Д. т. н. В. З. Абдрахимов¹ (🖂), к. т. н. Е. С. Абдрахимова²

- ¹ ФГБОУ ВПО «Самарский государственный экономический университет», г. Самара, Россия
- ² ФГБОУ ВПО «Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет)», г. Самара, Россия

УДК 666.762.1.002.68

ИССЛЕДОВАНИЕ ФАЗОВОГО СОСТАВА КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ АЛЮМОСОДЕРЖАЩИХ ОТХОДОВ ЦВЕТНОЙ МЕТАЛЛУРГИИ, ХИМИЧЕСКОЙ И НЕФТЕХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ

Использование в керамических массах алюмосодержащих отходов, содержащих более 50 % Al_2O_3 , способствует образованию α - Al_2O_3 и муллита, которые улучшают физико-механические и химические свойства изделий. Использование алюмосодержащих отходов, содержащих менее 30 % Al_2O_3 , не способствует образованию α - Al_2O_3 , но обеспечивает образование муллита. При использовании алюмосодержащих отходов с повышенным количеством щелочей ($R_2O > 11$ %) не образуется кристобалит, который отрицательно действует на физико-механические показатели керамических композиционных материалов.

Ключевые слова: керамический материал, алюмосодержащие отходы, фазовый состав, дифрактограмма, корунд, муллит, кристобалит, диопсид, монтичеллит, анортит, оксид хрома, кварц, жидкая фаза.

Астоящие исследования являются продолжением работы [1], в которой была показана принципиальная возможность использования алюмосодержащих отходов в производстве керамических материалов различного назначения. В работе [1] были изучены химические, минералогические и технологические свойства сырьевых материалов, представлены составы керамических масс и физико-механические свойства обожженных изделий различного назначения, однако не были исследованы фазовые превращения при обжиге керамических материалов.

В производстве керамических строительных материалов вопросам, касающимся фазового состава, спекания и физико-химических процессов при обжиге изделий, придается особое значение, так как именно они определяют главным образом эксплуатационные свойства изделий [2]. Физико-химические процессы структурообразования в композиционных керамических материалах с применением техногенного сырья существенно отличаются от аналогичных процессов, происходящих при использовании традиционного природного сырья. Эти различия

обусловлены наложением дополнительных эффектов на известные, в связи с чем чрезвычайно осложняют исследование новых материалов и требуют более подробного изучения используемого техногенного сырья.

Цель настоящей работы — исследование фазового состава керамических материалов на основе алюмосодержащего техногенного сырья без применения природных традиционных материалов. Введение в состав керамических масс алюмосодержащих отходов за счет повышенного содержания в них Al₂O₃ позволяет значительно увеличить кислотостойкость, термостойкость и морозостойкость керамических композиционных материалов [1]. В настоящей работе для получения керамического композиционного материала в качестве глинистого компонента использовали глинистую часть хвостов гравитации циркон-ильменитовых руд [3, 4], а в качестве алюмосодержащих отощителей — алюмосодержащие шлаки производства металлического хрома, шлаки выплавки безуглеродистого феррохрома [1, 5], шлаки выплавки ферротитана [1, 6], шлам производства травления алюминия [1, 7], алюмосодержащий шлам, получаемый при очистке стоков производств этил- и изопропилбензола [1,8], шлам никельскелетного катализатора [1,9], отработанный катализатор ИМ-2201 [1, 10, 11], алюмохромистые отходы травления алюминиевых сплавов, обожженные солевые алюминиевые

СЫРЬЕВЫЕ МАТЕРИАЛЫ

Рис. 1. Результаты металлографического анализа алюмосодержащих отходов *1–10* (см. таблицу)

шлаки [12]. Химический состав отходов представлен в таблице. Для оценки размеров частиц отходов был проведен металлографический анализ на микроскопе МИН-8М при 200-кратном увеличении. Средний размер частиц 0,1–5 мкм (рис. 1).

