Д. т. н. **В. В. Кузин** (🖂), д. т. н. **С. Н. Григорьев**, к. т. н. **М. А. Волосова**, к. т. н. **С. Ю. Федоров**

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

УДК 666.3:546.28'171].017:539.375.3

ЗНАЧИМОСТЬ ПОКРЫТИЙ AIN И TIN ДЛЯ КОНТРОЛИРУЕМОЙ ТРАНСФОРМАЦИИ НАПРЯЖЕННОГО СОСТОЯНИЯ ПОВЕРХНОСТНОГО СЛОЯ Si₃N₄-TiC-KEPAMИKИ В УСЛОВИЯХ СИЛОВОГО НАГРУЖЕНИЯ

Проанализирована значимость покрытий AlN и TiN для контролируемой трансформации напряженного состояния поверхностного слоя Si₃N₄-TiC-керамики в условиях силового нагружения. Установлено, что покрытие TiN более благоприятно влияет на напряженное состояние структурных элементов керамики, а покрытие AlN — на напряженное состояние границы между покрытием и керамикой.

Ключевые слова: Si₃N₄-TiC-керамика, поверхностный слой (ПС), покрытия AlN и TiN, силовая нагрузка, напряженно-деформированное состояние, интенсивность напряжений, микроструктурный концентратор напряжений.

введение

ри оценке надежности керамических деталей и инструментов особое внимание уделяется определению наиболее эффективного метода повышения их прочности и трещиностойкости [1]. Экспериментально установленные закономерности роста трещин и разрушения керамических материалов представляют в виде модели разрушения и используют для выбора метода усовершенствования керамики [2-4]. Усложнение состава порошковой смеси, оптимизация режима спекания заготовок и контролируемое формирование структуры керамики позитивно влияют на свойства керамики за счет ее способности эффективного торможения роста трещин [5-7]. Оценка характеристик созданных керамических материалов при трении и высокоскоростном резании позволяет сделать вывод об эффективности достигнутых результатов [8–13].

Дополняет традиционный подход к совершенствованию деталей и инструментов из Si₃N₄керамики метод формирования функционального поверхностного слоя (ПС), включающий

> ⊠ В. В. Кузин E-mail: dr.kuzinvalery@yandex.ru

нанесение функциональных слоев [14, 15]. С использованием этого метода в настоящее время получены весьма интересные результаты. В публикации [16] определена оптимальная структура покрытия TiAlN, обеспечивающая высокую прочность сцепления слоя с нитридной керамикой. Созданный метод управления напряженным состоянием слоев при изготовлении слоистой Si₃N₄-TiN-керамики позволил получить керамику с сжимающими слоями толщиной 50 мкм и трещиностойкостью до 18,0 МПа·м^{1/2} [17]. Выявлена взаимосвязь износостойкости инструментов из Si₃N₄-керамики с микроструктурой, твердостью и прочностью сцепления покрытий CrAlN и TiAlN с керамикой [18]. В публикации [19] проанализированы закономерности разрушения слоистой керамики, изготовленной с внутренними сжимающими напряжениями. Влияние остаточных напряжений на рост трещин в слоистой Si₃N₄-TiN-керамике описано в статье [20]. Показано [21], что на вероятность зарождения трещин на границе керамика – покрытие существенно влияет напряженное состояние. Анализ приведенных результатов свидетельствует об актуальности изучения закономерностей поведения ПС керамики, определяемого свойствами его структурных элементов, их взаимным расположением и состоянием границ между ними под действием приложенной нагрузки.

Цель настоящей работы — изучить особенности влияния покрытий AlN и TiN на изменение напряженного состояния ПС Si₃N₄-TiC- керамики в условиях силового нагружения. В последующих статьях будут приведены результаты теплового и комбинированного анализов, имеющих большое значение для разработки рекомендаций по формированию состава и структуры функционального ПС на деталях и инструментах из Si₃N₄-TiC-керамики.

