# К. г.-м. н. **Т. И. Щекина**<sup>1</sup> (<sup>[]</sup>), к. т. н. **А. М. Батанова**<sup>1</sup>, **Т. Н. Курбыко**<sup>1</sup>, д. т. н. **А. Н. Пыриков**<sup>2</sup>, **Б. Н. Григорьев**<sup>2</sup>

- <sup>1</sup> ФГБОУ ВПО «Московский государственный университет имени М. В. Ломоносова», Москва, Россия
- <sup>2</sup> ООО «ОгнеупорТрэйдГрупп», Москва, Россия

УДК 666.762.32+666.762.81]:669.243.32

# СРАВНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ХРОМИТОПЕРИКЛАЗОВЫХ И ПЕРИКЛАЗОУГЛЕРОДИСТЫХ ОГНЕУПОРОВ ПРИ ИХ ВЗАИМОДЕЙСТВИИ С РАСПЛАВАМИ НИКЕЛЕВОГО ПРОИЗВОДСТВА (ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ). 2. Поведение периклазоуглеродистых огнеупоров в присутствии металлошлакового и шлакового расплавов<sup>\*</sup>

Приведены результаты минералого-петрографических исследований фазообразования и структурных изменений в периклазоуглеродистых огнеупорах после экспериментов по их взаимодействию с расплавом шлака и с расплавами шлака и никеля. В сравнении рассмотрены механизм и интенсивность химической коррозии огнеупора при воздействии на него металлошлакового и шлакового расплавов. Показано, что периклазоуглеродистый огнеупор значительно слабее, чем хромитопериклазовый, взаимодействует с обоими типами расплавов. Присутствие углерода препятствует взаимной диффузии компонентов и химической коррозии периклазоуглеродистых огнеупоров, что существенно повышает их устойчивость по сравнению с хромитопериклазовыми.

Ключевые слова: химический и фазовый составы, шлаковый и металлошлаковый расплавы, коррозия и разрушение огнеупоров, шлакоустойчивость, шлакометаллоустойчивость, хромитопериклазовые и периклазоуглеродистые огнеупоры, взаимодействие огнеупора с расплавами.

Цель проведенной работы — сравнение устойчивости периклазоуглеродистых (MgO-C) огнеупоров при воздействии металлошлакового и шлакового расплавов никелевого производства в лабораторных условиях при 1600 °C и атмосферном давлении. В части 1 статьи рассмотрены результаты изучения хромитопериклазовых огнеупоров, дано описание лабораторного эксперимента и приведена методика исследования образцов.

Дальнейшая работа заключалась в изучении возникших изменений в периклазоуглеродистом огнеупоре методами оптической и электронной микроскопии, определении фазового и химического составов материала до и после эксперимента. Первоначально были исследованы структура, фазовый и химический составы (табл. 1 и 2) исходного периклазоуглеродистого огнеупора (образец № 2). Затем исследовались 2 опытных образца, один их которых был по-

\* Часть 1 статьи опубликована в журнале «Новые огнеупоры» № 1 за 2015 г.



лучен при взаимодействии расплавов металла и шлака со стенками тигля, изготовленного из MgO-C-огнеупора (опыт 6, образец № 6), другой — расплава шлака с тем же огнеупором (опыт 5, образец № 5).

Изучение образцов проводили с применением оптического микроскопа «Opton» и электронного микроскопа «Jeol JSM-6480LV» с использованием изображений в обратно-рассеянных электронах (BSE). Химический состав фаз изучали с помощью электронно-зондового энергодисперсионного микроанализатора на базе растрового электронного микроскопа «Jeol JSM-6480LV» на спектрометре «INCA-Energy 350» и «X-Max N-50» кафедры петрологии МГУ. Петрохимические пересчеты валовых составов огнеупоров и шлака, полученных путем химического анализа на микрозонде огнеупоров по площадкам от 0,01 до 4 мм<sup>2</sup>, проводили с использованием нормативно-молекулярного метода Ниггли.

## РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Исходный периклазоуглеродистый огнеупор марки ПУ-9 (образец № 2) по данным стандартов имеет следующий состав, мас. %: MgO не менее 93,0, CaO не более 1,5, SiO<sub>2</sub> не более 1,5, Fe<sub>2</sub>O<sub>3</sub> не более 1,0, углерод 10–15. Согласно данным микрозондового анализа по площади образца (см. табл. 2), помимо

| Таблица 1. Кристаллохимические формулы фаз исходного перикла-    |
|------------------------------------------------------------------|
| зоуглеродистого огнеупора (образец № 2) и зон взаимодействия его |
| с расплавами шлака и металла (образец № 6)                       |