Используемые в настоящей работе шламовые отходы отличаются от высокодисперсных порошкообразных материалов природного и техногенного происхождения наноразмерностью (от 80 до 3000 нм). Дисперсность образцов шламов изучали в Институте ядерных исследований (г. Гатчина Ленинградской обл.) методом малоуглового рассеяния нейтронов на дифрактометре «Мембрана-2» [13]. Эффект от внедрения наноразмерных частиц выражается в том, что в системе появляется не только дополнительная граница раздела, но и носитель квантово-механических проявлений. Присутствие в системе наноразмерных частиц способствует увеличению объема адсорбционно и хемосорбционно связываемой ими воды и уменьшению объема капиллярно-связанной и свободной воды, что приводит к повышению пластичности керамической массы и улучшению прочностных показателей.

Пластическим способом готовили 9 составов керамических масс при влажности

Отходы	Содержание, мас. %								
	SiO_2	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	CaO	MgO	Cr_2O_3	R ₂ O	$\Delta m_{\rm прк}$
1. Алюмосодержащие шлаки производства металлического хрома	4–5	70–75	_	1–2	5–7	_	5–7	2–4	_
 Шлаки выплавки без- углеродистого феррохрома 	5,6	54,80	-	1,85	13,80	14,70	5,3	2,30	-
3. Шлаки выплавки ферроти- тана	2,4	72,06	10,3	0,34	11,40	3,50	-	-	-
 Шлам производства трав- ления алюминия (Самарский металлургический завод) 	4,4	59–80	-	2,80	2–5	1–2	_	0,5–5,0	8–15
 Алюмосодержащий шлам, получаемый при очистке стоков производств этил- и изопропилбензола 	2,3	63,10	_	1,00	4,40	4,20	_	17,20	5,30
6. Шламы никельскелетного катализатора	5,2	26,70	_	0,80	2,90	1,30	_	24,70	37,10
7. Отработанный катализатор ИМ-2201	8,40	74,50	_	0,75	_	0,50	14,5	0,47	-
8. Алюмохромистые отходы травления алюминиевых сплавов	7,3	68,40	-	1,50	-	0,70	10,2	11,80	-
9. Обожженные солевые алю- миниевые шлаки	4,55	75,10	-	1,60	2,56	7,61	-	5,13	3,45
10. Глинистая часть хвостов гравитации	57,04	21,39	1,9	6,21	2,02	1,42	_	1,82	7,04

Химический состав алюмосодержащих отходов

4

20-22%. Каждый состав включал 40% одного из отходов 1-9 (см. таблицу) и 60% глинистой части хвостов обогащения. Из масс формовали образцы (соответственно № 1-9) размерами 100×100×10 мм. Образцы высушивали до остаточной влажности не более 5 %, а затем обжигали при 1100 °С. Рентгенофазовый анализ образцов № 1-9 определяли на дифрактометре ДРОН-6 с использованием Со *К*_а-излучения при частоте врашения столика с образцом 1 град/мин. На рис. 2, а показан фазовый состав образца №1. На дифрактограмме образца №1 отмечаются характерные интенсивные линии α-Al₂O₃ (*d*/*n* 0,160, 0,174, 0,238, 0,247, 0,270 и 0,348 нм), присутствие линий 0,181, 0,217 и 0,363 нм обусловлено Cr₂O₃, линий 0,185, 0,205, 0,222, 0,230, 0,334, 0,443 и 0,458 нм кварцем, линий 0,200, 0,211, 0,220 и 0,339 нм — муллитом, линий 0,2438, 0,251 и 0,269 нм — гематитом, линий 0,2834, 0,313 и 0,403 нм — кристобалитом, линий 0,321, 0,375 и 0,483 нм — анортитом.

Несмотря на то что в литературе было описано большое количество полиморфных модификаций оксида алюминия, в настоящее время достоверно доказано существование только двух: α- и γ- модификаций [14]. В составе неметаллических включений обычно присутствует высокотемпературная α-модификация, которая является аналогом природного минерала корунда. Температура плавления корунда 2050 °C, превращение низкотемпературной γ- в α-модификацию происходит при температуре выше 1000 °C.

В составе алюмосодержащих шлаков производства металлического хрома — повышенное содержание щелочных (*R*₂O) и щелочноземельных (*R*O) оксидов (см. таблицу), которые в первую очередь взаимодействуют с SiO₂, поэтому после охлаждения керамического композиционного материала вся система будет обогащаться корундом и обедняться муллитом, так как часть SiO₂, которая должна бы пойти на образование муллита, будет связана в стеклофазе [15]. Корунд в отличие от муллита снижает термостойкость и в то же время повышает механическую прочность и морозостойкость керамических композиционных материалов.

