К. т. н. Д. Д. Несмелов¹ (⊠), Е. С. Новоселов¹, к. т. н. Д. П. Данилович¹, к. х. н. В. И. Альмяшев²

- ¹ ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)», Санкт-Петербург, Россия
- ² ФГУП «Научно-исследовательский технологический институт имени А. П. Александрова», Сосновый Бор, Ленинградская обл., Россия

УПК 666.3:546.654'2711:538.9

МИКРОМЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗАКРИСТАЛЛИЗОВАННОЙ ЭВТЕКТИКИ В СИСТЕМЕ LaB₆-VB₂

Методом холодного тигля получен эвтектический сплав в системе LaB_6-VB_2 . Соотношение компонентов в исходной порошковой смеси составляло 40:60 мол. %. В структуре сплава наблюдаются двухфазные эвтектические области, представляющие собой матрицу LaB_6 , наполненную цилиндрическими волокнами VB_2 диаметром до 2 мкм или протяженными кристаллами VB_2 с поперечным сечением сложной формы и эквивалентным диаметром до 10-15 мкм. Определены твердость по Виккерсу и трещиностойкость, установлена взаимосвязь этих характеристик с величиной нагрузки на индентор, направлением приложения нагрузки и типом эвтектической структуры. Максимальное значение трещиностойкости (8,6 МПа·м¹/²) и высокая твердость (20,0 ГПа) зафиксированы для сплава со структурой стержневой эвтектики при приложении нагрузки на индентор 2 Н параллельно кристаллографической оси c VB_2 . Наибольший эффект упрочнения при нагрузке как 2 Н, так и 30 Н, выражающийся в сочетании высоких твердости (20,5 ГПа при 2 Н и 20,0 ГПа при 30 Н) и трещиностойкости (6,5 МПа·м¹/² при 2 Н и 4,9 МПа·м¹/² при 30 Н), был продемонстрирован сплавом со структурой эвтектики грубого конгломерата.

Ключевые слова: гексаборид лантана, диборид ванадия, эвтектика, твердость по Виккерсу, трещиностойкость.

ВВЕДЕНИЕ

м атериалы на основе гексаборида лантана в виде как спеченных поликристаллов, так и монокристаллов обладают выдающимися термоэмиссионными и физико-механическими характеристиками. Ряд публикаций, в том числе обзорного характера, свидетельствуют о возможности улучшения этих характеристик за счет перехода от мономатериалов к гетерофазным системам, образованным гексаборидами редкоземельных металлов (в первую очередь LaB₆) и диборидами переходных металлов (МеВ2, где Ме — Ti, Zr, Hf, Ta, Nb, V, Cr, W, Mo) [1-17]. Эвтектический характер взаимодействия в квазибинарных системах LaB₆-MeB₂ открывает перспективу создания материалов с использованием нескольких альтернативных подходов: твердофазного спекания порошковых систем при температурах ниже

 \bowtie

Д. Д. Несмелов E-mail: dnesmelov@yandex.ru температуры эвтектики; спекания в присутствии жидкой фазы при температуре эвтектики или выше; кристаллизации эвтектических структур из расплава.

Последний подход получил наибольшее развитие в работах, посвященных получению направленно-закристаллизованных материалов методом зонной плавки [6-10, 17-20]. Структуру таких материалов можно назвать самоармированной: в объеме матричной фазы LaB₆ упорядоченно кристаллизуются волокна (нитевидные. стержневые кристаллы) или пластинчатые кристаллы диборида переходного металла. Образование специфической структуры приводит к резкому улучшению ряда характеристик, в частности трешиностойкости и предела прочности при изгибе [3, 5, 7-11, 19-21]. Упорядоченная организация структуры закристаллизованных эвтектик приводит к анизотропии механических свойств [19, 20]. При создании новых материалов для экстремальных условий эксплуатации важна информация о характере разрушения, деформации материала, о влиянии особенностей структуры на механические свойства в зависимости от направления приложения нагрузки. В связи с этим актуальной задачей является исследование анизотропии механических свойств закристаллизованных эвтектик в системах LaB_6 - MeB_2 на различных структурных уровнях.

Цель настоящей работы — экспериментальное исследование микромеханических характеристик закристаллизованных эвтектик в системе LaB_6-VB_2 : твердости по Виккерсу HV и трещиностойкости K_{Ic} .

