Д. г.-м. н. В. А. Перепелицын¹, к. т. н. К. Г. Земляной¹ (⊠), к. ф.-м. н. В. М. Устьянцев¹, К. В. Миронов², А. А. Форшев², Ф. П. Николаев², Д. В. Сушников²

¹ ФГАОУ ВО «Уральский федеральный университет», Екатеринбург, Россия

² АО ЕВРАЗ НТМК, г. Нижний Тагил, Россия

УДК 666.76:669.162.212].017:620.186.1

ВЕЩЕСТВЕННЫЙ СОСТАВ И МИКРОСТРУКТУРА КЕРАМИЧЕСКОГО ГОРНА ДОМЕННОЙ ПЕЧИ № 6 ЕВРАЗ НТМК ПОСЛЕ СЛУЖБЫ. Часть 1. Минеральный состав огнеупоров

Приведены результаты комплексного исследования химического и вещественного составов, а также макроструктуры образцов огнеупоров после службы в горне доменной печи с полезным объемом 2200 м³ в течение 14 лет. Комплексным методом определено содержание углерода в исследуемых образцах. Установлено образование цинксодержащих фаз как на месте оксидных огнеупоров керамического стакана, так и в углеродистой футеровке фурменной зоны и горна. Износ огнеупоров в горне имеет сложный, преимущественно термохимический механизм и малую скорость из-за формирования гарнисажа, содержащего тугоплавкие соединения.

Ключевые слова: доменная печь (ДП), керамический горн, углеродистая футеровка, износоустойчивость, цинкит, ганит, виллемит.

В настоящее время в связы с настоящее продол-ей высокотемпературных процессов продолнастоящее время в связи с интенсификацижительность кампании современных доменных печей (ДП) в значительной степени определяется износоустойчивостью горна и лещади [1-5]. Известно также, что большую часть кампании ДП работает не на исходной футеровке, а на сформированном на ее рабочей поверхности огнеупорном гарнисаже. Вещественный состав и свойства гарнисажа были объектом изучения зарубежных и отечественных авторов [1-10]. Большинство публикаций посвящено исследованию гарнисажа ДП, выплавляющих чугун с использованием традиционного железорудного сырья с относительно малым содержанием титана [2-7]. При этом физико-химический механизм износа самой футеровки горна изучен недостаточно.

Настоящая статья содержит первые результаты комплексного материаловедческого исследования огнеупоров нового поколения для футеровки горна, фурменной зоны и керамического стакана после 14 лет эксплуатации в ДП № 6 с

> ⊠ К. Г. Земляной E-mail: kir77766617@yandex.ru

большим полезным объемом; некоторые аспекты системного изучения гарнисажа, сформированного в этой ДП в той же кампании, опубликованы ранее [1].

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

ДП № 6 ЕВРАЗ НТМК с полезным объемом 2200 м³ (диаметр горна 9700 мм, 2 чугунные летки, 22 воздушные фурмы) была задута после реконструкции в 2004 г. и выдута для последующего ремонта в 2018 г. За этот период было выплавлено 27950 тыс. т передельного ванадийсодержащего чугуна. Средний химический состав чугуна, мас. %: Fe 94,1, Ti 0,14, V 0,496, Mn 0,38, C 4,6, Si 0,08, S 0,024, P 0,05.

После выдувки печи и ее охлаждения воздухом и водой футеровку и гарнисаж обрушали при помощи машины для ломки футеровки с гидромолотом и удаляли из печи. При этом отбирали пробы из горна, фурменной зоны и заплечиков. Всего на исследование было представлено 4 образца футеровки горна: от основной углеродистой футеровки и керамического стакана. Точки отбора проб образцов футеровки по высоте ДП № 6 показаны на рис. 1.

