Д. т. н. **В. В. Кузин** (⊠), д. э. н. **Е. Д. Коршунова, Н. Р. Портной,** к. т. н. **С. Ю. Фёдоров**

ФГБОУ ВПО «Московский государственный технологический университет «Станкин», Москва, Россия

УДК 621.924.93:666.3 ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПОВЕРХНОСТНОГО СЛОЯ ОКСИДНО-КАРБИДНОЙ КЕРАМИКИ ПРИ СТРУЙНО-АБРАЗИВНОЙ ОБРАБОТКЕ

Исследовано напряженно-деформированное состояние поверхностного слоя оксидно-карбидной керамики под действием сосредоточенной силы, теплового потока и комбинированной нагрузки. Показана возможность использования выявленной взаимосвязи для прогнозирования характера разрушения поверхности керамики при струйно-абразивной обработке.

Ключевые слова: керамика, струйно-абразивная обработка, поверхностный слой, структурный элемент, напряженно-деформированное состояние.

В основе струйно-абразивной обработки ма-териалов находится процесс ударного воздействия абразивной частицы на поверхность заготовки, сопровождаемый сложными явлениями, комплексное действие которых приводит к удалению материала и образованию поверхностного слоя, обладающего новыми свойствами. Количественное описание этих явлений определяется актуальностью совместного использования экспериментальных и теоретических методов исследования [1-3]. В работе [4] показано, что численное моделирование позволяет выявить характер и рассмотреть эволюцию образования очагов разрушений при соударении твердых тел. Более того, с использованием этого подхода появляется возможность оценивать напряженно-деформированное состояние обрабатываемой поверхности и прогнозировать характер ее разрушения. Особенно актуален этот аспект исследования струйно-абразивных методов обработки для керамических деталей, состояние поверхностного слоя которых оказывает существенное влияние на их эксплуатационные характеристики [5, 6]. При этом важно оценить влияние технологических нагрузок на неоднородность локальных напряжений в структурных элементах керамики [7-10].

Цель работы — изучить влияние силовой, тепловой и комбинированной нагрузок на напряженно-деформированное состояние поверхностного слоя керамики при струйно-

> ⊠ В. В. Кузин E-mail: kyzena@post.ru

абразивной обработке с использованием метода численного моделирования.

МЕТОДИКА ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

При разработке модели напряженно-деформированного состояния поверхностного слоя керамики при струйно-абразивной обработке использовали подход, сформулированный в работах [11, 12]. При построении модели приняты следующие допущения: 1) рассматривается плоская задача; 2) отсутствуют пластические деформации в поверхностном слое керамики; 3) поры и трещины не являются компонентами структуры керамики; 4) ударные нагрузки, действующие на поверхность керамики, заменены сосредоточенными силами.

Математическая модель напряженно-деформированного состояния поверхностного слоя керамики построена на основе решения двухмерных задач теорий теплопроводности и упругости с использованием метода конечных элементов. Расчетная схема представлена в виде конструкции, состоящей из зерна горизонтально-овальной формы диаметром d_1 и d_2 , межзеренной фазы толщиной δ_f и матрицы (рис. 1, *a*), что позволило учесть неоднородность структуры керамики. К центральной части свободной поверхности зерна прикладывали сосредоточенную силу F = 0,005 Н под углом $\alpha = 30^\circ$, тепловой поток $Q = 2,3 \cdot 10^{10}$ Вт/м² и комбинацию этих нагрузок (F + Q). Отвод тепла с поверхности зерна осуществляли с коэффициентом $h_a = 2 \cdot 10^5$ Вт/(м² · град), с поверхности межзеренной фазы с $h_f = 1 \cdot 10^5$ Вт/(м² · град), с поверхности матрицы с $h_m = 6 \cdot 10^5$ Вт/(м² · град).