| Номер<br>анализа                                                                   | Зона | <i>l</i> *1, мм | Фаза*² | P*3 (n*4)      | Состав фазы                                                                                                                      |  |  |
|------------------------------------------------------------------------------------|------|-----------------|--------|----------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1                                                                                  | 00   | >35             | Per    |                | (Mg <sub>1,03</sub> Fe <sub>0,01</sub> Na <sub>0,01</sub> ) <sub>1,05</sub> O                                                    |  |  |
| 2                                                                                  | 00   | >35             | Per    | Связ., пор.    | (Mg <sub>0,98</sub> Fe <sub>0,05</sub> Na <sub>0,01</sub> ) <sub>1,04</sub> O                                                    |  |  |
| 3                                                                                  | 00   | >35             | Mw     |                | Ca <sub>2,86</sub> Mg <sub>0,96</sub> (Si <sub>1,86</sub> Al <sub>0,02</sub> ) <sub>1,86</sub> O <sub>8</sub>                    |  |  |
| 4                                                                                  | Ι    | 35              | Per    | Ц(2)           | (Mg <sub>1,04</sub> Na <sub>0,01</sub> ) <sub>1,05</sub> O                                                                       |  |  |
| 5                                                                                  | Ι    | 35              | Per    | S с вкл.       | (Mg <sub>1,06</sub> Fe <sub>0,04</sub> ) <sub>1,10</sub> O                                                                       |  |  |
| 6                                                                                  | Ι    | 35              | Mw     |                | Ca <sub>2,82</sub> (Mg <sub>0,96</sub> Fe <sub>0,01</sub> ) <sub>0,97</sub> Si <sub>1,92</sub> O <sub>8</sub>                    |  |  |
| 7                                                                                  | Ι    | 34              | Mtc    |                | $(Ca_{0,92}Mg_{0,84})_{1,76}(Si_{0,94}Al_{0,02})_{0,96}O_4$                                                                      |  |  |
| 8                                                                                  | Ι    | 33              | Mw     |                | $Ca_{2,78}Mg_{0,98}(Si_{1,88}Al_{0,02})_{1,90}O_8$                                                                               |  |  |
| 9                                                                                  | Ι    | 30              | Mtc    |                | $(Ca_{0,97}Mg_{0,67})_{1,64}(Si_{0,99}Al_{0,03})_{1,02}O_4$                                                                      |  |  |
| 10                                                                                 | Ι    | 30              | Per    | Ц, Кр (2)      | (Mg <sub>1,03</sub> Na <sub>0,01</sub> ) <sub>1,04</sub> O                                                                       |  |  |
| 11                                                                                 | Ι    | 15              | Mw     |                | $Ca_{2,76}Mg_{0,96}(Si_{1,86}Al_{0,02})_{1,88}O_8$                                                                               |  |  |
| 12                                                                                 | Ι    | 15              | Mtc    |                | $(Ca_{0,90}Mg_{1,00})_{1,90}(Si_{0,95}Al_{0,01})O_4$                                                                             |  |  |
| 13                                                                                 | II   | 13              | Per    | Ц, Кр (2)      | (Mg <sub>1,04</sub> Na <sub>0,01</sub> ) <sub>1,05</sub> O                                                                       |  |  |
| 14                                                                                 | II   | 10              | Mtc    |                | $(Ca_{0,92}Mg_{0,95})_{1,87}(Si_{0,94}Al_{0,01})_{0,95}O_4$                                                                      |  |  |
| 15                                                                                 | II   | 10              | Mw     |                | Ca <sub>2,78</sub> Mg <sub>0,94</sub> Si <sub>1,88</sub> O <sub>8</sub>                                                          |  |  |
| 16                                                                                 | III  | 0,7-1,0         | Mtc    | (5)            | $(Ca_{0,84}Mg_{1,08})_{1,92}(Si_{0,97}Al_{0,01})_{0,98}O_4$                                                                      |  |  |
| 17                                                                                 | III  | 1               | Ol     |                | $(Mg_{1,92}Ca_{0,07})_{1,99}(Si_{0,98}Al_{0,02})_{1,00}O_4$                                                                      |  |  |
| 18                                                                                 | III  | 0,7-0,24        | Ol     | (2)            | $(Mg_{1,89}Ca_{0,07})_{1,96}(Si_{0,97}Al_{0,02})_{0,99}O_4$                                                                      |  |  |
| 19                                                                                 | III  | 0,5             | Per    |                | $(Mg_{1,00}Al_{0,02}Ca_{0,01})_{1,03}O$                                                                                          |  |  |
| 20                                                                                 | III  | 0,1             | Ol     |                | (Mg <sub>1,89</sub> Ca <sub>0,07</sub> ) <sub>1,96</sub> (Si <sub>0,97</sub> Al <sub>0,01</sub> ) <sub>0,98</sub> O <sub>4</sub> |  |  |
| 21                                                                                 | III  | 0,1             | Mtc    |                | (Ca <sub>0,96</sub> Mg <sub>1,11</sub> ) <sub>2,07</sub> (Si <sub>0,96</sub> Al <sub>0,01</sub> ) <sub>0,97</sub> O <sub>4</sub> |  |  |
| 22                                                                                 | III  | 0,08-0,02       | Spl    | (2)            | (Mg <sub>1,02</sub> Na <sub>0,01</sub> ) <sub>1,03</sub> (Al <sub>2,01</sub> Si <sub>0,01</sub> ) <sub>2,02</sub> O <sub>4</sub> |  |  |
| 23                                                                                 | 01   | 0               | Per    | Шлак           | Mg <sub>1,04</sub> O                                                                                                             |  |  |
| 24                                                                                 | 01   | 0               | Mtc    | Шлак (2)       | (Ca <sub>0,86</sub> Mg <sub>1,07</sub> ) <sub>1,93</sub> (Si <sub>0,96</sub> Al <sub>0,01</sub> ) <sub>0,97</sub> O <sub>4</sub> |  |  |
| 25                                                                                 | 01   | 0               | Mll    | »              | Ca1,76(Al0,93Mg0,40Ti0,03 Si1,42)2,78O7                                                                                          |  |  |
| 26                                                                                 | 01   | 0               | Ol     | Шлак           | (Mg <sub>1,87</sub> Ca <sub>0,11</sub> ) <sub>1,98</sub> (Si <sub>0,98</sub> Al <sub>0,01</sub> ) <sub>0,99</sub> O <sub>4</sub> |  |  |
| 27                                                                                 | 01   | 0               | Ol     | Шлак, пор. (2) | $(Mg_{1,88}Ca_{0,13})_{2,01}Si_{0,99}O_4$                                                                                        |  |  |
| 1 Расстояние анализитурной точки от границы огнеулора с расплавами шлака и металла |      |                 |        |                |                                                                                                                                  |  |  |

<sup>\*1</sup> Расстояние анализируемой точки от границы огнеупора с расплавами шлака и металла.
\*2 Обозначения фаз: Per — MgO (периклаз); Mw — мервинит; Mtc — монтичеллит; Spl — шпинель; Mll — миллерит; Ol — оливин.

<sup>13</sup> Зона проведения анализа: связ. — фаза в связующей массе; пор. — пористое зерно; Ц — центр зерна; S с вкл. — анализ зерна фазы по всей площади с включениями; Кр — край зерна.
<sup>14</sup> Число анализов, из результатов которых выведено среднее значение.

вышеуказанных компонентов, в огнеупоре содержится 4,5 % Al<sub>2</sub>O<sub>3</sub>, а концентрация SiO<sub>2</sub> составляет около 3 %. Микроскопические исследования и петрохимические пересчеты химических анализов показали, что образец № 2 периклазоуглеродистого огнеупора, использованный в опытах, состоит примерно на 80 % из периклаза, 10 % из углерода, 10 % из монтичеллита, мервинита и шпинели (см. табл. 2).

Визуально исходный обрапериклазоуглеродистого зен огнеупора, из которого был изготовлен тигель, имеет светлосерый цвет, плотную брекчиевидную текстуру с хаотично расположенными агрегатами зерен периклаза серого, темносерого, коричневого цвета размерами 2-7 мм. Они имеют обломочную форму, часто со сглаженными краями. Под микроскопом видно, что образец сложен крупными агрегатными образованиями периклаза размерами (5÷8)×(3÷4) мм, в промежутках между которыми присутствуют в небольшом количестве более мелкие обломки этого минерала, погруженные в черную непрозрачную углеродистую массу. Образец имеет порфиробластовую структуру. Периклаз в агрегатах по данным электронной микроскопии представлен зернами размерами от 0,02 до 0,4 мм (рис. 1, а, б) серого цвета (в BSE), округлой или овальной, часто причудливой формы с плавными очер-

таниями. Силикаты, представленные главным образом мервинитом и небольшим количеством монтичеллита, в виде тонких прожилков заполняют промежутки между зернами периклаза, а



Рис. 1. Типичная структура исходного периклазоуглеродистого огнеупора (образцец № 2): *a* — агрегатный обломок, состоящий из зерен периклаза, окружен связующей углеродистой массой; *б* — овальные зерна периклаза, сцементированные мервинитом внутри того же агрегата

12

| Показателии         00*1         I         I         I         I         I         I         I         I         I         I         I         II         II         III         III         III         IIII         IIIII         IIII         IIIII         IIII         IIIII         IIIII< |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| l, мм         36         35         30         25         22         20         10         6         3         0,7         0,1         1–0         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –         –                                                                                                                      |  |  |  |  |  |  |
| Мощность зоны, мм – 20 20 20 20 20 14 14 14 1,0 1,0 1,0 5–7 – 3–5 – –<br>Валовый химический<br>состав мас %:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Валовый химический                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| cocree Mac <sup>0</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| COLIAD, Mac. 70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| SiO <sub>2</sub> 3,16 3,41 4,67 2,12 1,88 3,77 2,66 2,65 2,60 21,52 21,82 18,71 20,70 42,04 15,80 6,21 7,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| TiO <sub>2</sub> 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> 4,58 3,64 2,36 3,80 2,53 3,79 3,32 3,12 3,16 28,86 30,81 35,82 21,63 11,92 0,16 0,00 0,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| FeO 0,32 0,56 0,54 0,67 0,60 0,82 0,82 0,63 0,65 0,52 0,10 - 1,03 9,10 9,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| MnO 0,00 0,00 0,00 0,13 0,00 0,19 0,00 0,00 0,00 0,00 0,00 - 0,00 0,18 0,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| MgO 89,53 90,75 90,43 91,43 93,07 89,39 90,75 91,54 92,11 35,84 40,61 32,29 46,78 13,03 0,00 0,00 0,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| CaO 1,95 1,64 1,32 1,61 1,52 1,73 1,90 1,72 1,48 13,66 6,40 10,03 9,39 0,00 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Na2O 0,43 - 0,67 0,38 0,25 0,50 0,37 0,34 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Cr <sub>2</sub> O <sub>3</sub> 0,74 0,05 - 0,09 0,80 0,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| NiO – – – – – – – – – – – 0,08 0,11 – 80,22 73,42 75,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| CoO 0,00 0,00 - 0,94 2,13 2,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| CuO 0,00 0,03 - 1,77 7,63 4,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| SO <sub>3</sub> 1,3 1,02 1,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| BaO 3,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| P <sub>2</sub> O <sub>5</sub> 0,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Нормативный фазовый                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| состав, мол. %:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Per 87,6 87,9 86,9 90,5 92,3 86,9 89,6 90,3 90,4 6,4 4,6 1,1 20,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Spl 5,8 5,0 3,4 5,2 3,6 5,3 4,7 4,2 4,3 41,2 43,2 51,5 30,5 27,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Mtc 6,6 3,6 5,5 4,3 4,1 5,7 5,7 5,1 3,3 35,6 17,3 26,7 24,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Ol - 3,5 4,2 2,1 - 0,4 2,0 16,8 34,9 19,9 25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| SO <sub>3</sub> 0.8 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| En*8 32,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Oz*9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| BaSO <sub>4</sub> 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| <sup>*1</sup> Исходный огнеупор (ПУ), образец № 2, зона 00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