Из всех известных оксидов хрома в составе неметаллических включений наиболее часто встречается Cr_2O_3 [14]. Его температура плавления 2150–2430 °С, он обладает высокой химической стойкостью. В кислотах и щелочах Cr_2O_3 не растворяется. Стандартные реактивы, применяемые для травления, на него не действуют.

Рис. 2. Дифрактограммы образцов № 1–9 (*а*–*и* соответственно)

СЫРЬЕВЫЕ МАТЕРИАЛЫ

Рис. З. ИК-спектры образцов № 1–9 (а–и соответственно)

Муллит — единственное устойчивое соединение в системе Al₂O₃-SiO₂. Силлиманит и андалузит Al₂O₃·SiO₂ стабильны только в земной коре, а при нагревании распадаются на муллит и кремнезем [14]. Муллит — один из часто встречающихся минералов в обожженных керамических материалах. Высокие показатели огнеупорности, плотности, химической стойкости и механической прочности привлекли внимание исследователей как к получению синтетического муллита, так и к исследованию его структуры [16–18].

Гематит является самым низкотемпературным оксидом железа, и поэтому он может образовываться в области низких температур (<500 °C) [14]. При 550 °C гематит теряет свои магнитные свойства и изменяется его кристаллическая решетка, что связано с переходом β-фазы в устойчивую α-форму. Гематит в керамических материалах способствует образованию железистого стекла, которое инициирует образование муллита [19, 20].

Содержание кристобалита снижает механическую прочность изделий, а образование его из аморфного кремнезема, выделившегося в результате обусловливает муллитизации, их проницаемость [21]. В связи с этим необходимо найти способы регулирования процессов фазообразования, происходящих при обжиге керамических изделий. В частности, способы устранения процесса формирования кристобалита в плотноспекшихся керамических изделиях [21]. Объемный эффект при переходе α-кварца в α-кристобалит составляет 15,4%, что способствуразрыхлению поверхности ет кристаллической решетки [15, 21]. У разрыхленных и богатых дефектами, а также аморфных веществ твердофазные реакции протекают быстрее благодаря ускоренной самодиффузии и гетеродиффузии [15, 21].

Анортит — полевой шпат CaO·Al₂O₃·2SiO₂, являющийся конечным членом плагиоклазов, обладает всеми свойствами, присущими полевошпатовым минералам, и в составе неметаллических материалов встречается только в

устойчивой модификации [14]. Процессы формирования кристаллических новообразований анортита и его влияние на рост прочности при обжиге керамических материалов в литературе встречаются крайне редко [15, 22].

ИК-спектры поглощения образцов керамических композиционных материалов № 1–9 были получены на спектрофотометре «Spekord-75JR». Образцы были приготовлены в виде суспензии порошка с вазелиновым маслом. Присутствие α-Al₂O₃ в образце № 1 подтверждается результатами спектрального анализа по увеличению полос поглощения 660, 640, 540 и 520 см⁻¹ (рис. 3, *a*).

Решетка муллита $3Al_2O_3 \cdot 2SiO_2$ весьма близка к решетке силлиманита и обладает дефектной структурой последнего [17–22]. Она

6

возникает путем заполнения мест в решетке силлиманита ионами О²⁻ и Al³⁺. Поэтому дифрактограммы муллита и силлиманита весьма близки, тогда как их инфракрасные спектры поглощения, наоборот, весьма различаются, что делает спектральный анализ удобным для определения этих минералов [17, 18]. В цепочных структурах, например в муллите, частоты сдвигаются к значениям соответственно 1130-1155 и 1080–1190 см⁻¹ [14, 15]. Изолированные группы [AlO₆] характеризуются частотами 600–700 см⁻¹, а связанные (корунд, силлиманит, кианит, муллит) — частотами 700-860 см⁻¹. Группы [AlO₄] характеризуются частотами около 1100 см⁻¹. Наличие муллита в образце №1 композиционного материала подтверждают полосы поглощения 1090, 1130 и 1182 см⁻¹ (см. рис. 3, *a*).

