Д. т. н. В. А. Соколов^{1,2} (⊠), к. т. н. М. Д. Гаспарян², к. т. н. М. Б. Ремизов³, П. В. Козлов³

- ¹ Национальный исследовательский технологический университет «МИСиС», Москва, Россия
- ² ООО «ЦИТ «СПЕЦКЕРОКОМ», г. Подольск Московской обл., Россия
- ³ ФГУП «ПО «Маяк», г. Озёрск Челябинской обл., Россия

УДК 666.76"401.7":667.621.226]:621.039.002.68

КОРРОЗИОННАЯ СТОЙКОСТЬ ОГНЕУПОРОВ В РАСПЛАВАХ СТЕКОЛ ПРИ ИММОБИЛИЗАЦИИ РАДИОАКТИВНЫХ ОТХОДОВ

Приведены результаты испытаний коррозионной стойкости плавленолитых цирконийсодержащих и высокохромистых огнеупоров в расплавах боросиликатного и фосфатных стекол, применяемых при иммобилизации радиоактивных отходов (РАО). Показано, что высокохромистые огнеупоры типов X-99 и ХПЛ-85 могут быть рекомендованы в качестве футеровки наиболее ответственных участков плавителей при остекловывании РАО.

Ключевые слова: радиоактивные отходы (PAO), иммобилизация отходов, керамический плавитель, боросиликатное стекло, фосфатное стекло, остекловывание, коррозионная стойкость, плавленолитые хромсодержащие огнеупоры.

овышение мирового энергопотребления в XXI веке в значительной степени может быть обеспечено развитием атомной энергетики, что неминуемо приведет к увеличению образовавшихся радиоактивных отходов (РАО). Проблема иммобилизации РАО является главной для всех стран с атомной энергетикой [1]. При этом признанным в мировой практике обращения с радиоактивными отходами высокой активности (ВАО) является метод остекловывания отходов, промышленное применение которого было начато в СССР в 1987 г. на радиохимическом заводе химкомбината «Маяк» [2]. Технология остекловывания используется для иммобилизации отходов высокого уровня активности почти 30 лет и позволяет значительно сократить объем отходов, получить форму РАО, устойчивую к воздействию факторов окружающей среды и пригодную для долговременного хранения и окончательного захоронения. В основе промышленной технологии остекловывания ВАО заложены процессы электроварки стекла из растворов отходов и флюсующих добавок в стекловаренной печи прямого нагрева (керамическом плавителе) при температурах до 1150 °C и розлива образующегося стекловидного продукта в толстостенные стальные контейнеры для застывания, длительного хранения и после-

 \bowtie

B. A. Соколов E-mail: sokolov235@yandex.ru дующего захоронения. Стеклянная матрица обладает высокой емкостью к иммобилизации различных радионуклидов (продуктов деления) и долговременной устойчивостью.

Стекла для иммобилизации РАО должны иметь сравнительно низкую температуру варки, включать максимальное количество РАО и при этом иметь высокую химическую, термическую и радиационную стойкость, а также обладать достаточной механической прочностью. Этим требованиям в достаточной мере соответствуют два вида неорганических стекол: боросиликатные и фосфатные. Наибольшее распространение для иммобилизации как высокоактивных, так и среднеактивных отходов получили боросиликатные стекла, основу которых составляет кремниевокислородный трехмерный каркас, а бор играет роль модификатора, снижающего температуру варки и повышающего прочность стекла. Температура варки боросиликатных стекол составляет (1100 ± 100) °C, фосфатных стекол (1000 ± 100) °C. Считается, что фосфатные расплавы обладают высоким коррозионным воздействием на керамические огнеупоры.

Промышленные установки по остекловыванию РАО работают в России, США, Великобритании и Японии. Основное внимание в работе установок уделено совершенствованию конструкций плавителей, важным элементом которых является использование коррозионно-стойких материалов. По данным работы плавителей установки «Pamela», Бельгия [3], демонстрационной установки WVDP в Вест-Вэлли, США [4], установок VEK, Германия [5], TVF, Япония [6], и DWPF в Саванна-Ривер, США [7], материалом ванны рас-

плава плавильной камеры являлись плавленолитые хромсодержащие огнеупоры типов ER 2161 и Monofrax K-3.