Образцы *О1* и *О3*, представленные перерожденными футеровочными углеродистыми блоками, отобраны с отметок +9550 и +9500 мм соответственно, расположенных выше шлаковых и чугунных леток. Образец *О4*, отобранный в районе чугунной летки № 2 (горизонт +9300 мм),

Рис. 1. Схема отбора проб огнеупоров *О1, О2, О3, О4* по высоте горна ДП № 6 ЕВРАЗ НТМК

Таблица 1. Химический состав и свойства алюмокарбидкремниевых изделий керамического стакана

Показатель	Изделия MTZST-1	Блоки MTZST-ZH
Содержание, мас. %:		
Al_2O_3	≥75,0	≥70,0
SiO_2	≤14,0	≤21,0
SiC	9,0	8,0
Fe ₂ O ₃	≤1,0	≤1,0
Кажущаяся плотность, г/см ³	≥3,0	≥3,0
Предел прочности, МПа:		
при сжатии	≥100	≥80
при изгибе	≥18	≥16
Открытая пористость, %	≤16	≤16
Огнеупорность, °С	≥1790	≥1790
Температура начала дефор-	≥1700	≥1680
мации под нагрузкой 0,2		
MПа, °C		
Теплопроводность, Вт/(м·К)	5,0	5,0
ТКЛР, %	$0 \div +0,5$	$0 \div +0,5$
Термостойкость, тепло-	≥30	-
Смены		

является частью слоистого углеродистого блока. Образец *О2* представляет собой измененный графитированный огнеупор, отобранный с отметки +9100 мм.

Керамический стакан горна был изготовлен из плотных алюмокарбидкремниевых изделий марки MTZST-1 и блоков марки MTZST-ZH производства Mayerton (КНР), углеродистая футеровка горна — из углеродистых блоков отечественного производства (Челябинский электродный завод). Химический состав и физические свойства импортных огнеупоров до службы приведены в табл. 1, а их минеральный состав — в табл. 2.

МЕТОДЫ ИССЛЕДОВАНИЯ

Химический состав исследуемых материалов определяли на рентгенофлюоресцентном энергодисперсионном спектрометре ARL QUANT'X (Thermo Scientific, США) с применением программы UniQUANT (Rh K_{α} -излучение, мощность трубки 50 Вт, диапазон напряжения 4–50 кВ с шагом 1 кВ, диапазон тока 0–1,98 мА с шагом 0,02 мА, детектор Si (Li), энергетическое разрешение 150 эВ).

Изменения фазового состава и массы при нагревании и температуру плавления определяли термогравиметрическим методом на дифференциальном сканирующем дериватографе STA 449 F3 Jupiter (Netzsch-Gerätebau GmbH) с использованием программного пакета Proteus Analysis 5.2 по методике DIN 51004:1994. Determination of melting temperatures of crystalline materials using differential thermal analysis (Определение температур плавления кристаллических материалов, используя дифференциальный термический анализ). Погрешность метода при определении температуры плавления ±3 %.

Рентгенофазовый анализ (РФА) проводили на дифрактометре с вращающимся анодом Miniflex 600 (Си K_{α} -излучение, $\lambda = 1,541862$ Å, интервал съемки 3,00–60,00 град, шаг сканирования 0,02 град, Rigaku — Carl Zeiss, Япония) с программами управления и сбора данных

Таблица 2. Минеральный состав алюмокарбидкремниевых изделий керамического стакана

Минерал		Минеральный состав, мас. %*1							
	Температура	изделия	MTZST-1	блоки MTZST-ZH					
	плавления, с	а	б	а	б				
Корунд	2050	40,3	36-40	16,5	15-18				
Муллит 3Al ₂ O ₃ ·2SiO ₂	1910	49,7	46-50	74,5	68-72				
Стекло $R_2 O \cdot RO \cdot n SiO_2^{*2}$	-	-	3-5	-	5-7				
Карбид кремния α-SiC	2830* ³	9,0	8-10	8,0	68				
Магнезит Fe ₃ O ₄	1580	1,0	0,6-1,0	1,0	0,3-0,7				
Примеси (Si, SiO ₂ и др.)	-	-	0,2	-	Не опр.				
* <i>а —</i> расчетный равновесный состав; <i>б —</i> фактический минеральный (фазовый).									
$*^{2}R_{2}O - K_{2}O$, Na ₂ O; RO - CaO + MgO.									
*3 Указана температура сублим	иации, °С.								

42

Miniflex guidance и пакетом обработки данных PDXL Basic. Идентификацию дифракционных максимумов проводили с использованием банка данных JSPDS, полуколичественную оценку содержания фаз — с использованием корундового числа RIR (Reference Intensity Ratio) по методу Чанга (Chung) [11].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Химический состав исследуемых проб огнеупоров после службы приведен в табл. З. Видны широкие пределы содержания главных компонентов (веществ), представленных весьма сложной многокомпонентной системой Fe-C-FeO-Fe₂O₃-CaO-MgO-Al₂O₃-TiO₂-ZnO-V₂O₅-SiO₂. Содержание отдельных элементов определено инструментально. Следует отметить большое количество примесных элементов, попадающих в ДП с железорудным сырьем, коксом, флюсами (табл. 4).