МЕТОДИКА ИССЛЕДОВАНИЯ

Получение порошков LaB_6 и VB_2 проводили твердофазным боротермическим восстановлением оксидов с использованием коммерческих порошков La_2O_3 (чистота 99,99 мас. %), V_2O_5 (чистота 99 мас. %) и аморфного В (чистота 99,0 мас. %). Предварительно отформованные из реакционных смесей заготовки помещали в вакуумную печь сопротивления. Синтез вели при 1650 °C (LaB_6) и 1200 °C (VB_2) с изотермической выдержкой 1 ч при давлении остаточных газов $10-10^{-1}$ Па.

Средний размер частиц синтезированных порошков LaB₆ и VB₂, определенный с помощью лазерной дифракции, составлял 5–10 мкм. Бориды были смешаны в соотношении эвтектики (40 мол. % LaB₆) по данным работ [22, 23]. Смешение и измельчение порошков до достижения среднего размера частиц 1,5 мкм проводили в аттриторе UnionProcess HD-1 мелющими телами из SiC в среде бензина-растворителя БР-2 в течение 6 ч. За счет износа мелющих тел в смесь было внесено около 0,7 мас. % SiC. Измельченные порошки высушивали в вакуумном сушильном шкафу.

Закристаллизованные образцы получали индукционной плавкой методом холодного тигля в потоке аргона по методике [24] с использованием установок «Расплав 2» и «Расплав 3». Заготовки для плавки получали из порошков с помощью одноосного прессования в цилиндрической прессформе диаметром и высотой 40 мм.

После плавления и кристаллизации образец разрезали в двух взаимно перпендикулярных направлениях с помощью алмазного диска. Поверхность исследуемых образцов полировали с помощью алмазных паст с размерами зерен от 40/28 до 0,5/0. В качестве образцов сравнения методом электродугового плавления были получены монокристаллы LaB₆ и VB₂, поверхность которых была подготовлена аналогичным образом.

Анализ структуры и элементного состава образцов проводили с помощью PЭM VEGA 3 SBH (Теscan) с приставкой для рентгеноспектрального микроанализа Aztec X-Act. Фазовый состав исследовали методом рентгеновской дифракции с помощью порошкового дифрактометра Rigaku SmartLab 3 (Си K_{α} -излучение, Ni-фильтр, диапазон углов 20 от 10 до 80°). Измерение твердости по Виккерсу HV проводили методом индентирования алмазной пирамиды Виккерса на модернизированном твердомере ПМТ-3 с нагрузкой 2

и 30 Н. Расчет значения HV, $\Gamma\Pi$ а, проводили не менее чем по десяти отпечаткам с использованием формулы

$$HV = 1854 \frac{P}{D^2},$$
 (1)

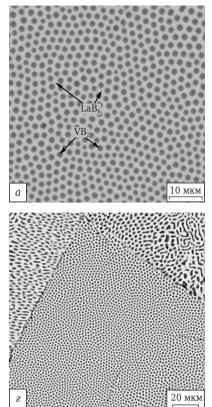
где P — нагрузка на индентор, H; D — диагональ отпечатка, мкм.

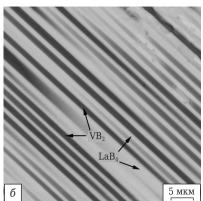
Расчет трещиностойкости $K_{\rm Ic}$, МПа·м^{0,5}, образцов проводили с помощью измерения длины радиальных трещин, распространяющихся от углов отпечатка индентора, по формуле

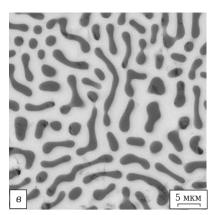
$$K_{\rm Ic} = 0.0889 \sqrt{\frac{HV \cdot P}{4l}},\tag{2}$$

где P — нагрузка, H; l — длина трещины от вершины отпечатка.

Измерение диагоналей отпечатков и длины трещин выполняли с помощью металлографического микроскопа Meiji Techno 7200 и программного комплекса Thixomet Lite.

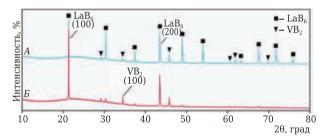

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


На рис. 1 показаны SEM-снимки аншлифов закристаллизованного сплава LaB₆–VB₂. В структуре сплава волокна VB₂, имеющие диаметр до 2 мкм, ориентированы перпендикулярно поверхности аншлифа (см. рис. 1, a) и параллельно (см. рис. 1, δ).

