (тв); 12 — Mg3B₂O₆ (тв) + Ti₂O₂ (тв)

мощью программного обеспечения FactSage[®] для системы Mg-Zr-B-O при 1400 °C. Фазы, присутствующие на дифрактограмме, показанной на рис. 1, а, наблюдаются также на фазовой диаграмме, полученной с помощью FactSage[®] (см. рис. 1, б). Однако некоторые фазы, наблюдаемые на фазовой диаграмме, не идентифицировались на дифрактограмме. Вероятно, это можно связать с пределом чувствительности дифракционного рентгеновского анализа XRD (около 5 %) [29, 30]. Таким образом, некоторые фазы, наблюдаемые на фазовой диаграмме, полученной с помошью FactSage[®]. не идентифицировались на дифрактограмме, поскольку они могут присутствовать в материале в концентрациях ниже предела чувствительности дифракционного рентгеновского анализа XRD.

39

На рис. 2, *а* изображена типичная дифрактограмма образцов материала TiB₂, изготовленных при проведении этой работы. Наблюдали, что MgO — главная присутствующая фаза. Кроме того, имеется значительное количество TiB₂. Это наблюдение соответствует реакции (2). Mg₃B₂O₆ определили как второстепенный компонент. На рис. 2, *б* показана фазовая диаграмма, полученная из базы данных FactSage[®] для системы Mg-Ti-B-O при 1400 °C. Фазы, присутствующие на дифрактограмме, показанной на рис. 2, *a*, наблюдаются также на этой диаграмме состояния.

Синтез MgB₂ из элементных порошков Mg и В приводит к образованию значительных количеств MgB₄ и MgO (рис. 3, *a*). Вероятно, образование этих фаз может быть связано с разложением MgB₂ при температурах около 800 °C [31, 32]:

 $2MgB_2 (TB) \rightarrow Mg (x) + MgB_4 (TB)$. (5)

Mg (ж), полученный по реакции (5), может вступать в реакцию с остаточным кислородом

Рис. 3. Типичная дифрактограмма образца MgB₂, изготовленного из элементарных порошков Mg и B (*a*), и фазовая диаграмма, которая получена из FactSage[®] для системы Mg-B-O при 950 °C (*б*). Диаграмма построена как функция активности B и парциального давления кислорода: 1 — Mg(B₆)₂ (тв); 2 — MgB₄O₇ (тв); 3 — Mg₂B₂O₅ (тв); 4 — Mg₃B₂O₆ (тв); 5 — MgO (тв)

в атмосфере печи, что приводит к образованию MgO:

$$Mg(\mathbf{x}) + \frac{1}{2}O_2 \text{ (ra3)} \longrightarrow MgO \text{ (tb)}.$$
(6)

Этот оксид может образоваться по следующей реакции [31]:

$$4MgB_2$$
 (TB) + O_2 (ra3) $\rightarrow 2MgO$ (TB) + $2MgB_4$ (TB). (7)

Углеродсодержащие фазы (С и В₈С), обнаруженные в этом материале, могут быть связаны с графитовым тиглем, используемым на этапе термической обработки, т. е. графитовый тигель может являться источником углерода при образовании этих фаз. На рис. З, б представлена диаграмма состояния, полученная из базы данных FactSage® для системы Mg-B-O при 950 °C.

Материалы MgB₂, полученные из Mg и B₂O₃, содержали MgO как главный компонент, а также в значительном количестве MgB₂ (рис. 4, *a*). Это

Рис. 4. Дифрактограмма образца MgB₂, изготовленного из Mg и B₂O₃ (*a*) и фазовая диаграмма, которая получена из FactSage[®] для системы Mg-B-O при 950 °C (*б*). Диаграмма построена как функция активности B₂O₃ и парциального давления кислорода: 1 — Mg(B₆)₂ (тв); 2 — MgB₄O₇ (тв); 3 — Mg₂B₂O₅ (тв); 4 — Mg₃B₂O₆ (тв); 5 — MgO (тв); 6 — MgB₂ (тв); 7 — MgB₄ (тв)

40

наблюдение согласуется с реакцией (4). Очистка MgB₂ хлорной кислотой — хорошо отработанная процедура [33, 34]. На этом этапе имеет место следующая реакция [31]:

 $2MgB_2(TB) + 2HCl(x) \rightarrow MgCl_2(TB) + MgB_4(TB) + H_2(Ta3).$ (8)

Однако это не тривиальная методика. Рис. 4, б показывает фазовую диаграмму, полученную из FactSage® для системы Mg-B₂O₃-O при 950 °C.