Сравнение данных, приведенных в табл. 3 и 4, показывает весьма высокую концентрацию цинка в образцах O1-O3 (23,2-82,2 мас. %), незначительное содержание шлаковых оксидов (СаО и MgO <1,0 мас. %) и снижение количества Al_2O_3 в футеровке в процессе службы в несколько раз (в образце O1 почти на порядок). Образец O4отличается от других преимущественно кремнеземистым составом; в нем содержится 81,7 мас. % SiO₂. Во всех образцах установлено относительно малое содержание Fe, что указывает на отсутствие миграции железа из расплавов в огнеупор.

	Содержание компонента, мас. %,							
Компонент	в образце (см. рис. 1)							
	01	02	<i>O3</i>	04				
Fe	0,446	5,32	0,667	4,14				
Si	11,11	3,36	30,68	76,74				
Ti	0,666	0,237	1,99	1,25				
Zn	65,15	82,23	23,15	0,833				
Ca	0,236	0,587	0,858	1,22				
Mn	0,0215	0,0603	0,0495	0,0493				
K + Na	0,114	0,424	0,813	2,47				
V	-	0,077	0,045	0,241				
Al	19,37	5,21	40,22	9,98				
S	0,54	_	-	0,907				
Co	-	0,052	0,0204	0,035				
Cu	-	-	_	0,166				
Pb	1,13	0,599	0,162	0,0115				
Cr	-	-	-	0,0734				
Ba	0,00336	-	0,066	-				
РЗЭ (Ү, Се)	0,11	0,1226	0,3428	0,1662				
Mo + W	0,89	1,57	0,46	0,0137				
Ni	-	-	-	0,0311				
Zr	0,114	-	0,377	0,307				
Cl + I + Br	-	-	-	1,3198				
Bi	0,0626	0,139	-	-				
Р	_	-	0,201	-				
Ссвоб	_	-	-	43				
SiC	-	-	-	42				
SiO ₂	15,81	3,52	35,76	7,76				
Al_2O_3	27,29	8,17	47,34	3,43				
FeO	0,439	5,89	0,48	0,88				
CaO	0,257	0,668	0,638	0,604				
MgO	-	0,58	-	-				
ZnO	53,56	77,52	12,89	0,306				
Сумма	99,79	97,54	99,36	99,14				
Остальные	0,21	2,46	0,64	0,86				
микропримеси								

Таблица 4. Химический состав шихтовых материалов доменной плавки

Молориол						Сод	цержан	ие, мас	. %						Основ-					
материал	Fe	FeO	Fe ₂ O ₃	V_2O_5	MgO	S	Zn	TiO ₂	Mn	CaO	SiO ₂	Р	Al ₂ O ₃	Cr	ность					
Агломерат Качка-	54,1	9,4	66,9	0,527	2,57	0,017	0,012	2,51	0,17	11,0	4,7	0,006	2,58	0,057	2,33					
нарского ГОКа																				
Окатышы Качка-	61,1	3,2	83,9	0,588	2,53	0,004	0,013	2,75	0,17	1,2	3,8	0,006	2,53	0,52	0,31					
нарского ГОКа																				
Железофлюс Высо-	51,9	10,4	62,6	0,659	3,35	0,043	0,088	1,79	0,45	12,8	5,5	0,036	2,58	0,111	2,32					
когорского ГОКа																				
Доменный присад	60,2	18,4	-	0,772	5,51	0,066	0,035	0,84	1,83	11,7	7,3	0,153	2,24	0,23	1,59					
стальной габарит- ный*1																				
Металлический про-	72,5	12,3	-	0,385	2,91	0,148	-	2,10	0,61	8,0	6,7	0,055	2,83	-	1,19					
дукт РМ УПОШ*2																				
Металлодобавка	88,8	1,6	-	0,66	0,84	0,046	-	0,25	0,33	2,5	2,2	0,05	0,87	-	1,14					
РМ УПОШ																				
Металлоотсев	83,0	-	-	6,204	0,40	-	-	2,25	2,60	0,5	3,3	0,011	-	-	0,16					
УПВШ ^{*2} (смесь)											~ .									
Металлопродукт	88,3	-	-	4,10	0,23	-	-	1,39	1,73	0,3	2,1	0,013	-	-	0,15					
сухои МВ (Сухои Лог)										- 4	10.1		00.4		0.4.0					
Зола кокса про-	-	-	20,2	-	1,1	-	-	-	-	5,1	48,1	0,30	20,4	-	0,10					
ИЗВОДСТВА ЕВРАЗ																				
		1 1 0		0.24	10.0			0.00	0.4	22.0	20.4		15.7							
Шлак ДП № 0 [12]	-	1,10	-	0,24 V	12,0	-	-	9,99 Ti	0,4	52,9	20,4	-	15,7	-	- 1 1 /					
тугун дш № 0[12]	-	_	-	V 0 423	-	0,023	-	0.16	0,24	-	0.11	-	-	_	1,14					
*1.0	_	0.1	0()	0,423	20	0/ TZ 0	0.00	0,10			0,11									
↑ Содержит дополни	ительно	0 0,1 м	ac. % N	$a_2 0, 0, 0$	ля мас.	. % K ₂ O	и 0,00	5 Mac. 9	% PD.						¹¹⁰ Содержит дополнительно 0,1 мас. % №20, 0,08 мас. % №20 и 0,003 мас. % РD.					