Таблица 2. Валовый химический и нормативный фазовый составы исходного периклазоуглеродистого огнеупора (образец № 2) и зон взаимодействия его с расплавами шлака и никеля (образец № 6)

<sup>2</sup> Состав зоны III по всей ширине.

\*3 Средний состав шлака (зона 01) из 6 анализов. \*4 Средний состав стекла из шлака из 2 анализов.

\*5.7 Анализы металлической фазы, мас. % элементов: \*5 — основная фаза металла (зона 01);\*6 — выделения железистой фазы (зона 01); \*7 — металл в шлаке (зона 01); \*8 Еп — энстатит; \*9 Ог — кварц.

также образуют отдельные сростки мелких зерен в связующей их массе. Углерод в виде темных масс, струй, среди которых наблюдаются мелкие обломки периклаза и силикатов, заполняет промежутки между их крупными агрегатными скоплениями. Состав периклаза как крупных, так и мелких зерен близок к чистому оксиду магния, но в нем обнаружены небольшие примеси FeO (см. табл. 1). Мервинит практически отвечает идеальному составу с небольшой примесью алюминия.

### ОПИСАНИЕ ОБРАЗЦОВ ПОСЛЕ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА С ПЕРИКЛАЗОУГЛЕРОДИСТЫМ **ОГНЕУПОРОМ**

Периклазоуглеродистый огнеупор (образец № 6) после опыта по взаимодействию с расплавами шлака и никеля при 1600 °С изменил внешний вид, но не так сильно, как это происходило с хромитопериклазовым огнеупором. Цвет материала тигля стал темно-серым, сами агрегатные обломки периклаза значительно потемнели. Структура огнеупора внешне не изменилась, в нем, как и в исходном, видны обломки периклаза разного размера, погруженные в связующую массу. Периклаз под микроскопом бесцветный или слабо окрашен в коричневый цвет.

После опыта металл присутствовал в лунке тигля в виде трех округлых кусков, разделенных пористым шлаком. Шлак темно-серого цвета образовывал слой, имеющий сильно вогнутый мениск. На поверхности шлака выделились гранулы черного цвета размерами 1-2 мм. Между шлаком и металлом образовалась трещина отдельности шириной около 1 мм. Реакционной зоны визуально не отмечено. Однако при электронномикроскопическом изучении в образце обнаруживается зональное строение. В структуре нижней части образца, наиболее удаленной от расплавов и обозначенной нами как зона I, нет сильных отличий от образца исходного огнеупора. Мощность этой зоны около 20 мм. В пределах зоны по мере продвижения к верхней части образца (к металлошлаковому расплаву) можно лишь отметить дезинтеграцию агрегатных обломков периклаза по их краям и увеличение количества силикатов, среди которых начинает преобладать монтичеллит. Как и мервинит, он заполняет промежутки между зернами периклаза. Состав периклаза остается без изменений, в мервините появляется примесь Fe, в монтичеллите — Al (см. табл. 1). Среди зерен периклаза, сцементированных мервинитом, иногда видны округлые микронные выделения металлического железа. Углерод содержится примерно в том же количестве, как в исходном образце. Он цементирует крупные агрегаты зерен периклаза в виде струй, прослоев, в которых находятся многочисленные обломки периклаза и силикатов.

Зона II в образце № 6 составляет 9-10 мм. Она не имеет четкой границы с зоной I и выделена, скорее, по изменению морфологии фаз. В этой зоне по мере приближения к контакту с расплавами наблюдаются признаки частичного растворения (рис. 2, *a*) и перекристаллизации периклаза или совместной кристаллизации периклаза и углерода. При этом образуются сростки углерода и зерен периклаза с четко выраженными кристаллографически границами фаз (рис. 2, б). Из силикатов в зоне II по-прежнему присутствуют мервинит и монтичеллит, количество последнего преобладает. Составы периклаза и силикатов близки к таковым в предыдущих зонах (см. табл. 1). Углерод заполняет также поры в агрегатах зерен периклаза.

Переход к зоне III, которую можно назвать зоной активного взаимодействия огнеупора с расплавами (или рабочей зоной), сопровождается резкой сменой фазового состава и структуры (рис. 3, *a*). Ее мощность мала — от 0,5 до 1 мм. По четкой границе крупные агрегаты зерен периклаза зоны II заменяются парагенезисом оливина, шпинели и монтичеллита. Под микроскопом хорошо видны кристаллы оливина с высоким двупреломлением и изотропные кристаллы шпинели, имеющие идиоморфную форму. Иногда мелкие изотропные выделения шпинели встречаются в кристаллах оливина. На контакте зон II и III наблюдаются повышенные трещиноватость и порообразование. На границе зон II и III происходит замещение периклаза оливином (рис. 3, б), монтичеллитом и оливином по краям и тонким трещинам зерен. В пределах зоны III встречаются крупные фрагменты реликтового периклаза (100-300 мкм), а также присутствуют мелкие овальные зерна (5-10 мкм) новообразованного периклаза, заключенные в агрегаты оливина, шпинели и монтичеллита. Мервинит в зоне III не встречается. Шпинель представлена магнезиальноглиноземистой разновидностью с идеальной формулой. Она образует зерна размером до 50 мкм, часто с ромбовидными или треугольными сечениями. На электронных фотографиях в обратно-рассеянных электронах она имеет темно-серый цвет, чуть темнее оливина, но светлее периклаза. Оливин представлен выделениями таблитчатой, часто вытянутой формы длиной до 100 мкм. Его состав отвечает форстериту с небольшой примесью 0,07 формульной единицы (ф. е.) кальция. Монтичеллит является преобладающей фазой зоны III. Он занимает промежутки между оливином и шпинелью, образуя кристаллы светло-серого цвета (BSE). Углеродистая фаза присутствует в зоне III лишь в виде реликтов. Такая резкая смена парагенезиса от ассоциации Per + Mw + С в зоне II к ассоциации Ol + Spl + Mtc + Per в зоне III свидетельствует о привносе в огнеупор из расплава шлака алюмосиликатного материала. Этот процесс, очевидно, сопровождался выносом углерода, выполнявшего «защитную» функцию в огнеупоре, способствующую сохранению его первичного устойчивого к химической коррозии материала. Количественноминеральный состав зоны III, рассчитанный по валовым анализам состава зоны (см. табл. 2), мол. %: 4,6-6,4 Per, 41-43 Spl, 35-17 Mtc, 17-35 Ol. Разброс анализов валовых составов объясняется



Рис. 2. Структура периклазоуглеродистого огнеупора в пределах зоны II (образец № 2): *а* — частичное растворение и перекристаллизация периклаза; *б* — образование сростков углеродного материала и зерен периклаза с четко выраженными кристаллографически границами фаз



Рис. 3. Зона контакта периклазоуглеродистого огнеупора и металлошлакового расплава (образец № 6): *а* — фазовый состав и структура огнеупора зоны III и шлака; *б* — замещение периклаза оливином и монтичеллитом на границе зон II и III; *в* — контакт огнеупора с расплавами шлака и никеля (в BSE); *г* — та же граница огнеупора и шлака, четко проявленная в характеристическом излучении Mg

неравномерностью распределения и крупным размером минералов в зоне III. Ближе к зоне II преобладают оливин и шпинель, ближе к контакту с расплавами шлака и никеля становится больше монтичеллита.

