Д. т. н. **В. В. Кузин** (🖾), д. т. н. **С. Н. Григорьев**, к. т. н. **М. Ю. Федоров**, к. т. н. **М. А. Волосова**

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

удк 666.3:546.28'171]:621.914.22 ВЛИЯНИЕ ПОКРЫТИЙ AIN И ТІN НА ТЕПЛОВОЕ И НАПРЯЖЕННОЕ СОСТОЯНИЕ ПОВЕРХНОСТНОГО СЛОЯ Si₃N₄—ТіС-КЕРАМИКИ В УСЛОВИЯХ ТЕПЛОВОГО ПОТОКА

Изучены особенности влияния покрытий AlN и TiN на тепловое и напряженное состояние поверхностного слоя Si₃N₄-TiC-керамики под действием теплового потока. Установлено, что покрытие TiN более благоприятно влияет на напряженное состояние структурных элементов керамики, а покрытие AlN — на напряженное состояние границы между покрытием и керамикой.

Ключевые слова: Si₃N₄–TiC-керамика, поверхностный слой (ПС), покрытия AlN и TiN, тепловая нагрузка, напряженно-деформированное состояние, интенсивность напряжений.

введение

ктуальность изучения высокотемператур-Актуальность изутопии дела Актуальность изутопии странике определяется необходимостью повышения эксплуатационной надежности деталей газотурбинных двигателей, режущих и деформирующих инструментов [1, 2]. Большое число публикаций по высокотемпературному поведению Si₃N₄керамики служит базисом для детального понимания эксплуатационных возможностей этой керамики [3-21]. На основе обобщения результатов приведенных статей, охватывающих широкий диапазон исследований, построена логическая связь температуры с разными по природе эффектами в Si₃N₄-керамике. Тепловое воздействие на керамику приводит к изменению ее структуры, формированию микроструктурных напряжений, зарождению и росту трещин, разрушению изделия. Особое место в этой цепочке связей принадлежит покрытиям, наносимым на рабочие поверхности керамических деталей и инструментов, которые, как правило, снижают температуру и существенно влияют на поведение поверхностного слоя (ПС) Si₃N₄-керамики.

Исследования влияния температуры в диапазоне 650-1500 °С на структуру Si₃N₄-керамики показали, что при нагреве до 950 °С увеличи-

> ⊠ В. В. Кузин E-mail: dr.kuzinvalery@yandex.ru

вается толщина межзеренной фазы, а при последующем охлаждении наблюдается обратный эффект [3]. Этот результат убедительно доказывает наличие микроструктурной упругой деформации на границах зерен Si₃N₄ под действием температуры и, соответственно, объясняет природу образования несплошностей. Доминирующим механизмом зарождения дефектов на границах зерен при нагреве авторы публикации [4] считают также образование несплошностей под влиянием сформировавшихся напряжений. Эти структурные дефекты, имеющие тепловую природу происхождения, в дальнейшем трансформируются в трещины, которые снижают прочность керамики при высокой температуре. Характер и интенсивность роста трещин в индентированных образцах Si₃N₄-керамики под действием термоциклических нагрузок в диапазоне 500-1000 °C описаны в статье [5]. Определены температуры, число циклов, напряжения в образцах и значения критических напряжений, при которых рост трещин становится нестабильным. На основе выявленной взаимосвязи температуры со свойствами инструментальной Si₃N₄-керамики уточнена область эффективного использования разработанных инструментов [6, 7]

