Ло Сюйдун^{1, 2}, Цюй Дианьли¹, Се Чжипэн², Чжао Веньянь³

- ¹ Факультет высокотемпературных материалов и магниевых ресурсов Ляонинского университета науки и технологии, г. Аньшань, Китай
- ² Главная лаборатория новой керамики и тонкой обработки Университета Цинхуа, г. Пекин, Китай
- ³ Факультет материаловедения и инжиниринга Цзиндэчжэньского керамического института, г. Цзиндэчжэнь, Китай

УДК 546.655.3/.4-31:666.763.58(510)

ВЛИЯНИЕ СеО2 НА КРИСТАЛЛИЧЕСКУЮ СТРУКТУРУ ФОРСТЕРИТА, СИНТЕЗИРОВАННОГО ИЗ НИЗКОСОРТНОГО МАГНЕЗИТА

Обсуждено влияние диоксида церия CeO₂ на кристаллическую структуру форстерита, синтезированного из низкосортного магнезита и природного кремнезема. Для изучения кристаллической структуры и микроструктуры образцов были использованы рентгеновская дифракция (XRD) и сканирующая электронная микроскопия (SEM). Программное обеспечение X'Pert plus было применено для определения параметров кристаллической решетки образцов. В соответствии со стандартами, используемыми Кабинетом министров (правительством), были определены кажущаяся плотность, открытая пористость, водопоглощение и предел прочности при сжатии на холоду образцов. Результаты показали, что форстерит можно синтезировать из низкосортного магнезита и природного кремнезема посредством реакции в твердой фазе. Соответствующая добавка CeO₂ полезна для образования форстерита. Дефект, вызываемый CeO₂ в активном периклазе, ускоряет диффузию ионов. Установлено, что оптимальная добавка CeO₂ составляет 2,15—1,18 г/см³, открытая пористость 29,5—30,1 %, водопоглощение 13,5—14,0 %, предел прочности при сжатии на холоду 13,4—14,2 МПа.

Ключевые слова: низкосортный магнезит, природный кремнезем, форстерит, добавка CeO2.

орстерит — кристаллический силикат магния с химической формулой Mg₂SiO₄ в системе MgO—SiO₂, принадлежащий к группе оливинов [1]. Экстремально низкая электропроводность форстерита делает его идеальным материалом для лазера с перестройкой частоты (tunable laser). Материал обладает также хорошей огнеупорностью вследствие высокой температуры плавления, низким термическим расширением, хорошей химической стабильностью и отличными изоляционными свойствами даже при высокой температуре [2]. Форстерит, применяемый также для биоактивной керамики, показывает значительное улучшение вязкости разрушения (fracture toughness), величина которой превосходит нижний предел, характерный для костного имплантата [3, 4]. Различные исследователи изучали синтез и характеристики форстерита. Нанокристаллический форстеритовый порошок был синтезирован по цитрат-нитратной (citrate-nitrate) технологии с использованием водного раствора нитрата магния, коллоидного кремнезема, лимонной кислоты и аммиака [5]. Форстеритовые нанопорошки были синтезированы также по золь-гель технологии с использованием в качестве исходных магнезиальных