Контакт между огнеупором и закаленным расплавом шлака фиксируется по изменению структуры образца. Трудность определения границы между ними связана с тем, что шлак в опыте почти полностью раскристаллизован, причем минеральный состав его близок к составу зоны III огнеупора. Контакт удалось различить прежде всего по структурным признакам: в огнеупоре кристаллические фазы имеют крупный размер и распределены неравномерно, в шлаке фазы значительно меньшего размера и распределены более равномерно (рис. 3, б, в). В нижней части фотографии видна фаза никелевого (закаленного) расплава (белого цвета в BSE), к которому «приварен» участок шлака. Трещина отдельности мощностью около 0,5 мм, появившаяся при закалке тигля с образцом огнеупора и расплавами шлака и никеля, разделяет шлак, соединенный с одной стороны с огнеупором, с другой — с никелем. Более точно определяется граница огнеупора и шлакового расплава на электронных снимках, полученных в характеристическом излучении Mq, по резкому различию его концентрации и равномерности распределения в шлаке по сравнению с зоной III (рис. 3, г). Усредненный анализ шлака, полученный по 6 плошалкам образца (см. табл. 2), показывает его резкое отличие от валового состава зоны III, особенно выраженное более высоким содержанием MgO (47 мас. % в шлаке против 32 % в зоне III) и более низким содержанием Al<sub>2</sub>O<sub>3</sub> (22 мас. % в шлаке против 36 % в зоне III). Эти данные свидетельствуют о значительном выносе Мд из огнеупора в шлак и привносе Al из шлака в огнеупор, поскольку в нем изначально содержалось лишь 4,6 % Al<sub>2</sub>O<sub>3</sub>. Минералы шлака, закристаллизовавшиеся при его охлаждении, близки по составам к фазам зоны III (см. табл. 1). Однако четко видно (рис. 4, а), что периклаз в шлаке, представленный мелкими округлыми и овальными зернами (10-15 мкм в сечении), является новообразованным, выделившимся из расплава шлака при его кристаллизации наряду с оливином, шпинелью и монтичеллитом. Менее характерен для шлака мелилит (см. табл. 1. анализ № 24), встречающийся в ассоциации с монтичеллитом. В шлаке было обнаружено небольшое количество (5-10 %) имеющей пористую структуру фазы (см. рис. 4, а), по составу отвечающей Са-содержащему оливину (см. табл. 1, анализ № 27). В промежутках



Рис. 4. Структура закаленных расплавов шлака (*a*, *б*) и металла (*b*, *c*) в опыте по взаимодействию с периклазоуглеродистым огнеупором (образец № 6): *a* — фазы закаленного расплава шлака; *б* — граница расплавов шлака и никеля; *в* — главная металлическая фаза 1 с выделениями углерода овальной и нитевидной формы; *с* — две никелевые фазы в расплаве с различным содержанием кремния — 16 % (фаза 1) и 6 % (фаза 2)

между минералами имеется стекло, которое диагностируется благодаря присутствию в его составе небольших количеств бария, серы и фосфора. Стекло характеризуется значительно более высокими содержаниями SiO<sub>2</sub> по сравнению с валовым составом шлака (см. табл. 2).

Расплав металла (металлическая фаза), контактирующий с огнеупором, неоднороден. Основную его часть составляет фаза 1, содержащая (см. табл. 2) 80 мас. % никеля и около 16 мас. % кремния (рис. 4, *в*). В этой фазе содержатся выделения углерода и металлической фазы 2 причудливой формы (рис. 4, *г*) с мельчайшими включениями, состав которых не удалось определить. Эти выделения представляют также фазу, богатую никелем (табл. 2), но содержащую меньше кремния (около 6 мас. %) и больше других элементов — до 9,5 % Fe, около 7 % Cu и 2 % Co. Примерно такой же состав имеют включения металлической фазы (см. табл. 2), обнаруженные в шлаке, контактирующем с расплавом никеля (рис. 4, *б*).

Образец периклазоуглеродистого огнеупора № 5 после эксперимента по взаимодействию с расплавом шлака при 1600 <sup>о</sup>С похож на образец № 6, описание которого приведено выше. Визуально и под микроскопом в материале тигля темно-серого цвета видны включения обломков периклаза разной формы размером 1-5 мм. Силикаты в виде тонких прожилков заполняют промежутки между зернами, слагающими крупные агрегаты периклаза. Непрозрачная углеродистая масса черного цвета с включениями периклаза и небольшого количества силикатов цементирует агрегаты периклаза. Текстура огнеупора пористая, структура порфиробластовая.

Шлак в лунке с вогнутым мениском имеет серый цвет. Под микроскопом видно, что он обладает неоднородной структурой, состоит из стекла и погруженных в него идиоморфных призматических кристаллов размером до 0,5 мм, в промежутках между которыми наблюдаются метельчатые дендритные образования.

Граница между огнеупором и шлаком как в углублении тигля, так и вдоль его стенок четкая, реакционной каймы макроскопически не наблюдается. При наблюдении под микроскопом огнеупора в зоне контакта со шлаком становится очевидно, что взаимодействие все же происходило. На границе со шлаком видна зона шириной 1,0-1,5 мм с повышенным содержанием шпинели в виде изотропной фазы угловатой формы, светло-желтого цвета, размером в десятые доли миллиметра. Отмечены также выделения углеродистой массы среди минералов этой зоны.

Использование электронной микроскопии позволило выделить в образце огнеупора по длине тигля три зоны. Первые две зоны по составу и структуре аналогичны выделенным в образце № 6 (табл. 3). Мошности зон I и II около 19 и 5 мм соответственно. Материал зон I и II, как и в исходном огнеупоре, состоит из практически чистого периклаза и небольшого (3-5 мол. %) количества силикатов — монтичеллита и мервинита (рис. 5, *a*) и углерода. Во всех этих минералах отмечаются небольшие примеси Al. иногда Fe. По петрохимическим расчетам получается, что глинозем входит в состав шпинели, которой в первых двух зонах под микроскопом не обнаружено. Избыточный кремнезем по отношению к монтичеллиту и мервиниту.

наблюдавшимся в огнеупоре, включался в петрохимическом расчете в состав оливина, хотя в действительности он не был найден в первых двух зонах. Граница между зонами I и II выделена условно по структурным признакам в связи с заметной перекристаллизацией и перегруппировкой фаз при приближении к шлаковому расплаву. На расстоянии от 5 до 1 мм агрегаты и отдельные зерна периклаза дефрагментировались, все промежутки и трещины заполнялись главным образом монтичеллитом, а углерод образовал более плотные массы, которые, в свою очередь, заполняли участки между кристаллами периклаза и трещины внутри них (рис. 5, *б*).