В результате исследований пластин из Si₃N₄-керамики с разными многослойными покрытиями на основе TiN и TiAlSiN выявлена корреляция трибологических характеристик с твердостью и адгезией этих покрытий к керамике [8]. Влияние циклического изменения температуры в диапазоне 40–250 °C на образцы Si₃N₄-керамики со слоями меди разной толщиной описано в публикации [9]. Установлено, что на образцах со слоем меди толщиной 150 мкм трещины отсутствуют после 1000 циклов, а со слоем меди толщиной 300 мкм образуются уже после 100 циклов. Образцы со слоем меди толщиной 150 мкм имели более высокие значения прочности после 10 и 1000 циклов термоциклического нагружения. Сравнительный анализ интенсивности износа инструмента с исходными режущими пластинами Si₃N₄-керамики и с теми же пластинами, имевшими алмазоподобное покрытие на рабочих поверхностях, показал, что покрытие оказывает значительный положительный эффект на работоспособность керамических инструментов [10]. В публикации [11] показано, что интенсивность износа инструментов из Si₃N₄-керамики с покрытием коррелирует с напряженно-деформированным состоянием их ПС, причем рациональный выбор покрытия для инструмента из Si₃N₄-керамики, проектируемого для определенных условий эксплуатации, позволяет обеспечить его надежность.

Цель настоящей работы — изучить особенности влияния покрытий AlN и TiN на изменение теплового и напряженного состояния ПС Si₃N₄-TiC-керамики под действием теплового потока. Настоящая статья является продолжением предыдущей статьи [22].

МЕТОДИКА ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

Численные эксперименты выполнены в автоматизированной системе термопрочностных расчетов KS-SL v.1.0 с использованием расчетной схемы и метода контрольных точек (КТ), приведенных в статье [22]. На конструкцию действовал тепловой поток Q = 9·10⁸ Вт/м² при коэффициенте теплоотдачи в окружающую среду h = $= 1.10^{5}$ Вт/(м²·град). Рассчитывали температуру *T* и интенсивность напряжений оі в шести поверхностях С1-С6, формирующих три межфазные границы в ПС керамики (табл. 1). Для анализа деформации ПС оценивали горизонтальные и и вертикальные v перемещения КТ99, КТ100 и КТ101, которые располагались в поверхностях С6, С5 и С4. Исследовали тепловое и напряженное состояние ПС нитридной керамики двух систем: Si₃N₄ (зерно) – Y₂O₃ (межзеренная фаза) – Si₃N₄ (матрица) и TiC-Y₂O₃-Si₃N₄ с покрытиями AlN или TiN толщиной 2 мкм.

По результатам расчетов определяли статистические характеристики для *T* и σ_i : наименьшие $T_{\text{мин}}$ и $\sigma_{\text{мин}}$, наибольшие $T_{\text{макс}}$ и $\sigma_{\text{макс}}$, средние $T_{\text{ср}}$ и $\sigma_{\text{ср}}$; $\Delta\sigma_i$ — диапазон изменения σ_i ; медиану M_e для σ_i и стандартное отклонение *s* для *T* и σ_i для каждой поверхности. Значимость покрытий AlN и TiN для контролируемой трансформации напряженного состояния ПС Si₃N₄-TiC-керамики под действием теплового потока оценивали с использованием коэффициентов K_1 , K_2 , K_3 , K_4 , K_5 и K_6 , которые относятся к статистическим характеристикам $\sigma_{\text{мин}}$, $\sigma_{\text{макс}}$, $\Delta\sigma_i$, M_e , $\sigma_{\text{ср}}$ и *s* соответственно. Порядок расчета коэффициентов K_1 - K_6 приведен в публикации [22].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Температурное поле в ПС Si_3N_4 -ТіС-керамики с покрытием, сформированное под действием теплового потока, показано на примере керамики системы TiC- Y_2O_3 - Si_3N_4 с покрытием TiN (рис. 1, *a*). Это поле является типичным для керамики обеих систем с покрытиями AlN и TiN. Установлено, что вид системы керамики и материал покрытий не влияют на форму изотерм, ориентированных относительно КТ99, но существенно влияют на удаленность изотерм с одинаковой температурой от этой КТ, что означает зависимость градиента температур от вида системы керамики и материала покрытия.

В ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытием TiN зафиксирован наибольший градиент температур, системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытием AlN — наименьший. Наибольшая Т формируется в поверхности С6 (рис. 1, б), причем максимальная Т зафиксирована в системе Si_3N_4 – Y_2O_3 – Si_3N_4 с покрытием AlN, а минимальная — в системе TiC-Y₂O₃-Si₃N₄ с покрытием TiN. В этой поверхности керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытием AlN температура T изменяется от 289 ($T_{\text{мин}}$) до 710 °С ($T_{\text{макс}}$) при *T*_{ср} = 580 °С и *s* = 123,1, с покрытием TiN — от 208 до 394 °С при *T*_{ср} = 339,9 °С и *s* = 53,5; в керамике системы TiC-Y₂O₃-Si₃N₄ с покрытием AlN — от 281 до 618 °С при T_{ср} = 526,6 °С и s = 96,6, с покрытием TiN — от 205 до 376 °С при *T*_{ср} = 328,6 °С и s = 49.

Схема деформации ПС Si₃N₄-TiC-керамики с покрытием под действием теплового потока, типичная для обеих систем и покрытий, показана на рис. 2. Видно, что деформация происходит в результате выдавливания локального поверхностного объема конструкции. Наибольшие горизон-

Таблица 1. Поверхности, формирующие межфазные границы в ПС керамики с покрытием

Обозначение поверхности	Выделенные поверхности, формирующие межфазные границы в ПС Si ₃ N4-TiC-керамики с покрытием	Номер КТ
C1	Поверхность зерна, примыкающая к межзеренной фазе	KT1-KT18
C2	Поверхность межзеренной фазы, примыкающая к зерну	KT19-KT34
C3	Поверхность межзеренной фазы, примыкающая к матрице	KT35-KT50
C4	Поверхность матрицы, примыкающая к межзеренной фазе	KT51-KT66; KT99
C5	Поверхности зерна, межзеренной фазы и матрицы, примыкающие к слою покрытия	KT67-KT82; KT100
C6	Поверхность слоя покрытия, примыкающая к зерну, межзеренной фазе и матрице	KT83-KT98; KT101

58

Рис. 1. Температурное поле в ПС керамики системы $TiC-Y_2O_3-Si_3N_4$ с покрытием TiN (*a*) и характер изменения *T* в поверхности *C6* систем $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытиями AlN (*1*) и TiN (*2*) и $TiC-Y_2O_3-Si_3N_4$ с покрытиями AlN (*3*) и TiN (*4*) под действием теплового потока (*б*)

тальные и и вертикальные v перемещения имеет покрытие в точке КТ99, которая перемещается по стрелке в точку КТ99¹. Результаты расчетов и и v КТ99-КТ101 для керамики разных систем и с покрытиями различаются. Степень деформации ПС керамики системы Si₃N₄-Y₂O₃-Si₃N₄ ниже, чем у керамики системы TiC-Y₂O₃-Si₃N₄.

Установлено, что в ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытием AlN значения u и ν при перемещении КТ99 в положение КТ99¹ составляют -0,024 и 0,018 мкм, при перемещении КТ100 в положение КТ100¹ -0,016 и 0,011 мкм, при перемещении КТ101 в положение КТ101¹ -0,0054 и 0,0042 мкм соответственно. В ПС керамики той же системы с покрытием TiN значения u и ν при аналогичных перемещениях составляют -0,019 и 0,015 мкм, -0,013 и 0,0093 мкм и -0,0049 и 0,0039 мкм соответственно.

В ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытием AlN значения *и* и *v* при аналогичных перемещениях составляют -0,027 и 0,022 мкм, -0,021 и 0,017 мкм и -0,0048 и 0,0037 мкм соответственно. В ПС керамики той же системы с покрытием TiN значения *и* и *v* при аналогичных перемещениях составляют -0,022 и 0,017 мкм, -0,016 и 0,013 мкм и -0,0044 и 0,0035 мкм соответственно.