| *² УПОШ — участок подготовки отвальных шлаков; УПВШ — участок подготовки ванадийсодержащих шлаков.

Таблица 3. Химический состав реакционных зон огнеупоров (после прокаливания на воздухе при 1000 °C)

Макрохарактеристика образцов

Образцы, отобранные для комплексного исследования, показаны на рис. 2. Тщательный осмотр образцов *O1* и *O3* показал присутствие на их поверхности и в плоскости разреза тонкодисперсного углерода (возможно, сажистого), который не смывается даже струей воды. Объемное насыщение углеродом в процессе службы обусловило переход светло-серой исходной окраски образцов в черную. В образцах *O2* и *O4* углерод представлен двумя разновидностями: тонкодисперсным (сажистым) и мелкокристаллическим (графитом).

В разрезах образцов O1 и O3 имеются тонкие (до 1,0-1,5 мм) трещины, полностью заполненные тугоплавким светло-серым веществом — цинкитом ZnO ($T_{nn} = 1975$ °C). Текстура этих образцов в основном однородная, без видимых границ между зернами заполнителя (фракции > 1 мм) и матрицы (фракции < 0,1 мм).

Образцы не обладают магнитной восприимчивостью, не содержат макровкраплений чугуна, что свидетельствует об отсутствии заметной капиллярной инфильтрации металлического расплава в объем огнеупора. Вследствие дополнительного спекания и насыщения реагентами печного пространства открытая пористость образцов снизилась от 16 до 6,1 %, а их кажущаяся плотность возросла до 3,95 г/см³. Очевидно, увеличение плотности связано с присутствием цинкита, имеющего кажущуюся плотность 5,7 г/см³.

Визуальный осмотр показал также полное отсутствие макрозональности во всех исследуемых образцах. Образцы *О1* и *О3* имеют высокую механическую прочность. Углеродистые блоки также не имеют макрозональности, но обладают слоистой текстурой с разной плотностью слоев толщиной от нескольких миллиметров до 15 см и более. Слои плотно и прочно спечены в монолит и различаются макропористостью и цветом.

Определение содержания углерода в образцах

Известно, что углерод в огнеупорах до и после службы может присутствовать в связанном виде (карбиды, оксикарбиды, карбонаты) и в элементарной форме (С) с разной степенью упорядоченности кристаллической структуры: от практически рентгеноаморфной сажи до явно кристаллического графита. При этом кокс по развитию атомной структуры (ближнего порядка) занимает промежуточное положение. Главным диагностическим параметром твердого углерода с разным развитием кристаллической структуры является температура начала его окисления на воздухе, возрастающая с развитием ее совершенности [14].