**Зона III**, непосредственно контактирующая с расплавом шлака, имеет мощность всего лишь 0,5–1 мм, но она резко отличается по минеральному составу и структуре от предыдущих зон. Смена

Таблица 3. Валовый химический и нормативный фазовый составы периклазоуглеродистого огнеупора (образец № 2) и зон его взаимодействия с расплавом шлака (образец № 5)\*1

| Π                                                                                                                                                                                                                                                                                                                                                                               | Зоны  |       |       |       |       |       |       |       |       |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Показатели                                                                                                                                                                                                                                                                                                                                                                      | 00    | I     | I     | I     | Ι     | II    | II    | III   | 01    | 01*2  |
| <i>l</i> , мм                                                                                                                                                                                                                                                                                                                                                                   | >30   | 25    | 23    | 15    | 10    | 7,5   | 5     | 1,5   | 0     | 0     |
| Мощность зоны, мм                                                                                                                                                                                                                                                                                                                                                               | -     | 17,5  | 17,5  | 17,5  | 17,5  | 7,0   | 7,0   | 1,5   | -     | -     |
| Валовый химический состав, мас. %:                                                                                                                                                                                                                                                                                                                                              |       |       |       |       |       |       |       |       |       |       |
| SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                | 3,16  | 2,00  | 2,79  | 2,94  | 2,98  | 3,53  | 8,33  | 38,58 | 23,18 | 46,27 |
| Al <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                  | 4,58  | 1,94  | 3,50  | 3,53  | 3,54  | 4,07  | 3,28  | 20,18 | 37,29 | 23,23 |
| FeO                                                                                                                                                                                                                                                                                                                                                                             | 0,32  | 0,60  | 0,58  | 0,89  | 0,86  | 1,05  | 0,54  | -     | 0,13  | -     |
| MnO                                                                                                                                                                                                                                                                                                                                                                             | -     | -     | -     | -     | -     | -     | -     | -     | -     | 0,15  |
| MgO                                                                                                                                                                                                                                                                                                                                                                             | 89,53 | 93,93 | 91,24 | 90,88 | 90,67 | 88,70 | 86,37 | 12,93 | 34,62 | 10,05 |
| CaO                                                                                                                                                                                                                                                                                                                                                                             | 1,95  | 1,53  | 1,88  | 1,76  | 1,94  | 2,30  | 1,48  | 28,31 | 4,29  | 19,50 |
| Na <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                               | 0,43  | -     | -     | -     | -     | -     | -     | -     | 0,17  | 0,04  |
| K <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                | 0,03  | -     | -     | -     | -     | -     | -     | 0,06  | -     | -     |
| Cr <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                  | -     | -     | -     | -     | -     | 0,15  | -     | -     | 0,10  | -     |
| CoO                                                                                                                                                                                                                                                                                                                                                                             | -     | -     | -     | -     | -     | 0,19  | -     | -     | -     | -     |
| BaO                                                                                                                                                                                                                                                                                                                                                                             | -     | -     | -     | -     | -     | -     | -     | -     | -     | 0,71  |
| P <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                   | -     | -     | -     | -     | -     | -     | -     | -     | -     | 0,05  |
| S                                                                                                                                                                                                                                                                                                                                                                               | -     | -     | -     | -     | -     | -     | -     | 0,93  | 0,22  | -     |
| Нормативный фазовый состав, мол. %:                                                                                                                                                                                                                                                                                                                                             |       |       |       |       |       |       |       |       |       |       |
| Per                                                                                                                                                                                                                                                                                                                                                                             | 87,6  | 94,3  | 85,8  | 89,6  | 89,5  | 87,50 | 79,0  | -     | -     | -     |
| Spl                                                                                                                                                                                                                                                                                                                                                                             | 5,8   | 2,1   | 6,1   | 4,3   | 4,3   | 5,00  | 3,2   | 15,6  | 47,63 | -     |
| Ol                                                                                                                                                                                                                                                                                                                                                                              | -     | -     | 4,6   | 3,2   | 2,9   | 3,6   | 14,9  | -     | 38,49 | -     |
| Mtc                                                                                                                                                                                                                                                                                                                                                                             | 6,6   | 1,2   | 1,2   | 1,0   | 1,0   | 1,4   | -     | -     | -     | -     |
| Mw                                                                                                                                                                                                                                                                                                                                                                              | -     | 2,4   | 2,3   | 1,9   | 2,3   | 2,5   | -     | -     | -     | -     |
| Gel* <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                               | -     | -     | -     | -     | -     | -     | 1,4   | 27,1  | 9,34  | 13,5  |
| Ocerm <sup>*4</sup>                                                                                                                                                                                                                                                                                                                                                             | -     | -     | -     | -     | -     | -     | 1,5   | 27,0  | -     | -     |
| Di*5                                                                                                                                                                                                                                                                                                                                                                            | -     | -     | -     | -     | -     | -     | -     | 21,7  | -     | 55,5  |
| En                                                                                                                                                                                                                                                                                                                                                                              | -     | -     | -     | -     | -     | -     | -     | 2,3   | -     | -     |
| CaS                                                                                                                                                                                                                                                                                                                                                                             | -     | -     | -     | -     | -     | -     | -     | -     | 5,8   | -     |
| Mul*6                                                                                                                                                                                                                                                                                                                                                                           | -     | -     | -     | -     | -     | -     | -     | -     | -     | 28,9  |
| Crm* <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                               | -     | -     | -     | -     | -     | -     | -     | -     | -     | 2,1   |
| Qz                                                                                                                                                                                                                                                                                                                                                                              | -     | -     | -     | -     | -     | -     | -     | 6,3   | 3,96  | -     |
| *1 Условные обозначения те же, что в табл. 2.         *2 Стекло в шлаке.         *3 Gel — геленит Ca <sub>2</sub> Al <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> .         *4 Осегт — окерманит Ca <sub>2</sub> MgSi <sub>2</sub> O <sub>7</sub> .         *5 Di — диопсид CaMgSi <sub>2</sub> O <sub>6</sub> .         *6 Mul — мулицат 3AloO <sub>2</sub> , 2SiO <sub>2</sub> |       |       |       |       |       |       |       |       |       |       |

\*<sup>6</sup> Mul — муллит ЗАl<sub>2</sub>O<sub>3</sub> · 2SlO<sub>2</sub> \*<sup>7</sup> Crn — корунд Al<sub>2</sub>O<sub>3</sub>.



Рис. 5. Структура и фазовый состав периклазоуглеродистого огнеупора (образец № 5) после взаимодейстия со шлаковым расплавом: *а* — агрегат зерен периклаза с прожилками монтичеллита и мервинита, окруженный углеродистой массой с обломками зерен периклаза и силикатов; *б* — заполнение монтичеллитом и плотными массами углерода трещин между зернами периклаза в зоне II; *в* — резкая граница между зонами II и III вблизи контакта с закаленным расплавом шлака; *с* — заливы шлака в огнеупор и отторжение больших фрагментов шпинельфорстеритового материала зоны III в шлаковый расплав

минерального парагенезиса в зоне III происходит по четко выраженной границе (рис. 5, в). Главными минералами этой зоны являются шпинель и оливин. Углерод в зоне III не наблюдается. Периклаз почти полностью исчезает и встречается в зоне III лишь в виде немногочисленных реликтов. Шпинель составляет около 50 мол. % и представлена зернами с ромбовидными сечениями размером от нескольких до 100 мкм, которые находятся в срастаниях с крупными (до 400 мкм) кристаллами оливина. По морфологии выделений этих фаз можно считать, что они кристаллизовались одновременно. Состав оливина отвечает почти чистому форстериту с небольшой примесью Са и Al, состав шпинели соответствует магнезиальной шпинели с небольшими примесями Са и Si (табл. 3, 4). В отличие от образца № 6 в составе зоны III нет монтичеллита. Вместо него в зоне III была обнаружена другая высококальциевая фаза из группы мелилита (см. табл. 4), состав которой занимает промежуточное положение между геленитом и окерманитом - Ca<sub>1,87</sub>(Mg<sub>0,36</sub>Al<sub>0,73</sub>Si<sub>1,84</sub>)<sub>2,93</sub>O<sub>7</sub>. Совместно со шпинелью она образует в пределах зоны III обособленные светлые (в BSE) участки среди главных минералов

или вблизи границы между огнеупором и шлаком. Вероятно, на этих участках наиболее далеко зашла реакция между расплавом шлака и фазами огнеупора.