и кремнистых материалов гексагидрата нитрата магния и тетраэтил ортосиликата (tetra ethvl ortho-silicate) [5]. Кроме того, форстерит синтезируют через твердофазную реакцию, которая более предпочтительна [6]. Чтобы облегчить диффузию реагентов для образования форстерита в твердофазной реакции, требуются высокая температура и длительное время реакции. Вследствие этого для снижения температуры спекания и улучшения свойств синтетического продукта часто применяется метод введения добавки минерализаторов, таких как редкоземельные элементы [7—10]. Цель настоящей работы — синтез форстерита из низкосортного магнезита и природного кремнезема. Было исследовано влияние добавки CeO₂ на кристаллическую структуру полученного форстерита. В сравнении с обычными технологиями синтеза форстерита это исследование инновационное с точки зрения сырьевого материала, процесса и технологии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве сырьевых материалов были использованы порошки низкосортного магнезита [Хайчэн (Haicheng), северо-восток Китая] и природного кремнезема [Ляоян (Liaoyang), северо-восток Китая]. Низкосортный магнезит разлагается при 650 °С в течение 1,5 ч с получением активного периклаза [12]. Диоксид церия СеО₂, используемый в работе, был аналитическим реагентом. Форстерит содержал 57,0 мас. % активного периклаза и 43,0 мас. % природного кремнезема (SiO₂ > 98,0 мас.%) согласно соотношению 2MgO:2Al₂O₃:SiO₂ (образец 1). Сырьевые материалы взвешивали согласно определенным пропорциям, в которых содержание СеО₂ составляет 0,4, 0,8, 1,2, 1,6 и 2,0 мас. % (образцы 2—6 соответственно). Смеси подвергали гомогенизации с использованием вибромельницы и прессованию под давлением 100 МПа в пресс-формах из нержавеющей стали. Прессованные образцы нагревали при 1500 °С. Выдержка составляла 2 ч, скорость нагрева 5 °С/мин. После нагрева печь охлаждалась сама по себе (cool by itself).

Метод Архимеда был применен для измерения кажущейся плотности, открытой пористости и водопоглощения спеченных образцов. Предел прочности при сжатии на холоду измеряли на универсальной установке для испытаний (CHT-4605). Рентгеноструктурный анализ образцов проводили с помощью рентгеновского дифрактометра (X' Pert-MPD) с Си Кα-излучением (40 кВ, 100 мА, 0,154184 нм). Внешний вид кристалла и микроструктуру образцов наблюдали с применением микроскопа SEM JSM6480 LV японского производства.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Механизм влияния CeO₂ на синтез форстерита

Твердофазная реакция образования форстерита протекает на поверхности раздела, и реакционная диффузия рассматривается как процедура контроля [13]. Таким образом, скорость реакционной диффузии к поверхности раздела определяет скорость твердофазной реакции и количество образовавшегося форстерита [14, 15]. В процессе образования форстерита дефектные уравнения реагентов MgO и SiO₂ можно представить следующим образом:

$$\text{CeO}_2^{\text{MgO}} \cdot \text{Ce}_{\text{Mg}} + 2\text{O}_0 \rightarrow$$

defect chemical formula $Mg_{1-2x}Ce_xV_{Mg_x}O$, (1)

$$CeO_2^{MgO}$$
 · $CeMg} + O_i^n + O_O \rightarrow$

defect chemical formula $Mg_{1-x}Ce_xO_{1+x}$, (2)

 $CeO_2^{SiO_2} \cdot Ce_{Si} + 2O_O \rightarrow$

defect chemical formula $Si_{1-x}O_2$, (3)

$$\Delta r_2 = \frac{r_{\rm Ce^{4+}} - r_{\rm Si^{4+}}}{r_{\rm Se^{2+}}} \cdot 100 \% = 117,5 \%, \Delta r \gg 30 \%, \tag{4}$$

$$\Delta r_{1} = \frac{r_{Ce^{4+}} - r_{Mg^{2+}}}{r_{Mg^{4+}}} \cdot 100 \% = 20,8 \%,$$

$$15 \% < \Delta r_{2} < 30 \%,$$
(5)

где defect chemical formula — дефектная химическая формула.