Среди традиционных методов изучения углеродистого минерального вещества (химический, рентгенофазовый, петрографический, инфракрасной спектроскопии и др.) наиболее эффективным является термогравиметрический (или дифференциальной калориметрии — ДСК), основанный на синхронной фиксации скорости изменения температуры и массы пробы при нагревании в заданной среде. На рис. 3 показаны кривые потери массы (*TГ*) и тепловых эффектов (*ДСК*) четырех исследуемых проб при нагревании на воздухе со скоростью 10 °С/мин в интервале 20–1500 °С.

Потери массы в образце *O1* начинаются от 400 °C и происходят в два этапа: в интервале 400–1000 °C с максимумом теплового эффекта при 669 °C, связанным с окислением углерода

Рис. 2. Образцы огнеупоров, отобранных из горна ДП № 6: *а* — образец *O1*, часть футеровочного блока с отметки +9500 мм; *б* — образец *O2*, часть графитированного блока 1-го ряда; *в* — образец *O3*, перерожденная часть углеродистого блока с отметки +9500 мм; *г* — образец *O4*, слоистые части углеродистого блока с отметки +9300 мм, район чугунной летки № 2

44

(потери массы 3,65 %) и, возможно, цинка, и небольшим экзотермическим эффектом в интервале 1300–1500 °С, связанным с разложением стеклофазы и кристаллизацией муллита (возможно, обогащенного цинком) при 1389 °С (потери массы 1,09 %). Количество свободного углерода в образце 3,65 %.

Тепловые эффекты в образце О2 начинаются от 200 °С и сопровождаются широким экзотермическим тепловым эффектом с максимумом при 652 °С. связанным с окислением углерода и. возможно, цинка, и небольшим экзотермическим эффектом в интервале 1300-1500 °C вследствие дивитрификации стеклофазы и кристаллизации муллита — экзотермический эффект при 1379 °С. Широкий эффект окисления углерода обусловлен присутствием в образце оксидной и/или металлической фазы, которая при горении углерода образует на его поверхности оксидную пленку, замедляющую процесс окисления. Количество свободного углерода в образце 93.0 %.

Тепловые эффекты в образце *ОЗ* начинаются от 200 °С и сопровождаются широким экзотермическим тепловым эффектом с максимумами при 602 и 669 °С, отражающими последовательные процессы окисления цинка, углерода, кокса и графита. Начиная от 1100 °С появляется еще один экзотермический эффект, сопровождающийся увеличением массы на 1,47 % и выраженным экзотермическим эффектом в интервале 1300–1500 °С, обусловленным окислением карбидных (Fe₃C, SiC) фаз. Количество свободного углерода в образце 5,26 %.

Тепловые эффекты в образце *O4* начинаются от 200 °С и сопровождаются широким экзотермическим тепловым эффектом с максимумами в интервале 433–718 °С, связанными с окислением сажистого углерода, кокса и графита, и небольшим эндотермическим эффектом при 1446 °С, обусловленным плавлением аморфной фазы. Количество свободного углерода в образце 24,69 %.

Температура начала плавления всех образцов в защитной атмосфере выше 1600 °С.

Количественный РФА образцов

Результаты РФА шести исследуемых проб приведены в табл. 5. Для анализа образцов O2 и O4 было использовано по две разновидности слоев (O2-a, O2-б, O4-a, O4-б), различающихся по микроструктуре. Из табл. 5 видно, что образцы O1

Рис. 3. Термограммы образцов огнеупоров в атмосфере воздуха: 1 — кривая потери массы (*TГ*); 2 — кривая тепловых эффектов (*ДСК*); *а-г* — образцы *О1*, *О2*, *О3*, *О4* соответственно

и *ОЗ* по фазовому составу аналогичны огнеупорным высокоглиноземистым изделиям, представленным муллитом и корундом, содержащими в виде изоморфной примеси оксид железа. Образцы *О2* и *О4* резко отличаются от образцов *О1* и *О3*, преимущественно углеродистым составом, представленным фазами системы Si-C: графи-