Интересной особенностью зоны III является то, что она как будто «приварена» к периклазовой основе зоны II по очень четкой границе, вдоль которой видны мелкие выступы кристаллов оливина зоны III в периклаз зоны II. Кроме того, оливин заполняет тонкие трещины в крупных зернах периклаза. Эти структурные взаимоотношения иллюстрируют происходившую на границе зон твердофазную реакцию 2Per +  $SiO_2$  = Ol и свидетельствуют о привносе SiO<sub>2</sub> из расплава шлака. На контакте со шлаком видны его заливы на 200-300 мкм в огнеупор и отторжение больших фрагментов шпинельфорстеритового материала зоны III в виде ксенолитов в шлаковый расплав (рис. 5, г). Они погружены в расплав, и на рис. 5, г видно его проникновение по мелким трещинам в эти фрагменты. Размер отделившихся от огнеупора фрагментов, составляющих в сечении до 500 мкм, свидетельствует о том, что мощность зоны III была первоначально больше по крайней мере на 500 мкм, чем наблюдаемая в

18

| -                |            | -                     |                  |                        | -                                                                                            |
|------------------|------------|-----------------------|------------------|------------------------|----------------------------------------------------------------------------------------------|
| Номер<br>анализа | Зона       | <i>l,</i> мм          | Фаза             | <i>P</i> ( <i>n</i> )  | Состав фазы                                                                                  |
| 1                | 00*2       | >25,5                 | Per              | Ц (2)                  | (Mg <sub>1,03</sub> Fe <sub>0,01</sub> ) <sub>1,05</sub> O                                   |
| 2                | 00         | >25,5                 | Per              | Дробл.                 | (Mg <sub>0,98</sub> Fe <sub>0,05</sub> ) <sub>1,04</sub> O                                   |
| 3                | 00         | >25,5                 | Mw               | (2)                    | $Ca_{2,86}Mg_{0,96}(Si_{1,86}Al_{0,02})_{1,88}O_8$                                           |
| 4                | Ι          | 25,5-20,0             | Per              | Kp (2)                 | (Mg <sub>1,02</sub> Al <sub>0,01</sub> ) <sub>1,03</sub> O                                   |
| 5                | Ι          | 25,5-20,0             | Per              | Ц(2)                   | MgO                                                                                          |
| 6                | Ι          | 24,0                  | Per              |                        | (Mg <sub>1,04</sub> Fe <sub>0,01</sub> ) <sub>1,05</sub> O                                   |
| 7                | Ι          | 25,5-20,0             | Mw               | (3)                    | $Ca_{2,87}Mg_{0,99}(Si_{1,93}Al_{0,02})_{1,95}O_8$                                           |
| 8                | Ι          | 25,5-20,0             | Mtc              | (2)                    | $(Ca_{0,91}Mg_{1,02})_{1,93}(Si_{0,96}Al_{0,01})_{0,97}O_4$                                  |
| 9                | Ι          | 15,0-8,4              | Per              | (3)                    | (Mg <sub>1,04</sub> Fe <sub>0,01</sub> ) <sub>1,05</sub> O                                   |
| 10               | Ι          | 9,0                   | Per              | Кр                     | (Mg <sub>1,04</sub> Al <sub>0,01</sub> ) <sub>1,05</sub> O                                   |
| 11               | Ι          | 9,5                   | Per              | Ц                      | (Mg <sub>1,03</sub> ) <sub>1,03</sub> O                                                      |
| 12               | Ι          | 15,0-8,4              | Mw               | (2)                    | $Ca_{2,90}Mg_{0,96}(Si_{1,92}Al_{0,01})_{1,93}O_8$                                           |
| 13               | Ι          | 15,0-8,4              | Mtc              | (2)                    | $(Ca_{0,93}Mg_{1,00})_{1,93}(Si_{0,96}Al_{0,01})_{0,97}O_4$                                  |
| 14               | II         | 6,0                   | Mtc              |                        | $(Ca_{0,94}Mg_{0,98})_{1,92}Si_{0,95}O_4$                                                    |
| 15               | II         | 6,2                   | Per              |                        | (Mg <sub>1,05</sub> ) <sub>1,05</sub> O                                                      |
| 16               | II         | 1,0                   | Mtc              |                        | $(Ca_{0,83}Mg_{1,11})_{1,94}Si_{0,98}O_4$                                                    |
| 17               | II         | 0,3                   | Per              | Кр                     | $(Mg_{1,04}Fe_{0,01})_{1,044}O$                                                              |
| 18               | II         | 0,4                   | Per              | Ц                      | (Mg <sub>1,04</sub> Al <sub>0,01</sub> ) <sub>1,05</sub> O                                   |
| 19               | II         | 1,0-0,7               | Per              | (2)                    | (Mg <sub>1,05</sub> Al <sub>0,01</sub> ) <sub>1,06</sub> O                                   |
| 20               | III        | 0,5-0,01              | Ol               | (2)                    | $(Mg_{1,98}Ca_{0,02})_{2,00}(Si_{0,99}Al_{0,02})_{2,01}O_4$                                  |
| 21               | III        | 0,3-0,01              | Mll              | (2)                    | Ca <sub>2,09</sub> (Al <sub>0,80</sub> Mg <sub>0,38</sub> Si) <sub>3,23</sub> O <sub>7</sub> |
| 22               | III        | 0,3-0,01              | Spl              |                        | $Mg_{1,02}(Al_{2,01}Si_{0,01})_{2,02}O_4$                                                    |
| 23               | III        | 0,1-0,02              | Spl              | (3)                    | $(Mg_{1,02}Ca_{0,01})_{1,03}(A_{12,02}Si_{0,01})_{2,03}O_4$                                  |
| 24               | 01         | 0,15                  | Gl               | Залив шлака            | $(Si_{16,50}Al_{7,91}Mn_{0,03}Mg_{5,59}Ca_{6,22}S_{0,57}Ti_{0,05})O_{50}$                    |
| 25               | III        |                       | Ol               | Ксенолит <sup>*3</sup> | $(Mg_{1,98}Ca_{0,02})_{2,00}(Si_{0,98}Al_{0,02})_{2,00}O_4$                                  |
| 26               | 01         | 0                     | Mll              | Шлак (2)               | Ca <sub>2,02</sub> (Al <sub>0,83</sub> Mg <sub>0,42</sub> Si) <sub>3,15</sub> O <sub>7</sub> |
| 27               | 01         | 0                     | Gl               | Шлак                   | $(Si_{5,72}Al_{7,69}Mn_{0,06}Mg_{5,97}Ca_{6,74}Ba_{0,15}S_{0,44})O_{50}$                     |
| 28               | 01         | 0                     | Gl               | Шлак                   | $(Si_{14,97}Al_{9,69}Mn_{0,04}Mg_{3,94}Ca_{7,30}Ba_{0,22}Na_{0,03}S_{0,50})O_{50}$           |
| 29               | 01         | 0                     | Gl               | Шлак                   | $(Si_{14,85}Al_{9,36}Mn_{0,04}Mg_{4,60}Ca_{6,55}Ba_{0,27}P_{0,04}S_{0,64})O_{50}$            |
| 30               | III        |                       | $L_{Met}^{*4}$   | Огнеупор               | $Cr_{38,4}Si_{8,3}Fe_{48,4}Mn_{3,3}Ni_{0,1}Co_{0,2}Al_{0,1}Mg_{0,2}Ca_{0,1}S_{0,3}O_{0,6}$   |
| 31               | 01         | 0                     | L <sub>Met</sub> | Шлак                   | $Cr_{51,4}Si_{20,5}Fe_{24,1}Mn_{1,56}Ni_{1,1}Ti_{0,6}Co_{0,4}Al_{0,1}O_{0,2}$                |
| 32               | 01         | 0                     | L <sub>Met</sub> | Шлак                   | $Fe_{73,9}Si_{15,4}Mn_{2,9}Ni_{2,4}Co_{0,7}Al_{0,1}Ti_{0,5}Cr_{4,2}O_{0,0}$                  |
| 33               | 01         | 0                     | L <sub>Met</sub> | Шлак                   | $Ti_{92,6}Cr_{6,2}Ca_{0,6}Fe_{0,3}Si_{0,2}Al_{0,1}O_{0,0}$                                   |
| *1 Условн        | ные обозна | чения те же, что в та | абл. 1 и 2.      |                        |                                                                                              |