МЕТОДИКА ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

В соответствии с рекомендациями компьютерной инженерии ПС керамики [22] численные эксперименты выполнены в автоматизированной системе термопрочностных расчетов KS-SL v.1.0 с использованием расчетной схемы, показанной на рис. 1, а. Исследовали напряженнодеформированное состояние ПС нитридной керамики двух систем. Первая система: Si₃N₄ (зерно 3 радиусом 3 мкм) – Y_2O_3 (межзеренная фаза $M\Phi$ толщиной 0,06 мкм) – Si₃N₄ (матрица *M*), вторая система: TiC-Y₂O₃-Si₃N₄. Выбор этих систем для численных исследований основан на результатах изучения ПС образцов Si₃N₄-TiC-керамики с использованием сканирующей электронной микроскопии, в которых были выделены типовые элементарные фрагменты ее структуры и определены наиболее вероятные варианты их строения.

Установлено, что наиболее часто зерна Si_3N_4 контактируют между собой, а зерна TiC соседствуют с тремя зернами Si_3N_4 . На свободных поверхностях структурных элементов (3, $M\Phi$ и M) Si_3N_4 -TiC-керамики имеется слой покрытия Π AlN или TiN толщиной 2 мкм, на который действуют сосредоточенная сила F = 0.02 H ($\beta = 45^\circ$) и распределенная сила $P = 5.10^8$ Па.

Сравнение результатов расчета горизонтальных *и* и вертикальных *v* перемещений и интенсивности напряжений *o*_i

$$\sigma_i = \sqrt{\sigma_{11}^2 - \sigma_{11}\sigma_{22} + \sigma_{22}^2 + 4\sigma_{12}^2}$$

проводили с использованием метода контрольных точек (КТ) [23], которыми считали конеч-

ные элементы (для KT1-KT98) и узлы (для КТ99-КТ101) в расчетной схеме. Выделенные КТ располагались в шести поверхностях С1-С6, формирующих три межфазные границы в ПС керамики (рис. 1, б): *С*1 — поверхность зерна, примыкающая к межзеренной фазе (КТ1-КТ18), С2 — поверхность межзеренной фазы, примыкающая к зерну (КТ19-КТ34), СЗ — поверхность межзеренной фазы, примыкающая к матрице (КТ35-КТ50), С4 — поверхность матрицы, примыкающая к межзеренной фазе (КТ51-КТ66), С5 — поверхности зерна, межзеренной фазы и матрицы. примыкающие к слою покрытия (КТ67-КТ82), С6 — поверхность покрытия, примыкающая к зерну, межзеренной фазе и матрице (КТ83-КТ98). Для анализа деформации ПС керамики использовали КТ99, КТ100 и КТ101, которые располагались в поверхностях С6, С5 и С4.

Результаты расчетов о, в КТ каждой поверхности анализировали с использованием программного комплекса Statistica, определяя статистические характеристики для σ_i: наименьшие $\sigma_{\text{мин}}$, наибольшие $\sigma_{\text{макс}}$, средние σ_{cp} , диапазон изменения $\Delta \sigma_i$, медиану M_e и стандартное отклонение s. Значимость покрытий AlN и TiN для контролируемой трансформации напряженного состояния ПС Si₃N₄-ТіС-керамики определяли с использованием коэффициентов K_1 , K_2 , K_3 , K_4 , K_5 и K_6 , которые относятся к статистическим характеристикам $\sigma_{\text{мин}}$, $\sigma_{\text{макс}}$, $\Delta \sigma_i$, M_e , $\sigma_{\text{ср}}$ и *s* соответственно. Значения этих коэффициентов определяли отношением значения определенной статистической характеристики, относящейся к покрытию AlN, к аналогичной характеристике, относящейся к покрытию TiN (например, K₁ = σ_{мин(AlN)} / σ_{мин(TiN)}). Считали, что при K₁-*K*₆ < 1 большую значимость имеет покрытие AlN, при $K_1 - K_6 > 1$ — покрытие TiN, а при K_1 - $K_6 = 1$ покрытия AlN и TiN являются равнозначимыми.

Рис. 1. Расчетная схема (а) и схема расположения КТ (б)

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В качестве примера на рис. 2 показана схема деформации ПС керамики системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытием AlN под действием силовой нагрузки. Видно, что структурные элементы ПС керамики деформируются в разной степени, причем в наибольшей степени деформируется покрытие в точке приложения сосредоточенной силы (КТ99) с образованием углубления. Наименьшей деформации подвержена поверхность зерна, наиболее удаленная от точки приложения сосредоточенной силы, причем на горизонтальные и и вертикальные v перемещения КТ99-КТ101 влияет как система керамики, так и покрытие. Степень деформации ПС керамики системы Si₃N₄-Y₂O₃-Si₃N₄ выше, чем у системы $TiC-Y_2O_3-Si_3N_4$.