Кристаллизации кристобалита в образце № 1 при температуре обжига 1100 °С подтверждается увеличением полосы поглощения 1000 см⁻¹ (см. рис. 3, *a*). Кристаллизация отмечается по трещинам и краям зерен кварца. Аморфный кремнезем, образующийся в образце № 1 при муллитизации, растворяется в расплаве, содержание которого увеличивается при 1100 °С. Наличие Сг₂О₃ подтверждает полоса поглощения 650 см⁻¹ (см. рис. 3, *a*).

На дифрактограмме образца №2 (рис. 2, б) отмечаются характерные интенсивные линии α-Al₂O₃ (0,160, 0,174, 0,238, 0,247, 0,270 и 0,348 нм), присутствие линий 0,181, 0,217 и 0,363 нм обусловлено Cr₂O₃, линий 0,185, 0,205, 0,222, 0,230, 0,334, 0,443 и 0,458 нм — кварцем, линий 0,200, 0,211, 0,220 и 0,339 нм — муллитом, линий 0,244, 0,251 и 0,269 нм — гематитом, линий 0,2834, 0,313 и 0,403 нм — кристобалитом, линий 0,192, 0,318, 0,385 и 0,556 нм — монтичеллитом; анортит в данном составе не образуется. Появление монтичеллита CaO · MgO · SiO₂ при обжиге образца № 2 связано с повышенным содержанием в шлаках от выплавки безуглеродистого феррохрома оксида магния (14,7%, см. таблицу). Монтичеллит принадлежит к обширной группе оливинов, представляющих собой ортосиликаты двухвалентных металлов, образующих между собой непрерывные ряды твердых растворов, в составе неметаллических включений встречается довольно часто [14]. Температура плавления монтичеллита 1300 °С. Монтичеллит образуется в богатых оксидами магния и кальция силикатных расплавах, в значительных количествах присутствует в основных доменных, феррохромовых и сталеплавильных (преимущественно мартеновских) шлаках. Процессы формирования кристаллических новообразований монтичеллита (как и анортита) и его влияние на рост

прочности при обжиге керамических материалов в литературе встречаются крайне редко [14, 22].

На лифрактограмме образца № 3 (рис. 2, в) отмечаются характерные интенсивные линии α-Al₂O₃ (0,160, 0,174, 0,238, 0,247, 0,270 и 0,348 нм), присутствие линий 0,205, 0,222, 0,230, 0,334, 0,443 и 0,458 нм обусловлено кварцем, линий 0,200, 0,211, 0,220 и 0,339 нм — муллитом. линий 0.2834. 0.313 и 0.403 нм — кристобалитом, линий 0,321, 0,375 и 0,483 нм анортитом, линий 0,183, 0,196, 0,216 и 0,252 нм — диопсидом, линий 0,188, 0,237 и 0,351 нм — рутилом. Новыми кристаллами в данном составе являются диопсид и рутил. Диопсид минерал CaO · MqO · 2SiO₂, силикат из группы пироксенов, кристаллизуется в моноклинной системе. Температура эвтектического плавления диопсида 1520 °C. Процессы формирования кристаллических новообразований диопсида (как и анортита и монтичеллита) и его влияние на рост прочности при обжиге керамических материалов в литературе встречаются крайне редко. Диоксид титана существует в трех кристаллических модификациях: рутил, брукит и анатаз [14]. В составе неметаллических включений TiO₂ присутствует преимущественно в виде рутила. Температура плавления рутила 1825 °С. Рутил химически стойкий, обладает высокими твердостью (7-8) и прочностью. В шлаках преобладающей формой рутила являются крестообразные дендриты. Присутствие рутила в образцах подтверждает полоса поглощения 550 см⁻¹ (рис. 3, в).

На дифрактограмме образца №4 отмечаются характерные интенсивные линии α-Al₂O₃ (0,161, 0,174, 0,238, 0,247, 0,270 и 0,348 нм), присутствие линий 0,205, 0,222, 0,230, 0,334, 0,443 и 0,458 нм обусловлено кварцем, линий 0,200, 0,211, 0,220 и 0,339 нм — муллитом, линий 0,2834, 0,313 и 0,403 нм — кристобалитом, линий 0,2834, 0,315 и 0,483 нм — анортитом, линий 0,183 и 0,196 нм — диопсидом, линий 0,244 и 0,251 нм — гематитом. Появление новых минералов не отмечается (рис. 2, *г*).