Численные эксперименты выполняли в автоматизированной системе термопрочностных

НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

Рис. 1. Расчетная схема и выделенные КТ

расчетов RKS-ST v.1.0 [13]. Исследовали керамику системы TiC-MgO-Al₂O₃, в которой зерно из карбида титана, межзеренная фаза из оксида магния и матрица из оксида алюминия. Свойства этих материалов приведены в работе [13]. Геометрические параметры конструкции зерна, мкм: $d_1 = 2$, $d_2 = 3$ и $\delta_f = 0, 2$. Для анализа результатов численных экспериментов использовали метод контрольных точек (КТ) [14]. Выбранные КТ расположены (см. рис. 1, a) во внутреннем объеме зерна (КТ1-КТ6), в поверхности зерна, примыкающей к межзеренной фазе (КТ7-КТ23), в поверхности межзеренной фазы (рис. 1, б), примыкающей к зерну (КТ24-КТ40), в поверхности межзеренной фазы, примыкающей к матрице (КТ41-КТ57), и матрицы (рис. 1, в), примыкающей к межзеренной фазе (КТ58-КТ74).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Характер деформации поверхностного слоя керамики системы TiC-MgO-Al₂O₃ под действием разных внешних нагрузок показан на рис. 2. Видно, что схемы деформации поверхностного слоя оксидно-карбидной керамики существенно различаются в зависимости от вида приклады-

Рис. 2. Схемы деформации поверхностного слоя керамики системы TiC-MgO-Al₂O₃ под действием: a - F = 0,005 H ($\alpha = 30^{\circ}$); $\delta - Q = 2,3 \cdot 10^{10}$ BT/M²; e - F = 0,005 H ($\alpha = 30^{\circ}$) + $Q = 2,3 \cdot 10^{10}$ BT/M²

ваемой нагрузки. При этом деформации подвергаются все структурные элементы керамики.

Под действием F происходит локальное «вдавливание» поверхности зерна в точке приложения силы, которая перемещается как по оси х, так и по оси у, причем значение перемещения б_х значительно превышает δ_{v} (рис. 2, *a*). Под действием *Q* поверхность керамики нагревается, и формируется температурное поле. Наибольшая температура возникает на поверхности керамики в месте приложения тепловаго потока. Температура снижается по мере увеличения расстояния от участка поверхности, к которому приложен тепловой поток. Под действием сформировавшегося теплового поля деформация керамики системы TiC-MgO-Al₂O₃ происходит по схеме «выдавливания» зерна из каркаса, причем наибольшие деформации происходят по оси у (рис. 2, б). Под воздействием комбинированной нагрузки (F + Q) две предыдущие схемы деформации совмещаются, в результате чего происходит локальное «вдавливание» поверхности на «выдавленном» зерне (рис. 2, в). В этом случае гори-

52

Рис. 3. Характер изменения напряжений σ₁₁, σ₂₂, σ₁₂ и интенсивности напряжений σ_i во внутреннем объеме (*a*) и поверхностном слое (*б*) зерна керамики системы TiC-MgO-Al₂O₃ под действием разных внешних нагрузок

зонтальные δ_x и вертикальные δ_y перемещения точки приложения F имеют практически одинаковые значения.

Такие существенные различия в деформациях структурных элементов керамики системы TiC-MgO-Al₂O₃ под действием раз-

мы ПС-МОО-А1₂О₃ под деиствием разных внешних нагрузок определяют разный уровень и характер распределения напряжений в их поверхностях. Об этом свидетельствуют зависимости, характеризующие изменение напряжений σ₁₁, σ₂₂, σ₁₂ и интенсивности напряжений σ_i во внутреннем объеме зерна и в его поверхностном слое, примыкающем к межзеренной фазе (рис. 3).

Последовательно проанализируем характер изменения σ₁₁, σ₂₂, σ₁₂ и σ_i во внутреннем объеме зерна и поверхностях структурных элементов керамики системы TiC-MgO-Al₂O₃ под действием разных нагрузок.

Во внутреннем объеме зерна (см. рис. 3, *a*) под действием *F* все напряжения монотонно уменьшаются от его поверхности к центру: σ_{11} от -3547 до -434 МПа, σ_{22} — от -142 до 5 МПа, σ_{12} — от 748 МПа до 291 МПа, σ_i — от 3779 до 651 МПа. Под действием *Q* сформировавшиеся напряжения имеют более сложное распределение во внутреннем объеме зерна: σ_{11} монотонно увеличиваются от -105 до -486 МПа, σ_{22}

изменяются от -171 до 84 МПа, σ_{12} изменяются в диапазоне от -137 до -75 МПа, σ_i монотонно увеличиваются от 198 до 563 МПа. Под действием (F + Q) σ_{11} изменяются от -945 до -3944 МПа, σ_{22} — от -702 до 63 МПа, σ_{12} — от 186 до