Рис. 2. Схема деформации ПС керамики системы Si_3N_4 - Y_2O_3 -S i_3N_4 с покрытием AlN под действием силовой нагрузки

Рис. 3. Поле σ_i в ПС керамики системы TiC–Y₂O₃–Si₃N₄ с покрытием AlN под действием силовой нагрузки

Установлено, что в ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытием AlN значения *и* и *v* при перемещении КТ99 в положение КТ99¹ составляют 0,032 и -0,017 мкм, при перемещении КТ100 в положение КТ100¹ 0,026 и -0,012 мкм, при перемещении КТ101 в положение КТ101¹ 0,011 и -0,0063 мкм соответственно. В ПС керамики той же системы с покрытием TiN значения *и* и *v* при аналогичных перемещениях составляют 0,029 и -0,016 мкм, 0,023 и -0,012 мкм, 0,01 и -0,0061 мкм соответственно.

В ПС керамики системы TiC- Y_2O_3 -Si₃N₄ с покрытием AlN значения *и* и *v* при аналогичных перемещениях составляют 0,029 и -0,015 мкм, 0,022 и -0,01 мкм, 0,012 и -0,0069 мкм соответственно. В ПС керамики той же системы с покрытием TiN значения *и* и *v* при аналогичных перемещениях составляют 0,026 и -0,014 мкм, 0,021 и -0,01 мкм, 0,011 и -0,0067 мкм соответственно.

Установлено, что поля σ_i , сформировавшиеся в ПС керамики систем Si₃N₄-Y₂O₃-Si₃N₄ и TiC-Y₂O₃-Si₃N₄ с покрытиями AlN и TiN под действием силовой нагрузки, характеризуются неоднородным распределением напряжений и наибольшими значениями σ_i в локальных объемах покрытия и зерна, находящихся на траектории действия сосредоточенной силы. В качестве примера на рис. З показано поле σ_i в ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытием AlN. Наибольшие значения σ_i (до 1202 МПа) фиксируются в области покрытия между КТ99 и КТ00, наименьшие (до 62 МПа) — в нижнем секторе межзеренной фазы и большей части матрицы.

Характер изменения σ_i в поверхностях C1-С6 ПС керамики системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытиями AlN и TiN под действием силовой нагрузки показан на рис. 4. Видно, что покрытие не оказывает значимого влияния на форму кривых для всех поверхностей, но изменяет значения о_i. Установлено, что кривые для поверхностей С1-С4 имеют сглаженную форму с наименьшими о в центральной части и с наибольшими σ_i на левом периферийном участке (см. рис. 4, а-г). Кривые для поверхностей С5 и С6 имеют ломаную форму с наибольшими (пиковыми) значениями о, в центральной части и с наименьшими о, на левом периферийном участке (см. рис. 4, ∂ , e). В поверхности *C1* наименьшие σ_i фиксируются в KT12, а наибольшие — в КТ1 (см. рис. 4, *a*), в поверхности *C2* наименьшие σ_i фиксируются в КТ27 и КТ30, а наибольшие — в КТ19 (см. рис. 4, б), в поверхности *СЗ* наименьшие σ_i фиксируются в КТ45, а наибольшие — в КТЗ5 (см. рис. 4, в), в поверхности С4 наименьшие о, фиксируются в КТ60. а наибольшие — в КТ51 (см. рис. 4, г), в поверхности С5 наименьшие о, фиксируются в КТ67, а наибольшие — в КТ75 (см. рис. 4, ∂), в поверхности С6 наименьшие значения σ_i фиксируются в КТ83, а наибольшие — в КТ91 (см. рис. 4, е).