Установлено, что поля σ_i , сформировавшиеся в ПС керамики систем $Si_3N_4-Y_2O_3-Si_3N_4$ и TiC- $Y_2O_3-Si_3N_4$ с покрытиями AlN и TiN под действием теплового потока, характеризуются наибольшими значениями в локальных объемах покрытия и на отдельных участках границы керамика – покрытие. В качестве примера на рис. З показано поле σ_i в ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытием TiN. Наибольшие значения σ_i (от 482 до 643 МПа) фиксируются в области покрытия между КТ99 и КТ00, наименьшие (до 161 МПа) — в зерне и межзеренной фазе керамики.

Характер изменения σ_i в поверхностях C1-C6 ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытиями AlN и TiN под действием теплового потока показан на рис. 4. Видно, что во всех поверхно-

стях, кроме поверхности *C5*, покрытие не оказывает значимого влияния на форму кривых, но изменяет значения о_i. Установлено, что кривые

Рис. 2. Схема деформации ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытием TiN под действием теплового потока

Рис. 3. Поле σ_i в ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытием TiN под действием теплового потока

Рис. 4. Характер изменения σ_i в поверхностях *C1* (*a*), *C2* (*b*), *C3* (*b*), *C4* (*c*), *C5* (*d*) и *C6* (*e*) керамики системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытием AlN (*1*) и TiN (*2*) под действием теплового потока

для поверхностей С1-С4 и С6 характеризуются короткими чередующимися участками КТ, на которых значения о, периодически изменяются, в сторону как уменьшения, так и увеличения. Наибольшие значения о, в поверхностях С1-С3 и С6 фиксировали в центральной части кривых (см. рис. 4, а-в, е), в поверхности С4 — на левом периферийном участке (см. рис. 4, г). Кривые для поверхности C5 имеют ломаную форму, причем для керамики системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытием AlN кривая характеризуется наличием пиковых значений о_i на левом и правом периферийных участках. Для керамики этой системы с покрытием TiN характер кривой более сглаженный, пиковые значения отсутствуют (см. рис. 4. ∂). В поверхности С1 наименьшие о, фиксиру-

ются в КТ15, а наибольшие — в КТ1 и КТ8 (см.

рис. 4, *a*), в поверхности *C2* наименьшие σ_i фиксируются в КТ31 и КТ19, а наибольшие — в КТ25 (см. рис. 4, *б*), в поверхности *C3* наименьшие σ_i фиксируются в КТ47 и КТ48, а наибольшие — в КТ41 (см. рис. 4, *в*), в поверхности *C4* наименьшие σ_i фиксируются в КТ58 и КТ59, а наибольшие — в КТ52 и КТ54 (см. рис. 4, *г*), в поверхности *C5* наименьшие σ_i фиксируются в КТ69 и КТ75, а наибольшие — в КТ78 и КТ81 (см. рис. 4, *д*), в поверхности *C6* наименьшие значения σ_i фиксируются в КТ84 и КТ85, а наибольшие — в КТ90 (см. рис. 4, *е*).

Значения статистических характеристик для σ_i в поверхностях C1-C6 ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытиями AlN и TiN под действием теплового потока приведены в табл. 2. Наибольшие значения $\sigma_{\rm cp}$ зафиксированы в поверхности C6 с

Таблица 2 Статистические характеристики	ПС керамики системы Si ₂ N ₄ -Y	2O ₂ -Si ₂ N ₄ C ποκρωτием AIN / TiN*

					· · · ·	
Поверхность	σ _{мин} , МПа	$\sigma_{\text{макс}}$, МПа	$\Delta \sigma_i$, ΜΠα	<i>M</i> _e , МПа	σ _{ср} , МПа	S
C1	73/102	178/190	105/88	131/150,5	130,3/152,1	31,6/33,3
C2	205/156	350/285	145/129	287/214	290,4/220,4	41,9/46
C3	182/149	303/255	121/106	253,5/180	247,6/197,8	40,5/38,7
C4	82/107	212/204	130/97	164,5/154	160,6/154	41,8/29,2
C5	105/159	314/213	209/54	138,5/173,5	172,3/179,6	71,5/19
C6	273/419	414/644	141/225	340,5/496,5	345,9/514,9	46,4/72,9
* В числителе — для керамики с покрытием AlN; в знаменателе — для керамики с покрытием TiN.						