Диапазон изменения и средние значения σ₁₁, σ₂₂, σ₁₂ и σ_i во внутреннем объеме зерна и в поверхностных слоях структурных элементов керамики системы TiC–MgO–Al₂O₃ под действием разных внешних нагрузок, МПа

Нагрузка	σ_{11}		σ_{22}		σ_{12}		σ_i	
	Σ	σ_{cp}	Σ	σ_{cp}	Σ	σ_{cp}	Σ	σ_{cp}
Внутренний объем зерна								
F	3113	-1394	147	-92	457	504	3128	1642
Q	381	-317	255	-64	62	-117	365	382,4
F + Q	2999	-1868	766	-302	822	483	3010	1934
Поверхностный слой зерна, примыкающий к межзеренной фазе								
F	713	-88	312	-115	244	89	182	362
Q	417	-634	368	-24	319	-76	313	660
F + Q	668	-713	578	-127	455	4	444	717
Поверхностный слой межзеренной фазы, примыкающий к зерну								
F	627	-84	312	-54	184	94	184	300
Q	489	-848	708	-366	437	-33	422	821
F + Q	411	943	440	-422	352	57	351	88
Поверхностный слой межзеренной фазы, примыкающий к матрице								
F	1288	-47	403	-73	220	77	617	354
Q	767	-834	732	-299	485	-12	647	816
F + Q	773	874	461	-363	386	67	579	834
Поверхностный слой матрицы, примыкающий к межзеренной фазе								
F	636	-86	233	-57	162	87	427	271
Q	453	-646	260	-30	161	-87	533	655
F + Q	311	-734	465	-80	222	-3	387	720

1008 МПа, σ_i — от 1030 до 4040 МПа. Диапазон изменения и средние значения σ_{11} , σ_{22} , σ_{12} и σ_i во внутреннем объеме зерна под действием разных нагрузок приведены в таблице.

Характер изменения напряжений σ_{11} , σ_{22} , σ₁₂ и интенсивности напряжений σ_i в поверхностном слое зерна керамики под действием разных нагрузок показан на рис. 3, б. Видно, что напряжения, сформировавшиеся в этом поверхностном слое, значительно меньше при более высоком уровне неоднородности по сравнению с аналогичными показателями для внутреннего объема зерна. Под действием F значения σ₁₁ изменяются от -364 до 349, σ₂₂ — от -18 до -330, σ₁₂ — от -37 до 207 и σ_i — от 303 до 485 МПа. Под действием Q значения σ_{11} изменяются от -403 до -821, σ_{22} — от -162 до 206, σ_{12} — от -231 до 89 и σ_i — от 495 до 808 МПа. Под действием комбинированной нагрузки (F + Q) значения σ_{11} изменяются от -174 до -842, σ_{22} — от -395 до 183, σ₁₂ — от -279 до 176 и σ_i — от 446 до 890 МПа. Диапазон изменения и средние значения σ_{11} , σ_{22} , σ_{12} и о, в поверхности зерна под действием разных нагрузок приведены в таблице.

В поверхностном слое межзеренной фазы, примыкающем к зерну, под действием F значения σ_{11} изменяются от -298 до 329, σ_{22} — от -200 до 112, σ_{12} — от 14 до 198 и σ_i — от 250 до 434 МПа. Под действием Q значения σ_{11} в этом слое изменяются от -609 до -1098, σ_{22} — от -6 до -714, σ_{12} — от -274 до 163 и σ_i — от 599 до 1021 МПа. Под действием комбинированной нагрузки (F + Q) значения σ_{11} изменяются от -699 до -1100, σ_{22} — от -603 до -163, σ_{12} — от -159 до 193 и σ_i — от 680 до 1031 МПа. Диапазон изменения и средние значения σ_{11} , σ_{22} , σ_{12} и σ_i в этом поверхностном слое под действием разных нагрузок приведены в таблице.