Рис. 4. Характер изменения σ_i в поверхностях *C1* (*a*), *C2* (*б*), *C3* (*в*), *C4* (*г*), *C5* (*д*) и *C6* (*е*) керамики системы Si₃N₄– Y₂O₃–Si₃N₄ с покрытием AlN (*1*) и TiN (*2*) под действием силовой нагрузки

Таблица 1. Статистические характеристики ПС керамики системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытиями AIN и TiN*

Поверхность	$\sigma_{\scriptscriptstyle \rm MИH}$, МПа	$\sigma_{\text{макс}}, M \Pi a$	$\Delta \sigma_i$, ΜΠα	<i>M</i> _e , МПа	σ _{ср} , МПа	S
C1	472/452	819/763	347/311	557/531	602/570,1	111,9/100,3
C2	464/446	690/645	226/199	515/487	543,3/513,4	80/71
C3	434/416	687/642	253/226	484/462	520,9/495,2	88,5/79,1
C4	438/419	818/766	380/347	532,5/508,5	564,3/536,1	121,8/111
C5	500/483	1204/1100	704/617	787/737,5	796,1/744,1	202,9/177,9
C6	455/537	1592/1593	1137/1056	839,5/876,5	869,9/913,4	308/290
* В числителе — для керамики с покрытием AlN, в знаменателе — для керамики с покрытием TiN.						

Значения статистических характеристик для σ_i в поверхностях C1-C6 ПС керамики системы $Si_3N_4-Y_2O_3-Si_3N_4$ с покрытиями AlN и TiN под действием силовой нагрузки приведены в табл. 1. Наибольшие значения σ_{cp} зафиксированы в поверхности C6 с покрытием TiN, наименьшие — в поверхности C2 с покрытием TiN, причем наибольшие значения σ_{cp} превосходят наименьшие в 1,84 раза. Наибольшие значения s зафиксированы в поверхности C6 с покрытием TiN, наименьшие в 1,84 раза. Наибольшие значения s зафиксированы в поверхности C6 с покрытием AlN, наименьшие — в поверхности C6 с покрытием AlN, наименьшие — в поверхности C2 с покрытием TiN, причем RIN, наименьшие — в поверхности C2 с покрытием TiN, наименьшие — в поверхности C2 с покрытием TiN, наименьшие — в поверхности C2 с покрытием AlN, наименьшие — в поверхности C2 с покрытием TiN,

причем наибольшие значения *s* превосходят наименьшие в 3,89 раза.

Характер изменения σ_i в поверхностях C1-C6ПС керамики системы TiC- Y_2O_3 -Si₃N₄ с покрытиями AlN и TiN под действием силовой нагрузки показан на рис. 5. Видно, что значения σ_i изменяются в поверхностях C1, C5 и C6 ПС керамики этой системы и системы Si₃N₄- Y_2O_3 -Si₃N₄ практически идентично. В поверхности C1 наименьшие значения σ_i фиксируются в KT12, а наибольшие — в KT1 (см. рис. 5, a), в поверхности C5 наимень-

Рис. 5. Характер изменения σ_i в поверхностях *C1* (*a*), *C2* (*b*), *C3* (*b*), *C4* (*c*), *C5* (*d*) и *C6* (*e*) керамики системы TiC–Y₂O₃–Si₃N₄ с покрытием AlN (*1*) и TiN (*2*) под действием силовой нагрузки

Таблица 2. Статистические характеристики	ПС керамики системы	ТіС-Y ₂ O ₃ -Si ₃ N ₄ с покрытиями AIN
и TiN*		

Поверхность	σ _{мин} , МПа	σ _{макс} , МПа	$\Delta \sigma_i$, ΜΠα	$M_{ m e}$, МПа	$\sigma_{\rm cp}$, МПа	S
C1	524/505	923/873	399/368	612/587	666,2/636	127,4/116,3
C2	336/326	632/598	296/272	501,5/481,5	502,3/479,9	90,6/82,7
C3	390/379	637/601	247/222	517,5/494,5	509,9/487,5	81,4/72,4
C4	427/413	671/630	244/217	500/478	524,7/499,9	88,1/78,4
C5	444/429	1440/1340	996/911	661/617,5	780/735,9	327,1/302
C6	435/506	1540/1538	1105/1032	735,5/755,5	798,6/824,8	315,9/304,3
* В числителе — для керамики с покрытием AlN, в знаменателе — для керамики с покрытием TiN.						