покрытием TiN, наименьшие — в поверхности *C1* с покрытием AlN, причем наибольшие значения σ_{cp} больше, чем наименьшие, в 4 раза. Наибольшие значения *s* зафиксированы в поверхности *C6* с покрытием TiN, наименьшие — в поверхности *C5* с покрытием TiN, причем наибольшие значения *s* больше, чем наименьшие, в 3,8 раза.

Характер изменения σ_i в поверхностях C1-C6ПС керамики системы $TiC-Y_2O_3-Si_3N_4$ с покрытиями AlN и TiN под действием теплового потока показан на рис. 5. Следует отметить существенное отличие форм кривых для большинства поверхностей этой системы от системы $Si_3N_4-Y_2O_3-Si_3N_4$. Исключение составляют кривые для поверхностей C1 и C4: в них значения σ_i изменяются практически идентично с системой $Si_3N_4-Y_2O_3-Si_3N_4$. Основным различием формы кривых для поверхностей C2, C3, C5 и C6 ПС керамики системы $TiC-Y_2O_3-Si_3N_4$ от системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытиями AlN и TiN является формирование наибольших значений на периферийных участках кривых.

В поверхности *C1* наименьшие σ_i фиксируются в КТ15 и КТ17, а наибольшие — в КТ8 (см. рис. 5, *a*), в поверхности *C2* наименьшие σ_i фиксируются в КТ26, а наибольшие — в КТ31 и КТ23 (см. рис. 5, *б*), в поверхности *C3* наименьшие σ_i фиксируются в КТ43, а наибольшие — в КТ38 и КТ35 (см. рис. 5, *е*), в поверхности *C4* наименьшие σ_i фиксируются в КТ58, а наибольшие — в КТ52 и КТ51 (см. рис. 5, *е*), в поверхности *C5* наименьшие σ_i фиксируются в КТ56 и КТ75, а наибольшие — в КТ81 (см. рис. 5, *д*),

Рис. 5. Характер изменения σ_i в поверхностях *C1* (*a*), *C2* (*b*), *C3* (*b*), *C4* (*c*), *C5* (*d*) и *C6* (*e*) керамики системы TiC–Y₂O₃–Si₃N₄ с покрытием AlN (*1*) и TiN (*2*) под действием теплового потока

Таблица 3. Статистические характеристики ПС керамики системы TiC-Y2O3-Si3N4 с покрытием AIN / Ti
--

Поверхность	σ _{мин} , МПа	$\sigma_{\text{макс}}$, МПа	$\Delta \sigma_i$, ΜΠα	M_{e} , МПа	$\sigma_{\rm cp}$, МПа	S
C1	172/127	319/235	147/108	254/191	249,4/183,8	46,2/31,8
C2	133/95	275/191	142/96	234,5/166	225,4/160,1	44,9/29,6
C3	114/96	241/168	127/72	213,5/147	192,6/137,7	46,3/25,3
C4	193/136	502/403	309/267	444/330	398,7/299,6	103,8/88,3
C5	64/36	544/437	480/401	263/239	282,4/231,6	199,7/159,8
C6	18/202	372/486	354/284	60,5/237	121/281,8	114,1/85,1
* В числителе — для керамики с покрытием AlN; в знаменателе — для керамики с покрытием TiN.						