В поверхностном слое межзеренной фазы, примыкающей к матрице, под действием F значения σ_{11} изменяются от -357 до 931, σ_{22} — от -311 до 92, σ_{12} — от -53 до 167 и σ_i — от 285 до 902 МПа. Под действием Q значения σ_{11} в этом поверхностном слое изменяются от -604 до -1371, σ_{22} — от -691 до 41, σ_{12} — от -282 до 203 и σ_i — от 548 до 1195 МПа. Под действием комбинированной нагрузки (F + Q) значения σ_{11} изменяются от -334 до -1107, σ_{22} — от -96 до -557, σ_{12} — от -153 до 233 и σ_i — от 491 до 1070 МПа (рис. 3, e). Диапазон изменения и средние значения σ_{11} , σ_{22} , σ_{12} и σ_i в этом поверхностном слое под действием разных нагрузок приведены в таблице.

В поверхностном слое матрицы, примыкающем к межзеренной фазе, под действием F значения σ_{11} изменяются от -278 до 358, σ_{22} — от -195 до 38, σ_{12} — от 16 до 178 и σ_i — от 181 до 428 МПа. Под действием Q значения σ_{11} изменяются от -964 до -511, σ_{22} — от -149 до 111, σ_{12} — от -136 до 25 и σ_i — от 515 до 1048 МПа. Под действием комбинированной нагрузки (F + Q) значения σ_{11} изменяются от -875 до -564, σ_{22} — от -316 до 149, σ_{12} — от -88 до

134 и σ_i — от 490 до 877 МПа. Диапазон изменения и средние значения σ_{11} , σ_{22} , σ_{12} и σ_i в этом поверхностном слое под действием разных нагрузок приведены в таблице.

Анализ данных, полученных в результате проведения численных экспериментов и представленных в таблице, показывает, что напряженно-деформированное состояние поверхностного слоя оксидно-карбидной керамики при струйно-абразивной обработке характеризуется высокой неоднородностью. Наибольшие напряжения σ_{11} , σ_{12} , σ_i формируются во внутреннем объеме зерна, σ_{22} — в поверхностном слое межзеренной фазы, примыкающем к матрице, под действием сосредоточенной силовой и комбинированной нагрузок. В этих случаях тепловой поток оказывает благоприятное влияние напряженно-деформированное состояние на указанных локальных областей поверхностного слоя керамики, которое заключается в уменьшении напряжений, сформировавшихся под действием силовой нагрузки.

Учитывая полученные результаты, можно предположить, что превалирующим механизмом формирования поверхностного слоя оксидно-карбидной керамики при струйноабразивной обработке является транскристаллитное разрушение «выступающих» зерен. Одновременно с этим высока вероятность наличия механизма межкристаллитного разрушения поверхностного слоя керамики по границам зерен в случае образования на них структурных дефектов. На это указывают высокие значения напряжений σ₁₁ и σ₂₂, зафиксированные в поверхностном слое межзеренной фазы, премыкающем к матрице, под действием силовой нагрузки.

Таким образом, построенная модель напряженно-деформированного состояния поверхностного слоя керамики при струйноабразивной обработке позволила изучить влияние силовых, тепловых и комбинированных нагрузок на неоднородность формирующихся напряжений, а использование выявленных взаимосвязей позволяет прогнозировать характер разрушения поверхности керамики.

* * *

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках выполнения государственного задания в сфере научной деятельности (задание № 2014/105, проект № 1908).

Библиографический список

1. *Hashish, M.* A model for abrasive waterjet machining / *M. Hashish //* — Trans. ASME, J. Eng. Mater. Technol. — 1989. — Vol. 111. — P. 154–162.

2. *Wilkins, R. J.* An erosion model for waterjet cutting / *R. J. Wilkins, E. E. Graham //* — Trans. ASME, J. Eng. Ind. — 1993. — Vol. 115. — P. 57–61.

54

3. *Babets, K.* Development of a generic procedure for modeling of the waterjet cleaning / *K. Babets, E. S. Geskin* // WJTA American waterjet conference, Minneapolis, Minnesota. — 2001. — P. 58.

4. *Григорьев, С. Н.* Модель формирования профиля реза при гидроабразивной обработке высокоплотной керамики / С. Н. Григорьев, В. В. Кузин, С. Ю. Фёдоров [и др.] // Новые огнеупоры. — 2015. — № 1. — С. 51–56.

Grigor'ev, S. N. Model of the formation of the profile of a cut in the hydroabrasive machining of a high-density ceramic / S. N. Grigor'ev, V. V. Kuzin, S. Yu. Fedorov [et al.] // Refractories and Industrial Ceramics. -2015. - Vol. 56, \mathbb{N} 1. - P. 48–53.