ПО «Маяк» является единственным предприятием в России, на котором для иммобилизации ВАО в печах прямого электрического нагрева используют фосфатное стекло. Планируемое создание нового комплекса остекловывания ВАО связано с разработкой плавителей, имеющих принципиальные конструкционные и технологические отличия от печей типа ЭП-500 [8]. Для создания новых перспективных аппаратов отверждения ВАО, отвечающих требованиям высокой надежности и производительности, требуется наличие коррозионно-стойких конструкционных материалов, контактирующих с расплавом стекла при высоких температурах в течение длительного времени. Цель настоящей работы — определить на основе проводимых нами исследований и анализа других работ наиболее устойчивые огнеупорные материалы в расплавах боросиликатных и фосфатных стекол, используемых при иммобилизации РАО.

Изучение коррозионной стойкости большого спектра огнеупорных материалов в расплаве боросиликатного стекла показало, что наибольшей стеклоустойчивостью обладают плавленолитые хромсодержащие материалы с содержанием Cr_2O_3 более 78,6 % [8]. Таким же уровнем коррозионной стойкости характеризуются и плавленолитые огнеупоры, содержащие более 90 % ZrO₂. Другие материалы — бадделеитокорундовые (Бк-41, ER 1681, ER 1711), хромалюмоцирконовые (ХАЦ-30, ХЦ-45) показали более низкую стеклоустойчивость. Самую низкую коррозионную стойкость к расплавам боросиликатного стекла проявили плавленолитые высокоглиноземистые огнеупоры, содержащие более 90 % Al₂O₃. По данным [9], в расплаве боросиликатного стекла при 1200 °C самыми стойкими являются хромсодержащие огнеупоры. Их коррозионная стой-

Таблица 1. **Химический состав плавленолитых огнеупоров,** %

Огнеупор	Cr_2O_3	ZrO_2	Al_2O_3	SiO_2	Na ₂ O	MgO
Бк-33	_	33,5	51,5	13,3	1,2	0,2
П-117	-	89,0	2,8	7,0	0,5	0,2
ХАЦ-30	30,0	26,0	29,7	13,0	1,2	0,1
X-104	31,0	20,0	30,8	8,6	1,0	8,2
X-99	83,5	2,0	2,3	6,4	0,4	5,1
ХПЛ-85	80,3	0,9	4,0	11,2	1,2	2,1

кость уменьшается в ряду C1215 \rightarrow SEPR 2161 \rightarrow CR95WA \rightarrow Monofrax E. Огнеупоры C1215 (92,7 % Cr₂O₃, 3,8 % TiO₂) и CR95WA (96,0 % Cr₂O₃, 4,0 TiO₂) изготавливают по керамической технологии, а огнеупоры SEPR 2161 (27 % Cr₂O₃) и Monofrax E (75 % Cr₂O₃) являются плавленолитыми. Следует отметить, что, по данным [9], степень коррозии огнеупора Monofrax E вдвое меньше коррозии плавленолитого бадделеитокорундового огнеупора SEPR 1711.

В настоящей работе приведены результаты коррозионных испытаний хромсодержащих и цирконийсодержащих огнеупоров, полученных в лабораторных (П-117, X-104, X-99) и промышленных (Бк-33, ХАЦ-30, ХПЛ-85) условиях (табл. 1). В лабораторных условиях получали отливки размерами 150×210×240 мм, в промышленных — брусья размерами 250×250×450 мм. Из плотной зоны отливок и брусьев вырезали образцы для испытаний размерами 10×10×70 мм. Текстура отливки огнеупора X-99 показана на рис. 1. Коррозионные испытания огнеупоров проводили в расплавах боросиликатного и фосфатных стекол, составы которых приведены в табл. 2.