шие значения о_i фиксируются в КТ67, а наибольшие — в КТ75 (см. рис. 5, *д*), в поверхности *С6* наименьшие значения о_i фиксируются в КТ83, а наибольшие — в КТ91 (см. рис. 5, *е*).

Основным различием формы кривых для поверхности *C4* ПС керамики обеих систем с покрытиями AlN и TiN являются их начальный и конечный участки. В поверхности *C4* ПС керамики системы TiC-Y₂O₃-Si₃N₄ наименьшие значения σ_i фиксируются в КТ62, а наибольшие — в КТ52 (см. рис. 5, г). Форма кривых для поверхностей *C2* и *C3* ПС керамики обеих систем существенно различаются. В поверхности *C2* ПС керамики системы TiC-Y₂O₃-Si₃N₄ наименьшие значения σ_i фиксируются в КТ33, а наибольшие — в КТ23 (см. рис. 5, б), в поверхности *C3* наименьшие значения σ_i фиксируются в КТ49 и КТ50, а наибольшие — в КТ37 (см. рис. 5, е).

таблица 5. коэффициент значиности покрытии Анк и тисте кераники 51314-те						
Коэффициент значимости	C1	C2	С3	C4	C5	<i>C6</i>
K_1	1,04/1,04	1,04/1,03	1,04/1,03	1,05/1,03	1,04/1,03	0,85/0,86
K_2	1,07/1,06	1,07/1,06	1,07/1,06	1,07/1,07	1,09/1,07	1/1
K_3	1,12/1,08	1,14/1,09	1,12/1,11	1,1/1,12	1,14/1,09	1,08/1,07
K_4	1,05/1,04	1,06/1,04	1,05/1,05	1,05/1,05	1,07/1,07	0,96/0,97
K_5	1,06/1,05	1,06/1,05	1,05/1,05	1,05/1,05	1,07/1,06	0,95/0,97
K_6	1,12/1,1	1,13/1,1	1,12/1,12	1,1/1,12	1,14/1,08	1,06/1,04
* В числителе — для керамики системы Si ₃ N ₄ -Y ₂ O ₃ -Si ₃ N ₄ , в знаменателе — для керамики системы TiC-Y ₂ O ₃ -Si ₃ N ₄ .						

Таблица З. Коэффициент значимости покрытий AIN и TiN ПС керамики Si₃N₄-TiC*

Значения статистических характеристик для σ_i в поверхностях C1-C6 ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытиями AlN и TiN под действием силовой нагрузки приведены в табл. 2. Наибольшие значения σ_{cp} зафиксированы в поверхности C6 с покрытием TiN, а наименьшие — в поверхности C2 с покрытием TiN, причем наибольшие значения σ_{cp} превосходят наименьшие в 1,72 раза. Наибольшие значения s зафиксированы в поверхности C6 с покрытием AlN, а наименьшие — в поверхности C3 с покрытием TiN. Наибольшие значения s превосходят наименьшие в 4,52 раза.

Коэффициенты значимости покрытий AlN и TiN для контролируемой трансформации напряженного состояния ПС Si₃N₄-TiC-керамики в условиях силового нагружения приведены в табл. 3. Установлено, что покрытие TiN оказывает более благоприятное влияние на напряженное состояние ПС керамики двух систем, чем покрытие AlN. В наибольшей степени положительный эффект покрытия TiN на напряженное состояние ПС Si₃N₄-TiC-керамики проявляется через стабилизацию неоднородности напряжений. Однако на границе между покрытием AlN и керамикой формируются меньшие напряжения, о чем свидетельствуют значения коэффициентов K_1 - K_6 в поверхности C6.

Библиографический список

1. *Kuzin, Valery V.* A new generation of ceramic tools / *Valery V. Kuzin, Sergey N. Grigor'ev, David R. Burton, Andre D. Botako //* Proceedings of the 10th International Conference on Manufacturing Research (ICMR), 2012. — P. 523–528.

2. *Lube, Tanja.* Indentation crack profiles in silicon nitride / *Tanja Lube //* J. Eur. Ceram. Soc. — 2001. — Vol. 12, № 2. — P. 211–218.