На дифрактограмме образца № 5 отмечаются характерные интенсивные линии α-Al₂O₃ (0,161, 0,174, 0,238, 0,247, 0,270 и 0,348 нм), присутствие линий 0,205, 0,443 и 0,458 нм обусловлено кварцем, линий 0,200, 0,211, 0,220 и 0,339 нм — муллитом, линий 0,183 и 0,216 нм — диопсидом, линий 0,321, 0,375 и 0,483 нм — анортитом. Повышенное содержание в алюмосодержащих шламах, получаемых при очистке стоков производств этил- и изопропилбензола, щелочей (*R*₂O = 17,2%, см. таблицу), способствует образованию жидкой фазы. О по-

вышенном содержании стеклофазы в исследуемом керамическом композиционном материале свидетельствует соотношение интегральных площадей аморфного гало и дифракционных отражений на рентгенограмме (рис. 2, *д*). Присутствие кварцевого стекла в исследуемом образце подтверждает полоса поглощения 1195 см⁻¹ (рис. 3, *д*).

В отличие от образцов № 1-4, в образцах № 5 не происходит заметного образования кристобалита, что, по-видимому, обусловливается увеличением количества стеклофазы снижением относительного содержания И кварца в керамической массе. На дифрактограмме образца №6 отмечаются характерные интенсивные линии муллита (0.1699, 0.188, 0,200, 0,211, 0,220 и 0,339 нм), присутствие линий 0,205, 0,222, 0,230, 0,334, 0,443 и 0,458 нм обусловлено кварцем, линий 0,2438, 0,251 и 0,269 нм — гематитом, линий 0,321 и 0,483 нм — анортитом. Повышенное содержание в шламе никельскелетного катализатора щелочей (R₂O = 24,7 %, см. таблицу), как и в образце № 5, способствует образованию жидкой фазы. О повышенном содержании стеклофазы в образце № 6 свидетельствуют, как и в образце № 5, соотношение интегральных площадей аморфного гало и дифракционных отражений на дифрактограмме (рис. 2, е). В образце № 6, как и в образце № 5, не происходит заметного образования кристобалита, что, по-видимому, обусловливается увеличением количества стеклофазы и снижением относительного содержания кварца в керамической массе.

На дифрактограмме образца № 7 (рис. 2, ж) отмечаются характерные интенсивные линии α -Al₂O₃ (0,160, 0,174, 0,238, 0,247, 0,270 и 0,348 нм), присутствие линий 0,181, 0,217 и 0,363 нм обусловлено Cr₂O₃, линий 0,185, 0,205, 0,222, 0,230, 0,334, 0,443 и 0,458 нм — кварцем, линий 0,200, 0,211, 0,220 и 0,339 нм — муллитом, линий 0,251 и 0,269 нм — гематитом, линий 0,2834, 0,313 и 0,403 нм — кристобалитом, линий 0,321, 0,375 и 0,483 нм — анортитом. Новые минералы, которые не встречаются в образцах № 1–6, не обнаружены.

На дифрактограмме образца № 8 (рис. 2, з) отмечаются характерные интенсивные линии α-Al₂O₃ (0,160, 0,174, 0,238, 0,247, 0,270 и 0,348

Библиографический список

1. **Абдрахимов, В. З.** Применение алюмосодержащих отходов в производстве керамических материалов различного назначения / *В. З. Абдрахимов* // Новые огнеупоры. — 2013. — № 1. — С. 13–23.

2. Абдрахимова, Е. С. Влияние полевошпатового концентрата на химическую стойкость кислотоупо-

нм), присутствие линий 0,181, 0,217 и 0,363 нм обусловлено Cr₂O₃, линий 0,185, 0,205, 0,222, 0,230, 0,334, 0,443 и 0,458 нм — кварцем, линий 0,200, 0,211, 0,220 и 0,339 нм — муллитом, линий 0,251 и 0,269 нм — гематитом, линий 0,321 и 0,483 нм — анортитом. Повышенное содержание в алюмохромистых отходах травления алюминиевых сплавов щелочей (R₂O = 11,8%, см. таблицу), как и в образцах № 5-6, способствует образованию жилкой фазы. О повышенном содержании стеклофазы в исследуемом керамическом композиционном материале свидетельствует, как и в образцах № 5-6, соотношение интегральных площадей аморфного гало и дифракционных отражений на рентгенограммах (см. рис. 2). В образце № 8, как и в образцах № 5-6, не происходит заметного образования кристобалита, что, по-видимому, обусловливается увеличением количества стеклофазы и снижением относительного содержания кварца в керамической массе. Новые минералы, которые не встречаются в образцах № 1-6, в образце № 8 не обнаружены.