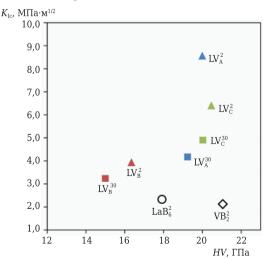

На рис. 1, в показана структура эвтектики грубого конгломерата, вероятно сформировавшаяся в областях с меньшей скоростью охлаждения. Структура этого типа характеризуется более сложной формой поперечного сечения протяженных кристаллов VB_2 с эквивалентным диаметром (диаметром круга, эквивалентного по площади) до 10-15 мкм. Переходная область между эвтектикой «стержневого» типа и эвтектикой грубого конгломерата показана на рис. 1, г.

Эвтектические структуры демонстрируют высокую степень упорядоченной ориентации волокон VB_2 и близость их диаметров внутри блоков эвтектики размерами около 500 мкм. Однако в целом объем закристаллизованного сплава характеризовался различно ориентированными блоками эвтектики, поскольку метод холодного тигля не является методом получения направленно закристаллизованных материалов. Это связано с наличием разнонаправленных температурных градиентов в процессе кристаллизации эвтектики.

Концентрация компонентов в сплаве, определенная с помощью микрорентгеноспектрального анализа в эвтектических областях, составила 38 мол. % LaB₆ и 62 мол. % VB₂. Примесей зафиксировано не было, включая кремний, внесенный на этапе измельчения, что может быть связано с гравитационным разделением в расплаве вследствие большого различия плотностей SiC и боридов La и V.


Рис. 1. SEM-микрофотографии структуры сплава LaB_6 – VB_2 с поперечным (a) и продольным сечением волокон VB_2 в матрице LaB_6 (δ); δ — эвтектика грубого конгломерата; ϵ — переходная зона

По данным рентгенофазового анализа (рис. 2), сплав является двухфазным. Кроме гексагонального VB_2 и кубического LaB_6 кристаллических фаз не зафиксировано.


Два взаимно перпендикулярных сечения закристаллизованного образца продемонстрировали спектры с одинаковым набором рефлексов и с непропорциональным усилением интенсивности отдельных рефлексов. Аномально высокая интенсивность рефлексов (100) и (200) LaB₆ сильно выражена в спектре \mathcal{B} (см. рис. 2). Аналогичное, но менее ярко выраженное превышение интенсивности пиков (100) и (200) над пиком (110), который в карточке стандарта обладает интенсивностью 100 %, наблюдается и в спектре А. Непропорциональное усиление интенсивности рефлекса (100) VB₂ хорошо заметно в спектре Б. Отмеченные отклонения от кристаллографических стандартов связаны с анизотропным строением сплава и преимущественным отражением от соответствующих атомных плоскостей.

Результаты определения HV и $K_{\rm Ic}$ с разным направлением приложения нагрузки относительно волокон VB_2 представлены в таблице и отмечены на диаграмме Эшби (рис. 3). Указано направление приложения нагрузки на индентор относительно кристаллографической оси c, поскольку волокна VB_2 вытянуты вдоль этой оси. Металлографические снимки отпечатков индентора показаны на рис. 4.

На величину микромеханических характеристик оказывают совокупное влияние величина

Рис. 2. Спектры рентгеновской дифракции аншлифа сплава LaB_6 – VB_2 с преимущественным содержанием поперечных (*A*) и продольных сечений волокон VB_2 (*B*)

Рис. 3. Соотношение HV и $K_{\rm lc}$ закристаллизованных образцов LaB_6 – VB_2 и монокристаллических LaB_6 и VB_2 ; индексы 2 и 30 — величина нагрузки, Н

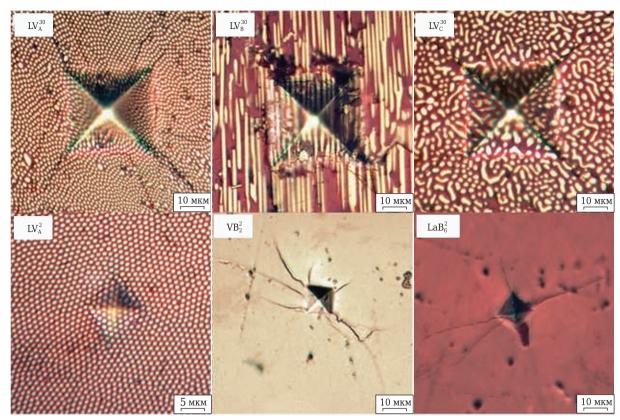


Рис. 4. Микрофотографии отпечатков индентора

Показатели HV и K_{Ic} закристаллизованных образцов LaB₆−VB₂ и монокристаллических LaB₆ и VB₂