Важно отметить, что реакции (1)-(4) описывают синтез материалов, изготовленных при проведении этой работы, только для конкретной активности B/B₂O₃ без учета наличия кислорода в печной атмосфере. Фазовые диаграммы, полученные из FactSage[®], были построены при рассмотрении различных величин активности B/B₂O₃ и парциального давления кислорода. Как указано выше, используемый в работе аргон содержит около 2 ppm кислорода. Из-за таких условий некоторые фазы, наблюдаемые на фазовых диаграммах, не были учтены в реакциях (1)-(4).

В структуре значительной части полученных образцов обнаружили большое количество MgO. Потенциальная область применения этих материалов — антиоксиданты для периклазоуглеродистых огнеупоров, поскольку такое промышленное применение не требует удаления оксида магния. Точно установлено, что дибориды магния, циркония и титана демонстрируют существенную стабильность в восстановительной среде [35, 36]. MgO-C-огнеупоры широко используются в кислородных конвертерах (BOF), шлаковом поясе сталеразливочных ковшей и дуговых печах (EAF).

На рис. 5 показан гранулометрический состав образцов изучаемых материалов. Образец MgB₂ имеет наименьший средний размер частиц среди исследуемых материалов. Образцы ZrB₂ и TiB₂ характеризуются похожим гранулометрическим составом. На рис. 6 показана микроструктура (SEM) образцов. На рис. 6, I, II наблюдаются агломераты частиц. По-видимому, температура термической обработки при синтезе ZrB₂ могла быть чрезмерной, что привело к образованию жидких фаз. Это наблюдение подтверждается гладкой поверхностью частиц, показанных на рис. 6, II. На

Рис. 6. Микроструктура образцов (SEM), изготовленных в этой работе: I, II — ZrB₂ (I — ×500, II — 5000); III, IV — TiB₂ (III — ×250, IV — ×5000); V, VI — MgB₂ (V — ×100, VI — ×1000)

рис. 6, III, IV в микроструктуре TiB₂ также имеются агломераты частиц. Согласно Nishiyama и др. [37], возможно получение материалов ZrB₂ и TiB₂ при температурах ниже 1400 °C. Микроструктура образцов MgB₂ показана на рис. 6, V, VI. На этих изображениях наблюдали наличие частиц MgB₂ и MgO. Эти утверждения подтверждаются также микроанализом с использованием системы NORAN EDS.

ЗАКЛЮЧЕНИЕ

Рентгеноструктурный анализ полученных ZrB₂материалов показал совместное образование ZrB₂ и MqO; ZrO₂, Mq₂B₂O₅ и Mq₃B₂O₆ наблюдали как второстепенные компоненты. SEM-анализ показал, что температура термообработки, при которой происходит синтез этих образцов, может быть слишком высокой. Дифрактограммы образцов TiB₂ выявили большое количество MgO в этих материалах. Mg₃B₂O₆ наблюдали как второстепенный компонент. Нами отмечено, что синтез образцов MgB₂ из элементарных порошков Mg и B приводит к образованию значительного количества МаВ4 и МаО. Согласно термодинамическим расчетам, выполненным с помощью FactSage[®], среди протестированных вариантов этот меньше всего подходит для изготовления материала MgB₂ с точки зрения термодинамики. Образцы MqB₂, полученные из Mq и B₂O₃, содержали MqO как основной компонент, а также в значительном количестве MgB₂. Анализ гранулометрического состава показал, что образец MgB2 имеет наименьший размер частиц среди исследуемых материалов.

В микроструктуре значительной части образцов, полученных при проведении этой работы, обнаружили большое количество MgO. Потенциальная область применения изученных материалов — антиоксиданты для периклазоуглеродистых огнеупоров, поскольку такое промышленное применение не требует удаления оксида магния.

* * *

Авторы благодарят Magnesita S. A. и CAPES/ FAPEMIG за техническую и финансовую поддержку этого исследования, а также UFMG Microscopy Center за техническую поддержку в проведении SEM-испытаний.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. **Bellosi, A.** Design and process of non-oxide ceramics. Case study: Factors affecting microstructure and properties of silicon nitride / *A. Bellosi* ; eds Y. G. Gogotsi and R. A. Andreievsk // Materials science of carbides, nitrides and borides. — Netherlands : Kluwer Acad. Publ., 1999. — P. 83–96. 2. *Schwarzkopf, P.* Refractory hard metals: Borides, carbides, nitrides, and silicides / *P. Schwarzkopf, K. Kieffer.* — N. Y. : MacMillen Co, 1953.

3. **Budnikov, P. P.** The Technology of ceramics and refractories / *P. P. Budnikov.* — Cambridge : M.I.T. press, 1964.

4. *Chorley, R. W.* Synthetic routes to high surface area nonoxide materials / *R. W. Chorley, P. W. Lednor* // Adv. Mater. — 1991. — Vol. 3, № 10. — P. 474–485.