Коэффициент	C1	C2	СЗ	C4	C5	C6
зпачимости	0.50/4.05	1.04/4.4	1.00/1.40	0.55/4.40	0.00/4 50	0.05/0.00
K_1	0,72/1,35	1,31/1,4	1,22/1,19	0,77/1,42	0,66/1,78	0,65/0,09
K_2	0,94/1,36	1,23/1,44	1,18/1,43	1,04/1,25	1,47/1,24	0,64/0,77
K_3	1,22/1,36	1,12/1,48	1,14/1,76	1,34/1,16	3,9/1,2	0,63/1,24
K_4	0,87/1,33	1,34/1,41	1,41/1,45	1,07/1,35	0,8/1,1	0,69/0,26
K_5	0,86/1,36	1,32/1,41	1,25/1,4	1,04/1,33	0,96/1,22	0,67/0,43
K_6	0,95/1,45	0,91/1,52	1,04/1,8	1,43/1,18	3,8/1,25	0,64/1,34
* В числителе — для керамики системы Si ₃ N ₄ -Y ₂ O ₃ -Si ₃ N ₄ ; в знаменателе — для керамики системы TiC-Y ₂ O ₃ -Si ₃ N ₄ .						

Таблица 4. Коэффициент значимости покрытий AIN и TiN ПС керамики Si₃N₄-TiC*

в поверхности *C6* наименьшие значения σ_i фиксируются в КТ87, а наибольшие — в КТ98 (см. рис. 5, *e*). По аналогии с керамикой системы Si_3N_4 – Y_2O_3 – Si_3N_4 в поверхности *C5* ПС керамики системы TiC– Y_2O_3 – Si_3N_4 с покрытиями AlN и TiN отмечено присутствие пиковых значений σ_i .

Значения статистических характеристик для σ_i в поверхностях C1-C6 ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытиями AlN и TiN под действием теплового потока приведены в табл. 3. Наибольшие значения σ_{cp} зафиксированы в поверхности C4 с покрытием AlN, наименьшие — в поверхности C6с покрытием AlN, причем наибольшие значения σ_{cp} больше, чем наименьшие, в 3,3 раза. Наибольшие значения *s* зафиксированы в поверхности C5с покрытием AlN, наименьшие — в поверхности C3с покрытием AlN, наименьшие — в поверхности C3с покрытием TiN, причем наибольшие значения *s* больше, чем наименьшие, в 7,9 раза.

Коэффициенты значимости покрытий AlN и TiN для контролируемой трансформации напряженного состояния ПС Si₃N₄-TiC-керамики в условиях теплового нагружения приведены в табл. 4. Видно, что покрытие TiN оказывает более благоприятное влияние на напряженное состояние ПС керамики двух систем, чем покрытие AlN, о чем свидетельствуют значения K_1 - K_6 > 1. В наибольшей степени положительный эффект покрытия TiN на напряженное состояние ПС проявляется в керамике системы TiC-Y₂O₃-Si₃N₄, в которой значения K_1 - K_6 > 1 отмечены в поверхностях C1-C5. Однако на границе между покрытием AlN и керамикой формируются мень-

Библиографический список

1. **Bocanegra-Bernal, M. H.** Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures / M. H. Bocanegra-Bernal, Branko Matovic // Mater. Sci. Eng., A. — 2010. — Vol. 527, № 6. — P. 1314–1338.

2. *Kuzin, Valery V.* A new generation of ceramic tools / *Valery V. Kuzin, Sergey N. Grigor'ev, David R. Burton* [et al.] // Proceedings of the 10h International Conference on Manufacturing Research ICMR-2012, 2012. — P. 523–528.

3. **Bhattacharyya, Somnath.** The evolution of amorphous grain boundaries during in-situ heating experiments in Lu-Mg doped Si₃N₄ / Somnath Bhattacharyya, Anandh Subramaniam, Christoph T. Koch [et al.] // Mater. Sci. Eng., A. -2006. - Vol. 422, Ne 1/2. - P. 92-101.