Дефекты, вызванные присутствием СеО₂ в реагентах активного периклаза и природного кремнезема, проявляются как дефектные химические формулы (1)—(3). В уравнениях (1) и (2) в результате того, что Се⁴⁺ занимает позицию Mg²⁺ в структуре активного периклаза и образует вакансии Mg²⁺ и промежуток O²⁻, образуются дефектные химические формулы $Mg_{1-2x}Ce_{x}V_{Mg_{x}}O$ и $Mg_{1-x}Ce_{x}O_{1+x}$. И, как показано в уравнении (3), Ce⁴⁺ занимает позицию Si⁴⁺ в структуре кремнезема и образуется дефектная химическая формула Si_{1-x}O₂. Величины Δr_1 и Δr_2 соотношения радиусов ионов растворенного вещества и растворителя рассчитываются в соответствии с приведенными формулами (4) и (5). Радиус ионов Mg^{2+} , Si^{4+} и Ce^{4+} составляет 0,072, 0,040 и 0,087 нм соответственно. Формула (3) предполагает маловероятную растворимость CeO₂ в кремнеземе при $\Delta r_1 > 30\%$ в соответствии с классической теорией точечных дефектов и твердофазных реакций, а также различную структуру CeO₂ и SiO₂. Если величина Δr_2 составляет 20,8 % (15 % < Δr_2 < 30 %), растворимость CeO₂ в активном периклазе, в котором Mg²⁺ замещен на Ce⁴⁺, обоснована. В результате этого дефекты вакансии и промежуточный анион, вызванные присутствием CeO₂ в структуре форстерита, ускоряют диффузию ионов и способствуют образованию форстерита в ранний период реакции. Повышенное содержание СеО₂ увеличивает концентрацию вакансий катионов и промежуточных анионов на поверхности раздела и внутри активного периклаза. Эти дефекты изменяют упорядоченное расположение реагентов и теоретически облегчают твердофазную реакцию с образованием форстерита.

Влияние CeO₂ на кристаллический состав форстерита

Рентгеновский спектр опытных образцов с различными добавками CeO₂ показан на рис. 1. В образцах *1—3* образовались две кристаллические фазы — форстерит и периклаз; форстерит — главная кристаллическая фаза. Наблюдается повышенная интенсивность дифракционного пика периклаза, что связано, по-видимому, с эффектом замещения CeO₂. Церийсодержащие кристаллические фазы на

Рис. 1. Рентгеновский спектр образцов с различной добавкой CeO₂: образец 1 без CeO₂; образцы 2—6 с добавкой 0,4, 0,8, 1,2, 1,6 и 2,0 % CeO₂: ○—форстерит; □—периклаз; ●—CeO₂. ×2000

рентгенограмме образцов 1 и 2 не были полностью идентифицированы. Незначительное количество СеО₂ было определено в образце с $CeO_2 = 0.8\%$. Форстерит и диоксид церия наблюдаются как главные фазы в образцах 4-6 с CeO₂ > 1,2% (рис. 2). Это может быть объяснено значительной разницей между кристаллическими структурами форстерита и CeO₂. Хотя в форстерите может происходить частичное замещение Mg²⁺ на Ce⁴⁺, известный форстерит Mq₂SiO₄ имеет ромбическую структуру, принадлежащую к группе симметрии кристаллической решетки (space group) Pmnb, a СеО₂ — кубическую, принадлежащую к группе симметрии кристаллической решетки Fm3m [16]. Форстерит состоит из Мд—О-октаэдра и Si-О-тетраэдра, связанных совместными вершиной и гранью; у CeO₂ Ce—O-кубы связаны совместной гранью, что ограничивает образование твердого раствора с форстеритом.

Влияние CeO₂ на параметры кристаллической ячейки форстерита

Процесс синтеза форстерита с использованием низкосортного магнезита и природного кремнезема представляет собой мультифазовую реакцию. Образование вакансий Mg²⁺, вызванных тем, что Ce⁴⁺ занимают частично позиции Mg²⁺ в форстерите, теоретически приводит к уменьшению размеров кристаллической решетки. Для детального анализа размеров кристаллической решетки форстерита рассчитывали параметры кристаллической решетки форстерита с помощью программного обеспечения Х' Pert plus. Кристалл форстерита — это ромбическая система, и соотношение между площадью (space) d_{hkl} кристаллографической плоскости, параметрами кристаллической ячейки и символами кристаллографической плоскости (crystal face symbols) (*hkl*) выражается уравнением

$$\frac{l}{d_{hkl}^2} = \left(\frac{h}{a}\right)^2 + \left(\frac{k}{b}\right)^2 + \left(\frac{l}{c}\right)^2.$$