5. *Monteverde, F.* Processing and properties of zirconium diboride-based composites / *F. Monteverde, A. Bellosi, S. Guicciardi //* J. Eur. Ceram. Soc. — 2002. — Vol. 22, № 3. — P. 279–288.

6. *Wang, H.* MmM5/Mg multi-layer hydrogen storage thin films prepared by dc magnetron sputtering / *H. Wang, L. Z. Ouyang, C. H. Peng* [et al.] // J. Alloys Compd. — 2004. — Vol. 370, № 1–2. — L4–L6.

7. *Khanra, A. K.* Effect of NaCl on the synthesis of TiB_2 powder by a self-propagating high-temperature synthesis technique / *A. K. Khanra, L. C. Pathak, S. K. Mishra* [et al.] // Mater. Lett. — 2004. — Vol. 58, N_{P} 5. — P. 733–738.

8. **Demircan**, **U.** Effect of HCl concentration on TiB_2 separation from a self-propagating high-temperature synthesis (SHS) product / U. Demircan, B. Derin, O. Yücel // Mater. Res. Bull. — 2007. — Vol. 42, No 2. — P. 312–318.

9. **Opeka**, **M. M.** Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience / *M. M. Opeka*, *I. G. Talmy, J. A. Zaykoski* // J. Mater. Sci. — 2004. — Vol. 39, № 19. — P. 5887–5904.

10. *Fahrenholtz, W. G.* Refractory diborides of zirconium and hafnium / W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy [et al.] // J. Am. Ceram. Soc. — 2007. — Vol. 90, № 5. — P. 1347–1364.

11. *Barcena, J.* Processing of carbon nanofiber reinforced ZrB₂ matrix composites for aerospace applications / *J. Barcena, J. Coleto, S. C. Zhang* [et al.] // Adv. Eng. Mater. – 2010. – Vol. 12, № 7. – P. 623–626.

12. **Buzea**, **C**. Review of the superconducting properties of MgB₂ / C. Buzea, T. Yamashita // Supercond. Sci. Technol. — 2001. — Vol. 14, № 11. — P. R115–R146.

13. **Zeng, X.** In situ epitaxial MgB₂ thin films for superconducting electronics /*X. Zeng, A. V. Pogrebnyakov, A. Kotcharov* [et al.] // Nat. Mater. — 2002. — Vol. 1, № 1. — P. 35–38.

14. **Slusky**, **J. S.** Loss of superconductivity with the addition of Al to MgB₂ and a structural transition in Mg_{1-x}Al_xB₂ / J. S. Slusky, N. Rogado, K. A. Regan [et al.] // Nat. -2001. -Vol. 410, \mathbb{N} 1. - P. 343–345.

15. **Yamaguchi**, **A.** Behavior and effects of ZrB₂ added to carbon-containing refractories / *A.* Yamaguchi, *H.* Tanaka // Taikabutsu Overseas. — 1995. — Vol. 15, № 1. — P. 3–9.

16. **Bamburov**, V. G. Antioxidants in carbon-bearing refractories / V. G. Bamburov, O. V. Sivtsova, V. P. Semyannikov [et al.] // Refract. Ind. Ceram. -2000. - Vol. 41, $\mathbb{N} \ge 2. -$ P. 33–36.

17. *Zhang, S.* Influence of additives on corrosion resistance and corroded microstructures of MgO–C refractories / *S. Zhang, W. E. Lee* // J. Amer. Ceram. Soc. — 2001. — Vol. 21, № 13. — P. 2393–2405.

18. *Tani, T.* SiC matrix composites reinforced with internallysynthesized TiB₂ / *T. Tani, S. Wada* // J. Mater. Sci. — 1989. — Vol. 25, № 1. — P. 1132–1142.

19. *Chamberlain, A. L.* Pressureless sintering of zirconium diboride / *A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas* // J. Amer. Ceram. Soc. — 2006. — Vol. 89, № 2. — P. 450–456.

20. *Zhu, S.* Pressureless sintering of zirconium diboride using boron carbide and carbon additions / *S. Zhu, W. G. Fahrenholtz, G. E. Hilmas* [et al.] // J. Amer. Ceram. Soc. — 2007. — Vol. 90, № 11. — P. 3660–3663.

21. *Giunchi, G.* High density MgB₂ obtained by reactive liquid Mg infiltration / *G. Giunchi* // Int. J. Mod. Phys. B. -2003. - Vol. 17, No 1. - P. 453-460.

22. **Pat. 255221 URSS** Synthesis of refractory inorganic compounds / Merzhanov A. G., Shkiro V. M., Borovinskaya I. P. ; 1967.

23. *Merzhanov, A. G.* Self-propagating high-temperature synthesis of refractory inorganic compounds / A. G. *Merzhanov, I. P. Borovinskaya* // Dokl. Akad. Nauk SSSR. — 1972. — Vol. 204, № 2. — P. 366–369.