# Таблица 4. Кристаллохимические формулы фаз по реакционным зонам колонки взаимодействия периклазоуглеродистого огнеупора (образец № 2) со шлаком в образце № 5<sup>\*1</sup>

\*² Состав фазы в исходном периклазоуглеродистом огнеупоре (образец № 2).

\*3 Ксенолит огнеупора в шлаке.

 $^{*4}$   $L_{\rm met}-$ фазы капель расплава металла в зоне III и шлаке, ат. % элементов.

итоге под микроскопом. Пористость слабо проявлена в приконтактовой зоне.

Шлак в образце № 5 отличается по структуре, фазовому и химическому составам от шлака в образце № 6. Под электронным микроскопом видно (см. рис. 5, г), что он сложен главным образом призматическими кристаллами светло-серого цвета, их размер в длину достигает 500 мкм, в ширину колеблется от 20 до 100 мкм. Анализ показал (см. табл. 4, анализ № 26), что это минералы группы мелилита, представляющие твердый раствор состава геленит – окерманит, без каких-либо примесей железа. Они окружены стеклом, имеющим чуть более темный оттенок серого цвета (в BSE). Из стекла выделяются скелетные кристаллы оливина в виде дендритов темно-серого цвета. Составы оливина и мелилита в зоне III и шлаке близки. В составе стекла помимо главных элементов содержатся примеси бария, марганца, фосфора, серы. От валового состава шлака стекло отличается повышенным содержанием кремнезема и пониженным — оксида кальция. По сравнению с химическим составом шлака образца № 5 шлак образца № 6 обогащен Al<sub>2</sub>O<sub>3</sub>, обеднен MgO, а содержания SiO<sub>2</sub> в них близки. Минералогически это отличие выражается в отсутствии периклаза и меньшем количестве оливина в шлаке образца №5 и большем количестве шпинели и мелилита. Причины различий в анализах шлака не совсем ясны. Можно лишь утверждать, что точное определение состава шлака по площади образцов затруднено из-за неоднородности его фазового состава и большой величины кристаллов, выделившихся из шлака при закалке расплава. В шлаке и в зоне III огнеупора обнаружены немногочисленные каплевидные выделения металлических фаз (см. табл.

4, анализы № 31–33) различного состава, богатых Сг, Fe, Si и Ti.

#### СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВАЛОВЫХ СОСТАВОВ ОГНЕУПОРОВ ПО КОЛОНКАМ ВЗАИМОДЕЙСТВИЯ

В периклазоуглеродистом огнеупоре в отличие от хромитопериклазового [1] зона активного взаимодействия с расплавами шлака и металла очень незначительная и составляет 0,5–1,0 мм. На протяжении всей колонки (от дна тигля до расплава) валовый химический состав огнеупора остается практически неизменным. Лишь в зоне III (см. табл. 3, рис. 6, *а*) наблюдается резкое уменьшение содержания MgO, что свидетельствует о его выносе из огнеупора в расплав. При этом возрастает содержание SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> и CaO, что позволяет говорить о привносе этих компонентов из шлакового расплава. Поскольку ни в одном из валовых



Рис. 6. Изменение валового состава по колонкам взаимодействия и периклазоуглеродистого  $(a, \delta)$  огнеупора в зависимости от расстояния l с металлошлаковым (a) и шлаковым (b) расплавами для образцов № 6 (a), № 5 (b). Крайние точки справа на рис. 6, a соответствуют составу исходного периклазоуглеродистого (образец № 2) огнеупора. Крайние точки на оси ординат (на рис. 6,  $a, \delta$ ) отвечают содержаниям элементов в шлаке в образцах № 6 и 5 соответственно

анализов зон и ни в одной из фаз колонки взаимодействия не был обнаружен никель, следует считать, что его диффузия в огнеупор не происходила (видимо, была «заблокирована» углеродом), в отличие от хромитопериклазового огнеупора, в котором никель вошел в состав большинства исходных и новообразованных фаз.

Валовый состав периклазоуглеродистого огнеупора (см. табл. 3, рис. 6, б), контактировавшего в опыте только с шлаковым расплавом, тоже слабо изменяется по сравнению с исходным составом на протяжении всей колонки взаимодействия. Лишь в непосредственной близости к шлаку (на расстоянии 0,5–1 мм) в зоне III произошло резкое уменьшение содержания MgO и увеличение содержания SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> и CaO. В составе зоны III нет периклаза, но образовались такие фазы, как шпинель, оливин и минералы группы мелилита. Очевидно, что при взаимодействии сред из огнеупора выносился

> MgO и привносились SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> и CaO из шлака. Причем при участии во взаимодействии только шлакового расплава вынос MgO из огнеупора и привнос SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> и CaO из шлака был более интенсивным по сравнению с реакцией того же огнеупора с металлошлаковым расплавом.

#### ОБСУЖДЕНИЕ. ПРИЧИНЫ И МЕХАНИЗМ РАЗРУШЕНИЯ ОГНЕУПОРОВ

При обсуждении результатов изучения хромитопериклазовых и периклазоуглеродистых огнеупоров учтены данные, приведенные в работе [1]. Представленные результаты эксперимента позволяют сравнить изменения двух типов огнеупорных материалов при взаимодействии с двумя составами металлургических расплавов — металлошлаковым и шлаковым — в определенных, упрощенных и полностью контролируемых условиях. В отличие от реальных металлургических процессов в лабораторных опытах происходили лишь однократный нагрев и охлаждение, отсутствовали тепловые удары и заметные конвективные процессы перемешивания. Принято считать [2, 3], что основными факторами, влияющими на стойкость огнеупорной футеровки печей цветной металлургии, являются воздействие агрессивных многокомпонентных шлаков, колебаний температуры,

20

пропитка и химическое взаимодействие с металлами и их оксидами. В более ранних работах авторов статьи [4–6] доказывается, что важнейшим фактором неустойчивости огнеупоров в процессе службы в никелевом производстве является химическая коррозия. Непосредственной пропитки огнеупора шлаковым расплавом не приходилось наблюдать. Расплав, как правило наблюдавшийся в реакционных зонах огнеупора, появлялся внутри твердого материала в результате химического процесса замещения вследствие взаимной диффузии компонентов двух сред — огнеупора и расплава.