4. Guo, Gangfeng. Direct measurement of residual stresses and their effects on the microstructure and

шие напряжения, о чем свидетельствуют значения коэффициентов *K*₁-*K*₆ в поверхности *C6*.

ЗАКЛЮЧЕНИЕ

В результате численных экспериментов определены особенности влияния покрытий AlN и TiN на тепловое и напряженное состояние ПС нитридной керамики под действием теплового потока. Формирование наиболее низких температур зафиксировано в ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытием TiN, а наиболее высокие температуры образуются в ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытием AlN. По критерию наименьших перемещений КТ99-КТ101 при тепловой деформации покрытие TiN оказывает более благоприятное влияние, чем покрытие AlN. Наименьшие значения и и v зафиксированы в ПС керамики системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытием TiN, а наибольшие — в ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытием AlN. Покрытия AlN и TiN по-разному влияют на напряженное состояние ПС Si₃N₄-TiC-керамики в условиях теплового нагружения, причем коэффициент значимости покрытий также зависит от системы керамики и поверхности. Наименьшие значения показателей $\sigma_{\text{макс}}$, $\Delta \sigma_i$, M_e , $\sigma_{\text{ср}}$ и s зафиксированы в поверхностях С4 и С5 ПС керамики системы Si_3N_4 - Y_2O_3 - Si_3N_4 с покрытием TiN, в поверхностях C2 и C3 в ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытием TiN. В поверхностях *C1* и С6 распределение статистических показателей по системам керамики неоднозначно.

mechanical properties of heat-treated Si₃N₄ ceramics II: with CeO₂ as a single additive / *Gangfeng Guo, Jianbao Li, Xiaozhan Yang* [et al.] // Acta Mater. — 2007. — Vol. 55, № 9. — P. 3245–3251.

5. *Gondar, Ernest.* Verification of the stresses developed in silicon nitride by repeated thermal shocks / *Ernest Gondar, Tomas Hlava, Miroslav Rosko* // J. Eur. Ceram. Soc. — 2006. — Vol. 26, № 9. — P. 1743–1752.

6. *Kuzin, V. V.* Wear of tools from nitride ceramics when machining nickel-based alloys / *V. V. Kuzin, M. A. Volosova, M. Yu. Fedorov* // J. Frict. Wear. — 2013. — Vol. 34, № 3. — P. 199–203.

Кузин, В. В. Износ инструментов из нитридной керамики при обработке никелевых сплавов / В. В. Кузин, М. А. Волосова, М. Ю. Федоров // Трение и износ. — 2013. — Т. 34, № 3. — С. 265-271.

62

7. *Kuzin, V. V.* Effectiveness of the nitride ceramic cutting tools in machining the gray irons / *V. V. Kuzin* // Russ. Eng. Res. — 2004. — Vol. 24, № 5. — P. 21–27.

Кузин, В. В. Работоспособность режущих инструментов из нитридной керамики при обработке чугунов / *В. В. Кузин* // Вестник машиностроения. — 2004. — № 5. — С. 39-43.

8. **Dobrzanski, L. A.** Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics / *L. A. Dobrzanski, D. Pakuła, A. Kriz* [et al.] // J. Mater. Process. Technol. — 2006. — Vol. 175, № 1–3. — P. 179–185.

9. *Miyazakia, Hiroyuki.* Effect of high temperature cycling on both crack formation in ceramics and delamination of copper layers in silicon nitride active metal brazing substrates / *Hiroyuki Miyazakia, Shoji Iwakiri, Kiyoshi Hirao* [et al.] // Ceram. Int. — 2017. — Vol. 43, № 6. — P. 5080–5088.

10. *Martinho, R. P.* Wear behaviour of uncoated and diamond coated Si_3N_4 tools under severe turning conditions / *R. P. Martinho, F. J. G. Silva, A. M. Baptista //* Wear. — 2007. — Vol. 263, N $_{2}$ 7–12. — P. 1417–1422.