	Образец							
Показатель	LaB_6-VB_2						LaB ₆	VB ₂
	LV_A		LV_B		LV _C		LdD ₆	V D ₂
Структура эвтектики	Стержневая		Стержневая		Грубого конгломерата		-	-
Направление приложения нагрузки относительно оси <i>с</i> VB ₂	Парал	тельное	Перпенди	кулярное	Парал	лельно	-	-
Нагрузка на индентор, Н	2	30	2	30	2	30	2	2
HV, ±0,2 ΓΠα	20,0	19,2	16,4	15,0	20,5	20,0	18,0	21,1
$K_{\rm Ic}$, ±0,3 M Π a· $M^{1/2}$	8,6	4,2	4,0	3,2	6,5	4,9	2,3	2,1

нагрузки, направление приложения нагрузки и тип эвтектической структуры.

Обе измеренные микромеханические характеристики сплава LaB_6-VB_2 (HV и K_{Ic}) закономерно снижаются с увеличением нагрузки на индентор от 2 до 30 Н. Этот эффект наблюдался при индентировании всех образцов, однако был наиболее выражен для образцов LV_A — эвтектики стержневого типа, нагружение которых осуществляли параллельно волокнам VB₂. На диаграмме Эшби (см. рис. 3) образец ${\rm LV_A^2}$ располагается достаточно далеко от группы остальных исследованных образцов благодаря аномально высокой $K_{\rm Ic}$ (8,6 МПа·м^{1/2}, т. е. на 75 % выше, чем у образца LV_A^{30}). Это может указывать на реализацию принципиально иного механизма упрочнения при низкой (2 Н) нагрузке на индентор. Образец LV_B , при измерении HVкоторого нагружающее воздействие индентора было направлено перпендикулярно волокнам VB_2 , и образец со структурой эвтектики грубого конгломерата $LV_{\rm C}$ продемонстрировали слабую зависимость HV и $K_{\rm Ic}$ от величины нагрузки. Можно отметить сходство расположения точек этих образцов на диаграмме Эшби — при увеличении нагрузки на индентор от 2 до 30 Н HV и $K_{\rm Ic}$ снижаются на 5–15 %. При этом по абсолютной величине как HV, так и $K_{\rm Ic}$ образца $LV_{\rm B}$ заметно ниже, чем у образцов $LV_{\rm C}$ и $LV_{\rm A}$.

По уровню HV образцы LV_C и LV_A превосходили монокристалл LaB_6 и приближались к HV монокристалла VB_2 , тогда как по величине $K_{\rm Ic}$ они существенно превосходили оба монокристаллических образца. Образец LV_B , несмотря на относительно низкую HV, по уровню $K_{\rm Ic}$ также превосходил монокристаллы LaB_6 и VB_2 . Измерение HV и $K_{\rm Ic}$ монокристаллов проводили только при нагрузке 2 H, так как при более вы-

сокой нагрузке из-за сильного растрескивания не удалось достоверно определить размеры отпечатка и длину трещин.

Рассматривая структуру эвтектического сплава как самоармированный материал, в котором происходит упрочнение матрицы LaB₆ за счет формирования протяженных волокон VB₂, можно отметить, что наиболее выраженный эффект упрочнения, отвечающий максимальным значениям HV и $K_{\rm Ic}$ при каждом из двух значений нагрузки на индентор, соответствует образцу LV_C. Можно предположить, что это связано с развитой боковой поверхностью протяженных кристаллов VB₂ в структуре эвтектики грубого конгломерата. По сравнению с цилиндрическими волокнами VB₂ в структуре стержневой эвтектики более сложная морфология кристаллов VB₂ грубого конгломерата может способствовать улучшению работы, затраченной на распространение трещины по более длинной траектории при обходе препятствия.

ЗАКЛЮЧЕНИЕ

Методом холодного тигля получены сплавы в системе LaB_6 – VB_2 с характерной эвтектической структурой. В структуре наблюдаются двухфаз-