На дифрактограмме образца № 9 (рис. 2, u) отмечаются характерные интенсивные линии α -Al₂O₃ (0,160, 0,174, 0,238, 0,247, 0,270 и 0,348 нм), присутствие линий 0,179, 0,217, 0,283, 0,313 и 0,403 нм обусловлено кристобалитом, линий 0,183 и 0,252 нм — диопсидом, линий 0,185, 0,222, 0,230, 0,334, 0,443 и 0,458 нм — кварцем, линий 0,200, 0,211, 0,220 и 0,339 нм — муллитом, линий 0,321, 0,375 и 0,483 нм — анортитом. Новые минералы, которые не встречаются в образцах № 1–8, в образце № 9 не обнаружены.

Таким образом, использование алюмосодержащих отходов, содержащих более 50 % Al_2O_3 , в керамических массах способствует образованию α - Al_2O_3 и муллита, которые улучшают физико-механические и химические свойства изделий. Использование алюмосодержащих отходов, содержащих менее 30 % Al_2O_3 , в керамических массах не способствует образованию α - Al_2O_3 , однако обеспечивает образование муллита. При использовании алюмосодержащих отходов с повышенным количеством щелочей ($R_2O > 11$ %) не образуется кристобалит, который отрицательно действует на физико-механические показатели керамических композиционных материалов.

ров, полученных на основе глинистых материалов различного химико-минерального состава / *Е. С. Аб-драхимова //* Новые огнеупоры. — 2008. — № 11. — С. 19–22.

3. Абдрахимова, Е. С. Исследование кислотостойкости глинистых материалов различного химикоминерального состава / Е. С. Абдрахимова, И. Ю. Рощупкина, В. З. Абдрахимов, М. В. Репин // Новые огнеупоры. — 2012. — № 7. — С. 12–19.

4. **Абдрахимов, В. З.** Физико-химические методы исследования минерального состава и структуры пористости глинистой части хвостов гравитации циркон-ильменитовых руд / В. З. Абдрахимов, Е. С. Абдрахимова // Новые огнеупоры. — 2011. — № 1. — С. 10–16.

Abdrakhimova, E. S. Physicochemical methods for studying the mineral composition and pore structure for the argillaceous part zircon-ilmenite ore gravitation tailings / *E. S. Abdrakhimova, V. Z. Abdrakhimov //* Refractories and Industrial Ceramics. -2011. - Vol. 52, № 1. -P. 1-5.

5. Пат. 2430064 Российская Федерация, МПК С 04 В 33/138. Керамическая масса для получения кислотоупоров / Абдрахимова Е. С., Семёнычев В. К., Абдрахимов В. З.; опубл. 27.09.11, Бюл. № 27.

6. Пат. 2430063 Российская Федерация, МПК С 04 В 33/138. Керамическая масса для получения кислотоупоров / Абдрахимова Е. С., Семёнычев В. К., Абдрахимов В. З.; опубл. 27.09.11, Бюл. № 27.

7. Пат. 2443654 Российская Федерация, МПК С 04 В 33/132. Керамическая масса для изготовления клинкерных керамических изделий / Абдрахимов В. З., Абдрахимова Е. С.; опубл. 27.02.12, Бюл. № 6.

8. Пат. 2387613 Российская Федерация, МПК С 04 В 33/132. Керамическая масса для получения кислотоупоров / Абдрахимова Е. С., Абдрахимов В. 3.; опубл. 27.04.10, Бюл. № 12.

9. Пат. 2410355 Российская Федерация, МПК С 04 В 33/132. Керамическая масса для изготовления керамического кирпича / Абдрахимов В. З., Ковков И. В.; опубл. 27.04.10, Бюл. № 12.