Параметры кристаллической решетки форстерита показаны в табл. 1. Параметры кристаллической решетки и объем элементарной ячейки кристаллической решетки (unit cell) в образце 1 без СеО2 отличаются от аналогичных параметров единичного кристалла форстерита. Различие между единичным кристаллом и кристаллической структурой форстерита может быть вызвано температурой реакции, ее продолжительностью, дефектами кристаллической решетки и взаимодействием между мультикристаллами в процессе образования кристаллической фазы [13, 14]. Можно заключить, что форстерит сохраняет ромбическую структуру в сочетании с тенденцией уменьшения параметров кристаллической решетки и размеров кристалла вплоть до теоретических значений в образцах 1-6. При содержании СеО2 от 0 до 2.0 % ось а колеблется в очень узком диапазоне (от 4,7518·10² до 4,7577·10² пм), а оси b и c слегка укорачиваются с ростом содержания CeO₂: объем кристаллической решетки уменьшается с 292,09·10⁶ до 289,59·10⁶ пм³, достигая величины 289.95 · 10⁶ пм³.

Влияние CeO₂ на микроструктуру форстерита

На рис. 2 показана микроструктура образцов 1—6, обожженных при 1500 °С. Образцы 2 и

a seconda en a selemente en este en este en este en este este							
Монокристалл	<i>а,</i> 10 ² пм*	<i>b,</i> 10 ² пм	<i>с,</i> 10 ² пм	$\alpha = \beta = \gamma$, °	Объем решетки, 10 ⁶ пм ³		
Образец	4,7549	10,199	5,9792	90	289,95		
1	4,7518	10,243	6,0014	90	292,09		
2	4,7577	10,216	5,9894	90	291,10		
4	4,7544	10,213	5,9873	90	290,73		
5	4,7525	10,215	5,9885	90	290,71		
6	4,7548	10,206	5,9834	90	290,37		
3	4,7520	10,194	5,9780	90	289,59		
*1 нм (нанометр) = 1000 пм (пикометр) (Примечание пер.).							

Таблица 1. Параметры кристаллической ячейки форстерита в опытных образцах

36

Образец	Кажущаяся плотность, г/см ³	Открытая пористость, %	Водопоглощение, %	Предел прочности при сжатии на холоду, МПа			
1	2,05	32,4	15,8	12,4			
2	2,08	32,0	15,4	12,8			
3	2,15	30,1	14,0	13,4			
4	2,18	29,5	13,5	14,2			
5	2,24	28,1	12,5	16,6			
6	2,28	27,8	12,2	17,8			

Таблица 2. Свойства опытных образцов с различными добавками CeO₂

Рис. 2. Микроструктура излома образцов с различной добавкой CeO₂: Ceria — диоксид церия. SEM

З показывают относительно более плотную и более однородную (по размерам зерен) микроструктуру по сравнению с образцом 1. Эта однородная микроструктура, а также низкая открытая пористость приводят к повышению предела прочности при сжатии образцов на холоду [14]. Сравнение образцов 1—3 показало, что очевидна ромбическая структура форстерита в образце З и зерновой состав форстерита более однородный, чем у образцов 1 и 2. В образце 3 форстерит накапливается компактно с четкой границей с тонкозернистой ромбической структурой форстерита. По данным рентгеноструктурного анализа, СеО₂ располагается на поверхности форстерита и по границам форстеритовых зерен в образцах 3-6; это выявляет присутствие зерен СеО₂. Диоксид церия и примеси, которые образуют жидкую фазу при высокой температуре, собираются по границам форстеритовых зерен. Внешний вид зерен форстерита и стеклофазы при комнатной температуре нечеткий; наблюдается необычный рост отдельных кристаллов в образце 6 (см. рис. 2). Связующее действие стеклофазы может повысить предел прочности при сжатии на холоду форстеритового материала.