	Содержание фазы, мас. %, в образце								
Фаза	01	C	2*1	03	<i>O</i> 4*1				
		а	б	03	а	б			
Цинкит ZnO	36	_	26	_	_	-			
Ганит ZnAl ₂ O ₄	7	-	-	-	-	_			
Виллемит Zn ₂ SiO ₄	11	3	1,6	3	-	_			
Железистый муллит 3(Al,Fe) ₂ O ₃ ·2(Si)O ₃	22	-	_	63	_	-			
Железистый корунд (Al, Fe) ₂ O ₃	24	-	-	-	-	_			
Железистый цинкит (Zn, Fe)О	-	49	-	29	-	_			
Железистый ганит Zn(Al _{1,4} Fe _{0,6})O ₄	_	48	_	-	_	-			
Герцинит цинкат (Zn _{0,4} Fe _{0,52} Al _{0,08})(Fe _{0,09} Al _{1,91} O ₄)	-	-	-	2	-	_			
Графит	-	-	69	-	43	13			
Карбид кремния*2	-	-	-	-	50	53			
Когенит Fe ₃ C* ³	-	-	4	-	1	_			
Браунмиллерит Ca ₂ Fe _{0,95} Al _{0,95} Mg _{0,05} Si _{0,05} O ₅	_	-	_	-	3	-			
Пироп (Mg _{0,92} Fe _{0,05} Ca _{0,03}) ₃ Al ₂ (SiO ₄) ₃	-	-	-	-	3	_			
Кварц	-	-	-	-	-	34			
*1 <i>а</i> — расчетный равновесный состав; <i>б</i> — фак	тический ми	инеральный	(фазовый).						
* ² Синоним — цементит (металловедение).		1	· · · · ·						
* ³ В геологии высокотемпературная молифика	ния (гексаго	нальной син	гонии) назыв	ается муасса	нит.				

T (**C A V**

том и карбидом кремния. Образец О4 содержит около одной трети кварца в сером слое блока. Результаты РФА показали также, что оксидные соединения цинка, представленные цинкитом ZnO, ганитом ZnAl₂O₄ и цинковым герцинитом (Fe,Zn)Al₂O₄, содержатся в виде твердого раствора FeO и Fe₂O₃.

Количественный петрографический анализ образцов

Главным недостатком РФА является невозможность получения информации о содержании в исследуемых образцах рентгеноаморфных фаз, в частности стеклофазы и углерода в виде сажи, кокса, стеклоуглерода. Этот недостаток устраняется совместным использованием с РФА наиболее эффективных методов термографии массового содержания всех форм углерода, включая тонколисперсную сажу, и петрографии (все формы углерода, кроме сажи).

В табл. 6 приведен фактический минеральный состав исследуемых образцов после службы в ДП на основании результатов РФА, термогравиметрии, общего и локального химических анализов и минералографии (по данным оптической микроскопии в отраженном свете). Сравнение результатов количественного определения минерального состава РФА (см. табл. 5) и микроскопии (см. табл. 6) позволяет получить более полную информацию о реальном фазовом составе исследуемых образцов, включая содержание и взаимное расположение аморфных фаз.

минеральному составу По выделены две группы исходных огнеупоров: корундомуллитокарбидкремниевая (образцы О1 и O3), относящаяся к системе Al₂O₃-SiO₂-SiC, и углеродсодержащая (безобжиговые образцы *O2* и *O*4), описываемые системой Al₂O₃-SiO₂-SiC-C. Во всех образцах диагностирован вторичный рентгеноаморфный углерод (сажа) в количестве 3-5 мас. %. Главными вторичными минералами, образовавшимися в результате привноса веществ из рабочего пространства ДП и их химического взаимодействия с фазами исходных огнеупоров, являются четыре соединения цинка: металлический цинк, оксид цинка, силикат

Таолица 6. минеральный (фазовый) состав исследуемых образцов										
Фаза	T OC	Содержание фазы, мас. %, в образце								
	I пл, °С	01	02	03	04					
Корунд нормальный (Al, Ti) ₂ O ₃	2050	25,0	_	46,2	18,4					
Муллит 3Al ₂ O ₃ ·2SiO ₂	1910	4,3	-	12,6	-					
Карбид кремния	>2600*1	12,8	-	18,8	33,6					
Цинкит ZnO	1975	35,4	2,0	6,2	-					
Углерод (кокс + графит)	>3500*1	4,8	63,1	3,7	32,9					
Ганит ZnAl ₂ O ₄	1950	7,0	1,3	3,3	-					
Виллемит Zn ₂ SiO ₄	1512	9,3	1,6	4,1	-					
Стекло (лешательерит)*2	-	1,4	-	1,3	-					
Цинк металлический	420	-	24,1	3,8	-					
Цементит (когхенит) Fe ₃ C	1600	-	8,0	-	-					
Кварц	1723	_	-	_	15,1					
* ¹ Указана температура сублимации	а, °C.									
* ² Основа — SiO ₂ (из SiC).										