5. *Junkar, M.* Finite element analysis of single-particle impact in abrasive waterjet machining / *M. Junkar, B. Jurisevic, M. Fajdiga* [et al.] // Inter. J. Impact Engineering. — 2006. — Vol. 32. — P. 1095–1112.

6. **Кузин, В. В.** Влияние воздушно-абразивной обработки на эксплуатационные характеристики изделий из оксидно-карбидной керамики / В. В. Кузин, Н. Р. Портной, С. Ю. Фёдоров [и др.] // Новые огнеупоры. — 2015. — № 9. — С. 62-67.

7. **Кузин, В. В.** Анализ надежности керамических деталей после гидроабразивной обработки / В. В. Кузин, Н. Р. Портной, С. Ю. Федоров [и др.] // Новые огнеупоры. — 2015. — № 11. — С. 63-68.

8. **Кузин, В. В.** Неоднородность напряжений в поверхностном слое керамики под действием внешней нагрузки. Часть 2. Влияние теплового нагружения / *В. В. Кузин, С. Н. Григорьев, В. Н. Ермолин* // Новые огнеупоры. — 2013. — № 12. — С. 35–39.

Kuzin, V. V. Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 2. Effect of thermal loading / V. V. Kuzin, S. N. Grigor'ev, V. N. Ermolin // Refractories and Industrial Ceramics. -2014. - Vol. 54, Ne 6. - P. 497-501.

9. **Кузин, В. В.** Неоднородность напряжений в поверхностном слое керамики под действием внешней нагрузки. Часть З. Влияние распределенной силовой нагрузки / В. В. Кузин, С. Н. Григорьев, В. Н. Ермолин // Новые огнеупоры. — 2014. — № 1. — С. 42-46.

Kuzin, V. V. Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 3. Effect of a

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

distributed force load / V. V. Kuzin, S. N. Grigor'ev, V. N. Ermolin // Refractories and Industrial Ceramics. — 2014. — Vol. 55, № 1. — P. 36–39.

10. **Кузин**, **В**. В. Неоднородность напряжений в поверхностном слое керамики под действием внешней нагрузки. Часть 4. Совместное действие силовых и тепловых нагрузок / В. В. Кузин, С. Н. Григорьев, В. Н. Ермолин // Новые огнеупоры. — 2014. — № 2. — С. 29-34.

Kuzin, V. V. Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 4. Combined effect of force and thermal loads / V. V. Kuzin, S. N. Grigor'ev, V. N. Ermolin // Refractories and Industrial Ceramics. — 2014. — Vol. 55, \mathbb{N} 1. — P. 40–44.

11. **Кузин, В. В.** Микроструктурная модель керамической режущей пластины / В. В. Кузин // Вестник машиностроения. — 2011. — № 5. — С. 72–76.

 $\hat{K}uzin$, V. V. Microstructural model of ceramic cutting plate / V. V. Kuzin // Russian Engineering Research. -2011. -Vol. 31, N = 5. -P. 479-483.

12. **Кузин, В. В.** Математическая модель напряженнодеформированного состояния керамической режущей пластины / В. В. Кузин, В. И. Мяченков // Вестник машиностроения. — 2011. — № 10. — С. 75-80.

Kuzin, V. V. Stress-strain state of ceramic cutting plate / *V. V. Kuzin, V. I. Myachenkov* // Russian Engineering Research. — 2011. — Vol. 31, № 10. — P. 994–1000.

13. **Григорьев, С. Н.** Автоматизированная система термопрочностных расчетов керамических режущих пластин / С. Н. Григорьев, В. И. Мяченков, В. В. Кузин // Вестник машиностроения. — 2011. — № 11. — С. 26-31.

Grigor'ev, S. N. Automated thermal-strength calculations of ceramic cutting plates / *S. N. Grigor'ev, V. I. Myachenkov, V. V. Kuzin //* Russian Engineering Research. — 2011. — Vol. 31, № 11. — P. 1060–1066.

14. *Kuzin, V.* Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35. ■

Получено 16.11.15 © В. В. Кузин, Е. Д. Коршунова, Н. Р. Портной, С. Ю. Фёдоров, 2015 г.

ICC6 — 6-й международный конгресс по керамике «От лаборатории к производству»

21-25 августа 2016 г. г. Дрезден, Германия

www.icc-6.com