Испытания огнеупоров в расплаве боросиликатного стекла проводили в статических услови-

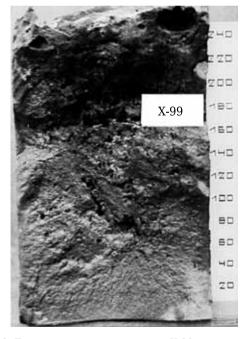
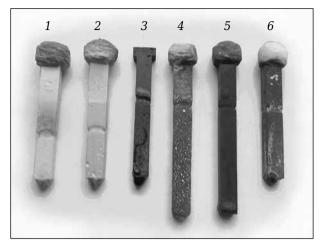
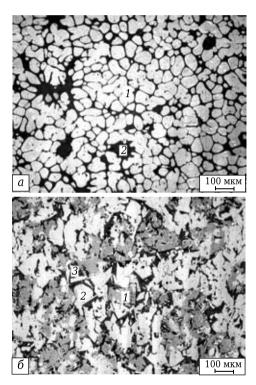


Рис. 1. Текстура отливки огнеупора Х-99

Таблица 2. Составы стекол для коррозионных испытаний, %											
Номер и тип стекла	B_2O_3	P_2O_5	SiO	Na ₂ O	CaO	MgO	Fe ₂ O ₃	Al_2O_3	SO ₃	Оксиды РМ*1	Оксиды металлов*2
1 – боросиликатное	5,5	1,0	53,0	18,0	15,0	1,0	3,5	2,0	0,6	_	_
2 – фосфатное	-	54,0	-	23,0	1,0	1,34	1,56	14,0	0,41	3,67	1,03
3 – фосфатное	6,0	48,0	-	23,0	1,0	1,34	1,56	14,0	0,41	3,67	1,03
*1 Редких металлов — SrO, Y ₂ O ₃ , Cs ₂ O, La ₂ O ₃ , ZrO ₂ , MoO ₃ . *2 NiO, Cr ₂ O ₃ , MnO ₂ , BaO.											


ях при 1150 °С в течение 50 ч. Степень коррозии огнеупоров определяли по изменению линейных размеров образцов после испытаний на уровне стекломассы. Результаты коррозионных испытаний приведены ниже:

Огнеупор	Скорость			
Огнеупор	коррозии, мм/сут			
Бк-33	0,60			
Π-117	0,30			
ХЦ-30	0,40			
X-104	0,25			
X-99	0,18			
ХПЛ-85	0.20			


Образцы после испытаний показаны на рис. 2. Наибольшей устойчивостью в расплаве боросили-катного стекла обладают плавленолитые огнеупоры с высоким содержанием $\mathrm{Cr_2O_3}$ (X-99 и ХПЛ-85). При этом коррозионная стойкость испытуемых плавленолитых огнеупоров уменьшается в ряду X-99 \rightarrow ХПЛ-85 \rightarrow П-117 \rightarrow ХАЦ-30 \rightarrow Бк-33.

Испытания огнеупоров в расплавах фосфатных стекол (2 и 3, см. табл. 2) проводили в статическом и динамическом режимах при 970 и 1100 °C в течение 100 ч. При статических испытаниях скорость коррозии определяли по изменению линейных размеров образцов на уровне стекломассы, при динамических — по изменению объема погруженной в расплав стекломассы части образца [10]. Результаты испытаний однозначно свидетельствовали о значительно более высокой устойчивости плавленолитого высокохромистого огнеупора Х-99 к расплавам фосфатных стекол по сравнению с бадделеитокорундовым огнеупором Бк-33. Следует отметить также высокую коррозионную стойкость высокоциркониевого огнеупора П-117. Из анализа полученных результатов видно, что определяющим фактором высокой стойкости огнеупоров к расплавам боросиликатного и фосфатных стекол является повышенное содержание оксидов хрома и циркония, формирующих структуру огнеупоров. Структуру огнеупоров определяли петрографическим методом, а химический состав кристаллов и стеклофазы плавленых материалов — по данным рентгеноспектрального микрозондирования (РСМ) в пяти точках каждого объекта.