24. *Munir, Z. A.* Synthesis of high-temperature materials by self-propagating combustion methods / *Z. A. Munir* // Amer. Ceram. Soc. Bull. — 1988. — Vol. 67, № 2. — P. 342–349.

25. *Merzhanov, A. G.* Self-propagating high-temperature synthesis: Twenty years of research and findings / *A. G. Merzhanov*; eds. *J. B. Holt* and *Z. A. Munir //* Combustion and plasma synthesis of high-temperature materials. — N. Y. : VCH Publishers, 1990. — P. 1–53.

26. **Gotman, I.** Dense in situ TiB₂/TiN and TiB₂/TiC ceramic matrix composites: reactive synthesis and properties / *I. Gotman, N. A. Travitzky, E. Y. Gutmanas //* Mater. Sci. Eng. A. — 1998. — Vol. 244, № 1. — P. 127–137.

27. **Bale**, C. FactSage thermochemical software and databases / C. Bale, P. Chartrand, S. A. Degterov [et al.] // Calphad. — 2002. — № 26. — P. 189–228.

28. **Bale**, **C. W**. FactSage thermochemical software and databases — recent developments / *C*. *W*. Bale, *E*. Belisle, P. Chartrand [et al.] // Calphad. — 2009. — Vol. 33, № 2. — P. 295–311.

29. **Dold**, **B**. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste / *B*. *Dold* // J. Geochem. Explor. — 2003. — Vol. 80, № 1. — P. 55–68.

30. **Hong, N. H.** Transparent Cr-doped SnO₂ thin films: ferromagnetism beyond room temperature with a giant magnetic moment / *N. H. Hong, J. Sakai, W. Prellier* [et al.] // J. Phys.: Condens. Matter. — 2005. — Vol. 17, № 10. — P. 1697–1702.

31. **Yadong**, **Y**. Synthesis and characterization of MgO nanowires through a vapor-phase precursor method / Y. *Yadong*, *Z*. *Guangtao*, *X*. *Younan* // Adv. Funct. Mater. — 2002. — Vol. 12, \mathbb{N} 4. — P. 293–298.

32. *Guo, Y.* Decomposition and oxidation of magnesium diboride / Y. *Guo, W. Zhang, D. Yang* [et al.] // J. Amer. Ceram. Soc. — 2012. — Vol. 95, № 2. — P. 754–759.

33. **Setoudeh**, *N*. Formation of zirconium diboride (ZrB₂) by room temperature mechanochemical reaction between ZrO_2 , B_2O_3 and Mg / *N*. *Setoudeh*, *N*. *J*. *Welham* // J. Alloys Compd. — 2006. — Vol. 420, № 1/2. — P. 225–228.

34. *Akkas, B.* Effect of HCl concentration on ZrB₂ separation from a self-propagating high-temperature synthesis (SHS) product / *B. Akkas, M. Alkan, B. Derin* [et al.] // Materials Processing and Energy Materials. — Hoboken : John Wiley & Sons, 2011. — P. 499–504.

35. *Ewais, E. M. M.* Carbon based refractories / *E. M. M. Ewais* // J. Ceram. Soc. Jpn. — 2004. — Vol. 112, № 10. — P. 517–532.

36. *Campos, K. S.* The influence of B_4C and MgB_2 additions on the behavior of MgO-C bricks / K. S. Campos, G. F. B. L. Silva, E. H. M. Nunes [et al.] // Ceram. Int. — 2012. — Vol. 38, \mathbb{N} 7. — P. 5661–5667.

37. *Nishiyama, K.* Preparation of ultrafine boride powders by metallothermic reduction method / *K. Nishiyama, T. Nakamura, S. Utsumi* [et al.] // J. Phys. Conf. Ser. — 2009. — Vol. 176, № 1. — P. 1–8.

Получено 09.03.13 © К. С. Кампос, Г. Ф. Б. Ленц е Сильва, Э. Х. М. Нуньес, В. Л. Васконселос, 2013 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

26-29 ноября 2013 г.

Москва, ФГБУН «Институт металлургии и материаловедения им. А. А. Байкова РАН»

V международная конференция «Деформация и разрушение материалов и наноматериалов»

На конференции планируется обсудить и обобщить весь спектр результатов исследований в области прочности, деформации и разрушения материалов и наноматериалов. В рамках проведения конференции будут проведены семинары и выставка, знакомящие участников и гостей конференции с новейшими образцами оборудования для исследования структуры, процессов деформации и разрушения материалов и наноматериалов. К открытию конференции будет выпущен сборник трудов.

Сайт конференции: http://www.dfmn.imetran.ru. E-mail: dfmn@imetran.ru

Адрес: 119991, Москва, Ленинский проспект, 49