Влияние CeO2 на свойства форстерита

Были определены кажущаяся плотность, открытая пористость, водопоглощение и предел прочности при сжатии на холоду образцов 1—6, спеченных при 1500 °С в течение 2 ч; результаты приведены в табл. 2. Добавка CeO₂ значительно влияет на свойства опытных образцов. Для образцов 2-6 характерна более высокая кажущаяся плотность по сравнению с образцом 1. С ростом добавки СеО2 кажущаяся плотность образцов 3 и 5 составляет 2,15 и 2,24 г/см³ соответственно, что выше на 0,1 и 0,2 г/см³ плотности образца 1. Изменения открытой пористости и водопоглощения непосредственно релевантны. С ростом добавки СеО₂ наблюдается снижение открытой пористости и водопоглощения: первый показатель у образцов 3 и 5 достигает 30,1 и 28,1%, что ниже на 2 и 4%, чем у образца 1, второй показатель составляет 14,0 и 12,5%, что ниже на 2 и 3%, чем у образца 1. При добавке в форстерит 0,4% СеО2 предел прочности при сжатии на холоду образца 2 увеличился незначительно — от 12,4 до 12,8 МПа. При добавке в форстерит 2,0 % СеО₂ предел прочности при сжатии на холоду образца 6 повысился значительно — от 12,4 до 17,8 МПа. Это указывает на то, что СеО₂, очевидно, оказывает эффект усиления спекания форстерита, что хорошо согласуется с результатами SEM. Явное изменение характеристик спекания свидетельствует об изобилии жидкости, появляющейся при высокой температуре при введении добавки СеО₂ в форстерит в количестве более 1,6%, что отрицательно влияет на высокотемпературные характеристики форстерита. В этой связи определили необходимое количество добавки CeO₂, которая не должна превышать 1,6 мас. %. Принимая во внимание характеристики спекания, а также удовлетворительные показатели плотности и прочности, определили, что количество добавки СеО2 в форстерит должно составлять 0,8—1,2%. При этом комбинация главных свойств материала оптимальна: его кажущаяся плотность составляет 2,15—1,18 г/см³, открытая пористость 29,5—30,1 %, водопоглощение 13,5—14,0%, предел прочности при сжатии на холоду 13,4—14,2 МПа.

ЗАКЛЮЧЕНИЕ

Форстерит можно синтезировать из низкосортного магнезита и природного кремнезема с применением твердофазной реакции. Дефект, вызванный CeO₂ в активном периклазе, ускоряет диффузию ионов и полезен для образования форстерита. Вакансии Mg²⁺, вызванные Ce⁴⁺, частично занимают позиции Mg²⁺ в форстерите, что приводит к уменьшению размеров кристаллической решетки. Диоксид церия CeO₂ и примеси распределяются по границам форстеритовых зерен, в результате чего повышается предел прочности при сжатии на холоду. При введении добавки CeO₂ в количестве 0,8% форстерит показывает несколько более однородную по размерам зерен микроструктуру. Наиболее эффективная добавка CeO₂ в смесь сырьевых материалов составляет 0,8—1,2% с учетом сочетания оптимальных свойств форстерита.

Библиографический список

1. *Tavangarian, F.* Synthesis and characterization of spinel-forsterite nanocomposites / *F. Tavangarian, R. Emadi* // Ceram. Int. – 2011. – Vol. 37. – P. 2543.

2. *Saberi, A.* Synthesis and characterization of nanocrystalline forsterite through citrate-nitrate route / *A. Saberi, Z. Negahdari, B. Alinejad* [et al.] // Ceram. Int. - 2009. - Vol. 35. - P. 1705.