По данным петрографического анализа структура высокоциркониевого огнеупора П-117 является двухфазной и сформирована достаточно крупными кристаллами бадделеита, разобщенными стеклофазой (рис. 3, а). Бадделеит — моноклинная модификация диоксида циркония — является одним из наиболее коррозионно-стойких оксидов к действию минеральных расплавов. Фаза, микроскопически диагностируемая как бадделеит, по данным РСМ, имеет следующий состав, %: ZrO₂ 97,35–98,17, HfO₂ 1,83–2,65. Отмечено, что стеклофаза (SiO₂ 70,9–72,42 %, Na₂O 3,41–5,45 %, Al₂O₃ 19,97–20,86 %,

Рис. 2. Образцы огнеупоров после коррозионных испытаний в расплаве боросиликатного стекла при 1150 °C в течение 50 ч: Бк-33 (1), П-117 (2), ХАЦ-30 (3), Х-104 (4), Х-99 (5) и ХПЛ-85 (6)

Рис. 3. Микроструктура огнеупоров: a — высокоциркониевый П-117 (1 — бадделеит; 2 — стеклофаза); δ — хромшпинелидный X-99 (1 — шпинель; 2 — эсколаит; 3 — стеклофаза)

ZrO₂ 2,03-3,50 %, CaO 0,21-0,25 %, TiO₂ 0,58-0,68 %) распределяется по площади шлифа огнеупора неравномерно; имеются участки с довольно значительным количеством стекла между зернами бадделеита. Очевидно, при контакте с расплавленной стекломассой на этих участках будут возникать наиболее благоприятные условия для коррозии.

В отличие от высокоциркониевого двухфазного огнеупора хромсодержащий огнеупор X-99

Таблица 3. Коррозионная стойкость плавленоли-					
тых огнеупоров в расплавах фосфатных стекол					

Огнеупор	Скорость коррозии (статический режим), мм/сут, т = 100 ч	Степень коррозии (динамический режим), об. %, т = 100 ч				
Стекло, температура 1100 °C						
Бк-33	0,18	_				
П-117	0,06	_				
X-99	0,01	_				
Стекло, температура 970 °C						
Бк-33	0,13	32,10				
П-117	0,02	23,70				
X-99	0,01	5,20				

является многофазным и относится к классу хромшпинелидных. Основными структурными составляющими этого огнеупора являются три фазы (рис. 3, δ): эсколаит и шпинель (примерно в равном соотношении), а также стекло (до 10 об. %). Эсколаитовая фаза в отличие от чистого эсколаита, по данным РСМ, кроме Cr_2O_3 (95,76–97,78 %) содержит Al_2O_3 (1,90–2,44 %) и имеет структур-

Библиографический список

- 1. **Полуэктов, П. П.** Научные подходы и технические решения в области обращения с жидкими высокоактивными отходами / П. П. Полуэктов, Л. П. Суханов, Ю. И. Матюнин // Журнал Российского химического общества им. Д. И. Менделеева. 2005. Т. XLIX, № 4. С. 29–41.
- 2. Дубков, А. С. Рождение и становление отечественной технологии остекловывания высокоактивных отходов в печах прямого электрического нагрева // А. С. Дубков, М. Б. Ремизов. Озёрск : РИЦ ВРБ ФГУП «ПО «Маяк», 2015. 130 с.
- 3. Design and Operation of High-Level Waste Vitrification and Storage Facilities // Techn. Rep. Ser. 1992. & 339, IAEA, Vienna.
- 4. *Chapman, C. C.* Vitrification Process Equipment Design for the West Valley Demonstration Project / *C. C. Chapman, W. P. Drosjask //* Topical Report DOE / NE/44139-42, 1988.
- 5. **Roth, G.** Process Technique and Safety Features of the German VEK Vitrification Plant Currently Under Commissioning / G. Roth, S. Weiseuburger, J. Fleisch [et al.] //Proc. of Intern. Conf. «Global 05», Tsukuba Japan, Oct. 9–13, 2005.
- 6. **Shiotsuki, M.** Perspectives on Application and Flexibility of LWR Vitrification Technology for High-Level Waste Generated from Future Fuel Cycle System / M. Shiotsuki, A. Aoshima, S. Nomura // Proc. of Intern. Conf. «Waste Management 06, Feb. 26 March 2, 2006, Tucson, Arizona, USA, CD-ROM.
- 7. **Norton, M. R.** Overview Defense Waste Processing Facility Operating Experience / M. R. Norton, H. B.