46

цинка — виллемит Zn_2SiO_4 и цинковая шпинель — ганит $ZnAl_2O_4$. Суммарное содержание цинксодержащих фаз в образце *O1* превышает 50 мас. %.

Библиографический список

1. *Perepelitsyn, V. A.* Mineralogy and microstructure of skull versions in AO EVRAZ NTMK blast furnace No. 6 / *V. A. Perepelitsyn, K. G. Zemlyanoi, K. V. Mironov* [et al.] // Refract. Ind. Ceram. — 2020. — Vol. 61, № 4. — P. 364–373.

Перепелицын, В. А. Минералогия и микроструктура разновидностей гарнисажа в доменной печи № 6 АО ЕВРАЗ НТМК / *В. А. Перепелицын, К. Г. Земляной, К. В. Миронов* [и др.] // Новые огнеупоры. — 2020. — № 7. — С. 11–20.

2. *Горох, А. В.* Петрографический анализ процессов в металлургии / *А. В. Горох, Л. Н. Русаков.* — М. : Металлургия, 1973. — 288 с.

3. **Bergsma, D.** Fundamentals of titanum-rich scaffold formation in the blast furnace heath / *D. Bergsma, R. J. Fruehan* // Ironmaking Conference Proceedings. — 2001. — P. 297–312.

4. **Коверзин, А. М.** Исследование гарнисажа и футеровки в горне доменной печи № 2 АО «ЕВРАЗ ЗСМК» (Сообщение 1) / А. М. Каверзин, В. Г. Щипицын, А. В. Ващенко [и др.] // Черная металлургия. Бюл. научнотехнической и экономической информации. — 2018. — № 8. — С. 17–29.

5. **Коверзин, А. М.** Исследование гарнисажа и футеровки в горне доменной печи № 2 АО «ЕВРАЗ ЗСМК» (Сообщение 2) / А. М. Каверзин, В. Г. Щипицын, А. В. Ващенко [и др.] // Черная металлургия. Бюл. научнотехнической и экономической информации. — 2018. — № 9. — С. 9–24.

6. **Курунов, И. Ф.** Исследование состава и структуры гарнисажа горна ДП № 6 НЛМК (Сообщение 1) / И. Ф. Курунов, А. С. Близнюков, В. Н. Титов [и др.] // Черная металлургия. Бюл. научно-технической и экономической информации. — 2019. — Т. 75, № 2. — С. 166–181.

7. Шепетовский, И. Э. Исследование состава гарнисажа в горне доменной печи Косогорского металлургического завода, выплавляющей ферромарганец с использованием шунгита (Сообщение 1) / И. Э. Шепетовский, А. Г. Шалыгин, М. Р. Садрадинов [и др.] // Черная металлургия. Бюл. научно-технической и экономической информации. — 2019. — Т. 75, № 4. — С. 432-447.

8. **Перепелицын, В.** А. Некоторые процессы образования гарнисажа в шахте доменной печи / В. А. Перепелицын, А. С. Фрейденберг, И. Н. Сорокин // Огнеупоры. — 1976. — № 2. — С. 39-42.

9. **Филиппов, В. В.** Исследование условий формирования гренали при плавке титаномагнетитов Качканарского ГОКа / В. В. Филиппов, В. С. Рудин, А. Ю. Чернавин [и др.] // Сталь. — 2000. — № 5. — С. 15–18.

10. **Гостенин, В.** А. Структура карбонитридного гарнисажа, образующегося в горне и лещади / В. А. Гостенин, С. К. Сибагатуллин, А. Л. Мавров [и др.] // Сталь. — 2007. — № 2. — С. 29, 30.

11. **Hubbard, C. R.** The reference intensity ratio for computer simulated powder patterns / C. R. Hubbard, E. H. Evans, D. K. Smith // J. Appl. Cryst. — 1976. — Vol. 169, № 9. — P. 169–174.

Получено 23.03.22 © В. А. Перепелицын, К. Г. Земляной, В. М. Устьянцев, К. В. Миронов, А. А. Форшев, Ф. П. Николаев, Д. В. Сушников, 2022 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