11. *Grigoriev, S.* The stress-strained state of ceramic tools with coating / *S. Grigoriev, V. Kuzin, D. Burton* [et al.] // Proceedings of the 37th International MATADOR Conference, 2013. — P. 181–184.

12. *Guicciardi, S.* Effects of testing temperature and thermal treatments on some mechanical properties of a Si_3N_4 -TiN composite / *S. Guicciardi, C. Melandri, V. Medri* [et al.] // Mater. Sci. Eng., A. — 2003. — Vol. 360, $N_{\rm P}$ 1/2. — P. 35-45.

13. *Tian, Xianhua.* High temperature mechanical properties of Si_3N_4 / (W, Ti) C graded nano-composite ceramic tool material / *Xianhua Tian, Jun Zhao, Shuting Lei* [et al.]//Ceram. Int. — 2018. — Vol. 44, No 6. — P. 7128–7133.

14. *Zheng, Guangming.* Thermal shock and thermal fatigue resistance of sialon– Si_3N_4 graded composite ceramic materials / *Guangming Zheng, Jun Zhao, Chao Jia* [et al.] // Int. J. Refract. Met. Hard Mater. — 2012. — Vol. 35. — P. 55–61.

15. *Miyazakia, Hiroyuki.* Improved resistance to thermal fatigue of active metal brazing substrates for silicon carbide power modules using tough silicon nitrides

with high thermal conductivity / Hiroyuki Miyazakia, You Zhou, Shoji Iwakiri [et al.] // Ceram. Int. — 2018. — Vol. 44, № 8. — P. 8870–8876.

16. *Lin, H. T.* Mechanical reliability evaluation of silicon nitride ceramic components after exposure in industrial gas turbines / *H. T. Lin, M. K. Ferber* // J. Eur. Ceram. Soc. — 2002. — Vol. 22, № 14–15. — P. 2789–2797.

17. *Lengauer, Markus*. Silicon nitride tools for the hot rolling of high-alloyed steel and superalloy wires — crack growth and lifetime prediction / *Markus Lengauer, Robert Danzer* // J. Eur. Ceram. Soc. — 2008. — Vol. 28, № 11. — P. 2289–2298.

18. **Danzer, Robert.** Silicon nitride materials for hot working of high strength metal wires / Robert Danzer, Markus Lengauer // Engineering Failure Analysis. — 2010. — Vol. 17, № 3. — P. 596–606.

19. **Fujita, Saho.** Degradation evaluation of Si_3N_4 ceramic surface layer in contact with molten Al using microcantilever beam specimens / Saho Fujita, Junichi Tatami, Tsukaho Yahagi [et al.] // J. Eur. Ceram. Soc. — 2017. — Vol. 37, No 14. — P. 4351–4356.

20. *Liao, Shengjun.* Thermal conductivity and mechanical properties of Si_3N_4 ceramics with binary fluoride sintering additives / *Shengjun Liao, Lijuan Zhou, Changxi Jiang* [et al.] // J. Eur. Ceram. Soc. — 2021. — Vol. 41, $N_{\rm P}$ 14. — P. 6971–6982.

21. **Pakuła, D.** Structure and properties of multicomponent coatings deposited onto sialon tool ceramics / *D. Pakuła* // Archives of Materials Science and Engineering. — 2011. — Vol. 52, № 1. — P. 54–60.

22. **Кузин, В. В.** Значимость покрытий AlN и TiN для контролируемой трансформации напряженного состояния поверхностного слоя Si₃N₄-TiC-керамики в условиях силового нагружения / В. В. Кузин, С. Н. Григорьев, М. А. Волосова [и др.] // Новые огнеупоры. — 2022. — № 3. — С. 62-68.

> Получено 04.04.22 © В. В. Кузин, С. Н. Григорьев, М. Ю. Федоров, М. А. Волосова, 2022 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