ную формулу ($Al_{0.07}Cr_{1.92}$)_{1.99}O₃ [11]. Шпинельная фаза в виде достаточно крупных кристаллов, по данным PCM, имеет следующий химический состав, %: Cr_2O_3 76,54–78,60, MgO 18,13–19,81, Al_2O_3 3,13–3,69; она представлена структурной формулой $Mg_{0.9}(Cr_{2.0},\ Al_{0.1})_{2.16}O_4$. Обе кристаллические фазы, в первую очередь эсколаитовая, и определяют высокую коррозионную устойчивость огнеупора. Стеклофаза (SiO_2 74,66–77,52 %, Cr_2O_3 9,69–11,54 %, MgO 1,75–3,28 %, Al_2O_3 7,16–7,95 %, CaO 0,29–0,47 %) обеспечивает технологические свойства расплава (жидкотекучесть, хорошее заполнение литейной формы) и получение крупногабаритных огнеупорных изделий.

Проведенные испытания огнеупоров X-99 и XПЛ-85 показали высокую коррозионную стойкость плавленолитых огнеупоров с высоким содержанием Cr_2O_3 в расплавах боросиликатного и фосфатных стекол, применяемых при иммобилизации PAO. Огнеупоры такого типа могут быть рекомендованы в качестве материала наиболее ответственных участков футеровки плавителей при остекловывании PAO.

- Shah, M. E. Stone [et al.] // Proc. Intern. Conf. «Waste Management 02, Feb. 24–28, 2002, Tucson, Arizona, USA, CD-ROM.
- 8. *Соколов, В. А.* Огнеупорные материалы для плавителей установок остекловывания радиоактивных отходов / *В. А. Соколов, М. Д. Гаспарян //* Новые огнеупоры. 2010. № 5. C. 37-40.
- **Sokolov, V. A.** Refractories materials for the melters of plants used in vitrification of radioactive wastes / V. A. Sokolov, M. D. Gasparyan // Refractories and Industrial Ceramics. 2010. Vol. 51, N 3. P. 183–186.
- 9. *Hayward, P. J.* An evaluation of electric melter refractories for contact with glass used for the immobilisation of nuclear waste / *P. J. Hayward, I. M. George, M. P. Woods, T. S. Busby* // Glass Techology. 1987. Vol. 28, № 1(February). P. 43–49.
- 10. **Ремизов, М. Б.** Коррозионные испытания плавленолитых огнеупорных материалов в расплавах фосфатных стекол / М. Б. Ремизов, А. А. Казадаев, В. П. Медведев [и др.] // Огнеупоры и техническая керамика. 2015. № 7. С. 3–8.
- 11. *Соколов, В. А.* Структурные особенности плавленолитых высокохромистых огнеупоров на основе системы Cr_2O_3 –MgO– Al_2O_3 / *В. А. Соколов, Т. Я. Малышева* // Новые огнеупоры. 2004. № 12. С. 69–74.
- **Sokolov, V. A.** The Structure of Fusion-Cast High-Chrome Oxide Refractories in the Cr_2O_3 –MgO–Al $_2O_3$ System / V. A. Sokolov, T. Ya. Malysheva // Refractories and Industrial Ceramics. 2005. Vol. 46, № 2. P. 127–131. ■

Получено 22.02.16 © В. А. Соколов, М. Д. Гаспарян, М. Б. Ремизов, П. В. Козлов, 2016 г.