Те же явления наблюдались в данной работе при лабораторном эксперименте. Предположение о распылении или испарении шлака из тигля не имеет оснований, поскольку тигли были перед опытом плотно накрыты крышкой из того же огнеупора и после проведения опыта не произошло существенной потери массы тигля. Пропиткой в буквальном смысле процесс проникновения шлака в огнеупор нельзя назвать, так как в огнеупоре нет следов проникновения в него расплава шлака в виде прожилков или капель. Кроме того, состав обнаруженного в огнеупоре стекла не соответствует составу шлака по содержанию всех компонентов. Таким образом, наша точка зрения такова, что при взаимодействии двух сред главную роль играло диффузионное замещение, а не механическое внедрение расплавов шлака или металла в огнеупор (пропитка расплавом). Согласно приведенными выше данным, самым большим различием поведения двух типов огнеупоров является значительно меньшая устойчивость хромитопериклазовых огнеупоров по сравнению с периклазоуглеродистыми независимо от типа воздействующего расплава. Если рассматривать взаимодействие с хромитопериклазовым огнеупором, то металлошлаковый расплав по отношению к нему оказывается более агрессивным, чем шлаковый. Это видно по наибольшей мошности реакционных зон, изменению их фазового состава, изоморфному замещению никелем и кобальтом магния во всех главных фазах колонки взаимодействия, перераспределению в ней элементов (Si, Al, Fe, Ca, Na, K) и глубине проникновения Ni и Со внутрь огнеупора. Сходные, но менее интенсивные изменения наблюдали и при взаимодействии хромитопериклазового огнеупора со шлаком.

Периклазоуглеродистый огнеупор значительно слабее, чем периклазохромитовый, взаимодействует с обоими типами расплавов. Мощность приконтактовых реакционных зон с обоими расплавами не превышает 1 мм. В этих зонах нет выделений углерода, но есть отличия в фазовом составе в зависимости от типа расплава. В случае взаимодействия с металлошлаковым расплавом главными фазами реакционной зоны являются магнезиальная шпинель, оливин и монтичеллит; в случае воздействия шлакового расплава — шпинель, оливин и мелилит. Приконтактовая зона с металлошлаковым расплавом не содержит никеля и кобальта в отличие от колонок с хромитопериклазовым огнеупором.

Из вышеизложенного очевидно, что индифферентность периклазоуглеродистого огнеупора к агрессивным металлургическим расплавам, несомненно, связана с присутствием углерода в его составе. Углерод препятствует взаимной диффузии компонентов между огнеупором и расплавами. Физически это объясняется тем, что мелкие частицы углерода, распределенные между фазами огнеупора, и углеродистая пленка, обволакивающая зерна периклаза, препятствуют их смачиванию и, как следствие, взаимодействию с расплавами шлака и металла [2]. Известно, что износ углеродсодержащих огнеупорных (периклазоуглеродистых, периклазоизделий известковоуглеродистых и других) происходит главным образом вследствие образования обезуглероженных слоев в результате окисления углерода с последующим их отслаиванием из-за структурного растрескивания [3]. Действительно, именно в маломощной приконтактовой обезуглероженной зоне периклазоуглеродистого огнеупора с шлаком наблюдалось химическое взаимодействие с образованием новых фаз, отслаивание участков огнеупора и погружение их в расплав шлака. Необъяснимым фактом пока является некоторое различие минерального состава приконтактовых зон периклазоуглеродистого огнеупора и контактирующего с ними шлака в случае взаимодействия только со шлаковым или металлошлаковым расплавом.

## ЗАКЛЮЧЕНИЕ

Периклазоуглеродистые огнеупоры в условиях эксперимента (1600 °С, 0,1 МПа) характеризуются существенно более высокой устойчивостью по сравнению с хромитопериклазовыми при взаимодействии как с металлошлаковыми, так и со шлаковыми расплавами.

Главным показателем устойчивости является значительно меньшая (в 4,5 раза) мощность приконтактовой (рабочей) зоны преобразований в периклазоуглеродистых огнеупорах по сравнению с аналогичной зоной в хромитопериклазовых огнеупорах, особенно при воздействии металлошлакового расплава. Шлаковый расплав оказывает подобное влияние на огнеупоры, но менее агрессивен.

Причина меньшей устойчивости хромитопериклазовых огнеупоров в коренном изменении фазового состава реакционных зон, смене ассоциации периклаз + хромит на менее высокотемпературный парагенезис оливин + никельсодержащая шпинель + щелочное стекло. Интенсивная взаимодиффузия компонентов приводит к некомпенсированному выносу Mg и Cr из огнеупора и привносу в него Si, Al, Ca, Ni и Co из шлака, что способствует коррозии, возникновению повышенной пористости в огнеупоре и его разрушению.

Никель и кобальт проявляют высокую подвижность при взаимодействии сред, активно замещая магний во всех фазах огнеупора, входя в состав периклаза, шпинели, оливина, монтичеллита, стекла и образуя свой собственный минерал магнийсодержащий бунзенит в крайних, наиболее измененных зонах колонки.

В периклазоуглеродистых огнеупорах фазовый состав в приконтактовых зонах также суще-

#### Библиографический список

1. Щекина, Т. И. Сравнительное исследование устойчивости хромитопериклазовых и периклазоуглеродистых огнеупоров при их взаимодействии с расплавами никелевого производства (экспериментальные данные). Часть 1. Поведение хромитопериклазовых огнеупоров в присутствии металлошлакого и шлакового расплавов / Т. И. Щекина, А. М. Батанова, Т. Н. Курбыко, А. Н. Пыриков, Б. Н. Григорьев // Новые огнеупоры. — 2014. — № 11. — С. 31-43.

2. **Хорошавин, Л. Б.** Магнезиальные огнеупоры : справочное изд. / Л. Б. Хорошавин, В. А. Перепелицын, В. А. Кононов. — М. : Интермет Инжиниринг, 2001. — 576 с.

3. *Кащеев, И. Д.* Свойства и применение огнеупоров : справочное изд. / *И. Д. Кащеев.* — М. : Теплотехника, 2004. — 352 с.

4. **Граменицкий, Е. Н.** Исследование жидкофазного химического взаимодействия хромитопериклазовых огнеупоров с агрессивными средами при получении в конвертере никелевого файнштейна / Е. Н. Граменицкий, Т. И. Щекина, А. М. Батанова [и др.] // Новые огнеупоры. — 2005. — № 8. — С. 25–32.

ственно изменяется, но масштаб изменений не столь велик. В незначительных по мощности зонах активного взаимодействия как с металлошлаковым, так и со шлаковым расплавами имел место вынос магния из огнеупора и привнос кремния, алюминия и кальция. Никель не входил в состав никаких новообразованных фаз.

Большая устойчивость периклазоуглеродистых огнеупоров объясняется присутствием в их составе углерода, препятствующего взаимной диффузии компонентов между огнеупором и расплавами.

5. **Щекина, Т. И.** Фазообразовательные процессы и структурные изменения в хромитопериклазовых огнеупорах, используемых при получении никеля / *Т. И.* Щекина, Е. Н. Граменицкий, А. М. Ботанова [и др.] // Новые огнеупоры. — 2011. — № 10. — С. 22–37.

**Shchekina, T. I.** Phase formation processes and structural changes in chromite-periclase refractories used during nickel production / *T. I. Shchekina, E. N. Gramenitskiy, A. M. Batanova* [et al.] // Refractories and Industrial Ceramics. -2012. -Vol. 52,  $N_{\odot}$  5. -P. 363–376.

6. Щекина, Т. И. Особенности минералообразования при реакционном взаимодействии магнезиальных огнеупоров и шлака никелевого производства / Т. И. Щекина, А. М. Батанова, Е. Н. Граменицкий, Б. Н. Григорьев, Т. А. Курбыко // Ежегодный семинар по экспериментальной минералогии, петрологии и геохимии ВЕСМПГ-2012 : тезисы докладов. — М. : ГЕОХИ РАН. — 2013. — С. 148.■

Получено 09.12.2014 © Т. И. Щекина, А. М. Батанова, Т. Н. Курбыко, А. Н. Пыриков, Б. Н. Григорьев, 2015 г.



# 10-я Европейская конференция по промышленным печам и бойлерам

7–10 апреля 2015 г.

22

г. Вила-Нова-ди-Гая, Португалия

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