10. **Абдрахимов, В. З.** Экологические и практические аспекты использования высокоглиноземистых отходов нефтехимии в производстве кислотоупоров / *В. З. Абдрахимов* // Новые огнеупоры. — 2010. — № 1. — С. 40–43.

11. **Абдрахимов, В. З.** Экологические и практические аспекты использования отходов нефтехимии в производстве огнеупорного теплоизоляционного материала на основе жидкого стекла / В. З. Абдрахимов, В. К. Семёнычев, И. В. Ковков [и др.] // Новые огнеупоры. — 2011. — № 2. — С. 5–8.

Abdrakhimov, V. Z. Ecological and practical aspects of the use of petrochemical waste in the production of refractory heat insulation material based on water glass / V. Z. Abdrakhimov, V. K. Semenychev, I. V. Kovkov [et al.] // Refractories and Industrial Ceramics. -2011. - Vol. 52, № 1. - P. 6–8.

12. **Абдрахимов, В. З.** Экологические и практические аспекты использования солевых алюминиевых шлаков в производстве керамических кислотоупоров // В. З. Абдрахимов // Новые огнеупоры. — 2010. — № 3. — С. 44–48.

13. **Хлыстов,** *А. И.* Повышение эффективности жаростойких композитов за счет применения химических связующих / *А. И. Хлыстов, С. В. Соколова, А. В. Власов* // Строительные материалы, оборудование, технологии XXI века. — 2012. — № 9. — С. 38–42.

14. Литвинова, Т. И. Петрография неметаллических включений / Т. И. Литвинова, В. П. Пирожкова, А. К. Петров. — М. : Металлургия, 1972. –-184 с.

15. **Будников, П. П.** Химическая технология керамики и огнеупоров // П. П. Будников, В. Л. Балкевич, А. С. Бережной [и др.]. — М. : Изд-во лит-ры по стрву, 1972. — 551 с.

16. **Абдрахимова, Е. С.** Исследование кристаллизации муллита при обжиге кислотоупоров / Е. С. Абдрахимова, В. З. Абдрахимов // Новые огнеупоры. — 2012. — № 4. — С. 39–45.

Abdrakhimova, E. S. Study of mullite crystallization during acid-resistant material firing / *E. S. Abdrakhimova, V. Z. Abdrakhimov* // Refractories and Industrial Ceramics. - 2012. - Vol. 53, № 2. - P. 130–135.

17. **Абдрахимова, Е. С.** Формирование муллита при обжиге кислотоупоров / Е. С. Абдрахимова, В. З. Абдрахимов // Материаловедение. — 2003. — № 4. — С. 26–31.

18. Абдрахимова, Е. С. Синтез муллита из техногенного сырья и пирофиллита / Е. С. Абдрахимова, В. З. Абдрахимов // Журнал неорганической химии. — 2007. — Т. 52, № 3. — С. 395–400.

19. **Абдрахимова, Е. С.** Превращения оксидов железа при обжиге бейделлитовой глины / Е. С. Абдрахимова, В. З. Абдрахимов // Журнал неорганической химии. — 2009. — Т. 54, № 1. — С. 42–46.

20. **Абдрахимова, Е. С.** Структурные превращения соединений железа в глинистых материалах по данным мессбауэровской спектроскопии / Е. С. Абдрахимова, В. З. Абдрахимов // Журнал физической химии. — 2006. — Т. 80, № 7. — С. 1–8.

21. *Абдрахимова, Е. С.* Полиморфные превращения SiO₂ в глинистых материалах различного химико-минералогического состава / *Е. С. Абдрахимова, А. В. Абдрахимов, В. З. Абдрахимов* // Материаловедение. — 2002. — № 7. — С. 35–41.

22. **Абдрахимов, В. 3.** Исследование влияния железосодержащего традиционного природного и техногенного сырья на спекание керамических материалов. Влияние ионов Fe²⁺ и Fe³⁺ на образование низкотемпературного муллита / *В. 3. Абдрахимов.* — Самара : Самарский государственный архитектурно-строительный университет, 2009. — 356 с. ■

> Получено 15.10.14 © В. З. Абдрахимов, Е. С. Абдрахимова, 2015 г.