3. *Kharaziha, M.* Synthesis and characterization of bioactive forsterite nanopowder / *M. Kharaziha, M. H. Fathi* // Ceram. Int. – 2009. – Vol. 35. – P. 2449.

4. *Ni*, *S*. Preparation and characterizaiton of forsterite (Mg₂SiO₄) bioceramics / *S*. *Ni*, *L*. *Chou*, *J*. *Chang* // Ceram. Int. – 2007. – Vol. 33. – P. 83.

5. *Saberi, A.* Synthesis and characterization of nanocrystalline forsterite through citratie-nitrate route / *A. Saberi, Z. Negahdari, B. Alinejad* [et al.] // Ceram. Int. - 2009. - Vol. 35. - P. 1705.

6. *Sanosh, K. P.* Sol-Gel synthesis of forsterite nanopowders with narrow particle size distribution / *K. P. Sanosh, A. Balakrishnan, L. Francis, T. N. Kim* // J. Alloys Compd. – 2010. – Vol. 495. – P. 113.

7. Okada, K. Low temperature preparation and machinability of porous ceramics from talc and foamed

glass particle / K. Okada, F. Ikawa, T. Isobe [et al.] // J. Euro. Ceram. Soc. — 2003. — Vol. 23. — P. 1283.

8. *Guo, W.* Influence of La_2O_3 on preparation and performance of porous cordierite from rice husk / *W.Guo, H. B. Lu, C. X. Feng* // J. Rare Earth. -2010. - Vol. 28. - P. 614.

9. *Yao, Y. J.* Effect of behaviors of Aluminum nitride ceramics with rare earth oxide additves / *Y. J. Yao, T. Qiu //* J. Rare Earth. — 2007. — Vol. 25, sup l. — P. 58.

10. *Liu*, *S. F.* Effect of CeO₂ addition on the properties of cordierite-bonded porous SiC ceramics / *S. F. Liu, Y. P. Zeng, D. L. Jiang //* J. Euro. Ceram. Soc. - 2009. - Vol. 29. - P. 1795.

11. Shi, Z. M. Effect of CeO₂ on phase transformation towards cordierite in MgO $-Al_2O_3-SiO_2$ system / Z. M. Shi, K. M. Liang, S. R. Gu // Mater. Lett. -2001. - Vol. 51. - P. 68.

12. *Luo, X. D.* Structure Characterization of Cordierite Synthesized from Decomposed Magnesite Pyrophy Llite / *X. D. Luo, D. L. Qu, G. D. Zhang,* H. X. Lui // Chinese J. Inorg. Chem. – 2011. – Vol. 27. – P. 434.

13. **Ruan, Y. Z.** Point defect phenomena of crystalline structure in some common structure materials / Y. Z. Ruan, R. P. Wu, Y. Yu // Chinese J. Struct. Chem. - 2005. - Vol. 24. - P. 1066.

14. *Zeng, J. X.* Effects of Na₂SiF₆ on preparing mullite material with sludge from the aluminum profile factory and pyrophyllite / *J. X. Zeng, Y. Z. Ruan, Y. R. Chen* // Chinese J. Struct. Chem. – 2010. – Vol. 29. – P. 1562.

15. *Wu, R. P.* Influence of Cr_2O_3 on the structure and property of Mg-Al spinel synthesized by waste slag in Aluminum factory / *R. P. Wu, Y. Yu, Y. Z. Ruan* [et al.] // Chinese J. Struct. Chem. -2007. - Vol. 26. - P. 1455.

16. **Song, K. X.** Microwave dielectric characteristics of ceramics in Mg₂SiO₄—Zn₂SiO₄ / K. X. Song, X. M. Chen, C. W. Zheng // Ceram. Int. – 2008. – Vol. 34. – P. 917. ■

Получено 01.11.12 © Xudao Luo, Duanli Zhipeng Xie, Wenyan Zhao, 2013 г. Пер. — **И. Г. Очагова** (ОАО «Черметинформация»), 2013 г.

38