Библиографический список

- 1. **Paderno, Y. B.** Thermionic properties of $LaB_6-(Ti_{0,6}Zr_{0,4})B_2$ material / Y. B. Paderno, A. A. Taran, D. A. Voronovich [et al.] // Functional Materials. 2008. Vol. 15, No. 1. P. 63.
- 2. **Taran, A.** Thermionic emission of LaB₆–ZrB₂ quasi binary eutectic alloy with different ZrB₂ fibers orientation / A. Taran, D. Voronovich, D. Oranskaya [et al.] // Functional materials. 2013. Vol. 20, N 4. P. 485–488. DOI: 10.15407/fm20.04.485.
- 3. **Yang, X.** Microstructure, mechanical and thermionic emission properties of a directionally solidified LaB_6-VB_2 eutectic composite / X. Yang, P. Wang, Z. Wang [et al.] // Materials & Design. 2017. Vol. 133. P. 299–306. DOI: 10.1016/j.matdes.2017.07.069.
- 4. **Berger, M. H.** Local investigation of the emissive properties of LaB_6 – ZrB_2 eutectics / M. H. Berger, T. C. Back, P. Soukiassian [et al.] // Journal of Materials Science. 2017. Vol. 52, № 10. P. 5537–5543. DOI: 10.1007/s10853-017-0816-0.
- 5. **Deng, H.** Crystallographic characterization and indentation mechanical properties of LaB₆–ZrB₂ directionally solidified eutectics / H. Deng, E. C. Dickey, Y. Paderno [et al.] // Journal of materials science. 2004. Vol. 39, N 19. P. 5987–5994.
- 6. *Chen, C. M.* Characterization of LaB₆–ZrB₂ eutectic composite grown by the floating zone method / *C. M. Chen, L. T. Zhang, W. C. Zhou //* Journal of crystal growth. 1998. Vol. 191, № 4. P. 873–878.
- 7. **Bogomol, I.** High-temperature strength of directionally reinforced LaB_6 -TiB₂ composite / I. Bogomol, T. Nishimura, O. Vasylkiv [et al.] // J. Alloys Compds. 2010. Vol. 505, № 1. P. 130–134. DOI: 10.1016/j.jallcom.2010.05.003.

ные эвтектические области стержневого типа с диаметром цилиндрических волокон VB_2 до 2 мкм и двухфазные эвтектические области грубого конгломерата с протяженными кристаллами VB_2 с поперечным сечением сложной формы и эквивалентным диаметром до 10-15 мкм.

Установлена зависимость HV и $K_{\rm Ic}$ от величины нагрузки на индентор, направления приложения нагрузки и типа эвтектической структуры. Максимальное значение $K_{\rm Ic}$ (8,6 МПа·м¹/²) и высокая HV (20,0 ГПа) зафиксированы для сплава со структурой стержневой эвтектики при приложении нагрузки на индентор 2 Н параллельно кристаллографической оси c VB $_2$. Однако этот сплав продемонстрировал резкое ухудшение микромеханических характеристик с увеличением нагрузки до 30 Н.

Наибольший эффект упрочнения при нагрузке как 2 H, так и 30 H, выражающийся в сочетании высоких HV (20,5 ГПа при 2 H и 20,0 ГПа при 30 H) и $K_{\rm Ic}$ (6,5 МПа·м¹/² при 2 H и 4,9 МПа·м¹/² при 30 H) был продемонстрирован сплавом со структурой эвтектики грубого конгломерата.

* * *

Исследование выполнено при финансовой поддержке гранта РНФ № 19-73-10180.

- 8. *Volkova, H.* The influence of Ti addition on fracture toughness and failure of directionally solidified LaB₆–ZrB₂ eutectic composite with monocrystalline matrix / *H. Volkova, V. Filipov, Y. Podrezov //* J. Eur. Ceram. Soc. 2014. Vol. 34, № 14. P. 3399–3405. DOI: 10.1016/j. jeurceramsoc.2014.03.018.
- 9. **Bogomol, I.** The bending strength temperature dependence of the directionally solidified eutectic LaB₆–ZrB₂ composite / *I. Bogomol, T. Nishimura, Y. Nesterenko* [et al.] // J. Alloys Compds. 2011. Vol. 509, $N \ge 20$. P. 6123–6129.
- 10. **Paderno, Y. B.** Manufacturing, structure and thermionic properties of lanthanum hexaboride based composite cathode materials / Y. B. Paderno, A. A. Taran, E. K. Ostrovski [et al.] // Functional Materials. 2001. Vol. 8, N 4. P. 714–717.
- 11. **Taran**, A. Review of LaB₆, Re–W dispenser and BaHfO₃–W cathode development / A. Taran, D. Voronovich, S. Plankovskyy, V. Paderno, V. Filipov // IEEE Transactions on electron devices. 2009. Vol. 56, \mathbb{N} 5. P. 760–765.
- 12. **Ordan'yan, S. S.** Interaction in the LaB_6 -HfB₂ system / S. S. Ordan'yan, Y. B. Paderno, I. K. Khoroshilova [et al.] // Soviet Powder Metallurgy and Metal Ceramics. 1984. Vol. 23, Ne. 2. P. 157–159. DOI: 10.1007/BF00792275.
- 13. **Ordan'yan, S. S.** Interaction in the LaB₆-CrB₂ system / S. S. Ordan'yan, Y. B. Paderno, E. E. Nikolaeva [et al.] // Powder Metallurgy and Metal Ceramics. 1984. Vol. 23, \mathbb{N}_2 5. P. 387–389.
- 14. **Ordan'yan, S. S.** Phase relations in the LaB₆–W₂B₅ system / S. S. Ordan'yan, D. D. Nesmelov, S. V. Vikhman // Inorganic Materials. 2009. Vol. 45, No 7. P. 754–757. DOI: 10.1134/S0020168509070097.

- 15. **Loboda, P. I.** Phase relations in the LaB₆-MoB₂ system / P. I. Loboda, G. P. Kisla, I. I. Bogomol [et al.] // Inorganic Materials. 2009. Vol. 45, № 3. P. 246–249. DOI: 10.1134/S0020168509030042.
- 16. **Kysla**, **G.** Ceramic materials of the quasi-binary LaB_6 -MoB₂ system / G. Kysla, P. Loboda // Processing and Application of Ceramics. 2007. Vol. 1, № 1/2. P. 19–22. DOI: 10.2298/PAC0702019K.
- 17. *Wang, Y.* Preparation, characterization and properties of La_{0.6}Ce_{0.3}Pr_{0.1}B₆–ZrB₂ directionally solidified eutectic grown via the optical floating zone technique / *Y. Wang, X. Yang, S. Ning, Z. Wang, B. Xu, J. Zhang //* J. Alloys Compds. 2020. Vol. 818. Article № 152924.
- 18. **Gunjishima**, **I.** Characterization of directionally solidified B_4C - TiB_2 composites prepared by a floating zone method / *I. Gunjishima*, *T. Akashi*, *T. Goto* // Materials Transactions. 2002. Vol. 43, N 4. P. 712–720.
- 19. *Chen, C. M.* Characterization of LaB_6 – ZrB_2 eutectic composite grown by the floating zone method / *C. M. Chen, L. T. Zhang, W. C. Zhou //* Journal of crystal growth. 1998. Vol. 191, N 4. P. 873–878.
- 20. **Bogomol, I.** Directionally solidified ceramic eutectics for high-temperature applications / *I. Bogomol, P. Loboda*

- // MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments. 2013. P. 303. DOI: 10.4018/978-1-4666-4066-5.ch010.
- 21. **Несмелов,** Д. Д. Кристаллизация эвтектических структур в системе LaB₆-W₂B₅-NbB₂ / Д. Д. Несмелов, Е. С. Новоселов, С. В. Вихман // Физика и химия стекла. 2022. Т. 48, № 1. С. 34–43. DOI: 10.31857/S0132665122010097.
- 22. **Орданьян, С. С.** О закономерностях взаимодействия в системах LaB₆– $Me^{\text{IV-VI}}$ B₂ / С. С. Орданьян // Неорганические материалы. 1988. Т. 24, № 2. С. 235–238.
- 23. **Орданьян, С. С.** Взаимодействие в системах LaB₆— Me^{V} B₂ / С. С. Орданьян, Е. Е. Николаева, Л. В. Козловский // Неорганические материалы. 1984. Т. 20, № 11. С. 1821–1824.
- 24. **Beshta**, **S. V.** Phase relations in the ZrO_2 -FeO system / S. V. Beshta, E. V. Krushinov, V. I. Al'myashev [et al.] // Russian journal of inorganic chemistry. 2006. Vol. 51, N_2 2. P. 325–331. DOI: 10.1134/S0036023606020227.

Получено 21.04.22 © Д. Д. Несмелов, Е. С. Новоселов, Д. П. Данилович, В. И. Альмяшев, 2022 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

КЕРАМИКА В ЕВРОПЕ 2022

XVII конференция и выставка ECerS (ECerS XVII), 9-я Международная керамическая конференция (ICC9) и конференция Electroceramics XVIII запланированы как совместная конференция в г. Кракове, Польша, с 10 по 14 июля 2022 г.

CERAMICS IN EUROPE 2022

Kraków 10th-14th July 2022

Для получения дополнительной информации посетите веб-сайт конференции:

www.ceramicsineurope2022.org