3. *Kadin, Yuri.* In-situ observation of crack propagation in silicon nitride ceramics / *Yuri Kadin, Stefan Strobl, Charlotte Vieillard* [et al.] // Procedia Structural Integrity. — 2017. — Vol. 7. — P. 307–314.

4. *Like, Qiu.* Study on toughness mechanism of ceramic cutting tools / *Qiu Like, Li Xikun, Qiu Guanming, Ma Weimin //* Journal of Rare Earths. — 2007. — Vol. 25, № 2. — P. 309–316.

5. **Peillon-Cluzel, F.** Study of the secondary phase in gas pressure sintered Si_3N_4 (relation composition-toughness)

ЗАКЛЮЧЕНИЕ

Результаты численных экспериментов выявили значимую разницу во влиянии покрытий AlN и TiN на напряженно-деформированное состояние керамики под действием силовой нагрузки. Установлено, что по критерию наименьших перемещений КТ99-КТ101 при деформации покрытие TiN имеет более благоприятное значение, чем покрытие AlN. Наименьшие значения u v зафиксированы в керамике системы TiC- Y_2O_3 -Si₃N₄ с покрытием TiN, а наибольшие — в ПС керамики системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытием AlN.

Результаты численных экспериментов свидетельствуют о заметной разнице в напряженно-деформированном состоянии ПС Si₃N₄-TiC-керамики с покрытиями AlN и TiN в условиях силового нагружения. Наименьшие значения $\sigma_{\text{макс}}$, $\sigma_{\text{мин}}$, $\Delta \sigma_i$, $\sigma_{\text{ср}}$ и *s* зафиксированы в поверхностях С2, С3 и С4 ПС керамики системы TiC-Y₂O₃-Si₃N₄ с покрытием TiN. В поверхности С1 наименьшие значения всех статистических характеристик фиксировали в ПС керамики системы Si₃N₄-Y₂O₃-Si₃N₄ с покрытием TiN. В поверхностях C5 и C6 распределение наименьших статистических характеристик керамики обеих систем с разными покрытиями неоднозначно: покрытие TiN в большей степени уменьшает пиковое значение σ_i , чем покрытие AlN.

/ F. Peillon-Cluzel, F. Thevenot, T. Epicier // Int. J. Refract. Met. Hard Mater. -2001. -Vol. 19, N 4–6. -P. 419–424.

6. *Guo, Shuqi.* Hot-pressed Si_3N_4 ceramics with Lu_2O_3 additives: Grain-boundary phase and strength / *Shuqi Guo, Naoto Hirosaki, Yoshinobu Yamamoto* [et al.] // Mater. Sci. Eng., A. — 2005. — Vol. 408, Nº 1/2. — P. 9–18.

7. **Zou, Linhua.** The measurement and characterization of the interfacial toughness of Si_3N_4/BN composites by a three-point bending test / Linhua Zou, Yong Huang, Ruifeng Chen [et al.] // J. Eur. Ceram. Soc. — 2003. — Vol. 23, No 11. — P. 1987–1996.

8. *Carrapichano, J. M.* Tribological behaviour of Si₃N₄– BN ceramic materials for dry sliding applications / *J. M. Carrapichano, J. R. Gomes, Rui F. Silva* // Wear. — 2002. — Vol. 253, № 9–10. — P. 1070–1076.

9. *Kuzin, V. V.* Wear of tools from nitride ceramics when machining nickel-based alloys / *V. V. Kuzin, M. A.*

Volosova, M. Yu. Fedorov // J. Frict. Wear. — 2013. — Vol. 34, № 3. — P. 199–203.

Кузин, В. В. Износ инструментов из нитридной керамики при обработке никелевых сплавов / В. В. Кузин, М. А. Волосова, М. Ю. Федоров // Трение и износ. — 2013. — Т. 34, № 3. — С. 265–271.

10. **Finkeldei, Daniel.** End milling of Inconel 718 using solid Si $_3N_4$ ceramic cutting tools / Daniel Finkeldei, Marcus Sexauer, Friedrich Bleicher // Procedia CIRP. — 2019. — Vol. 81. — P. 1131–1135.

11. *Tian, Xianhua.* Performance of Si_3N_4 / (W, Ti) C graded ceramic tool in high-speed turning iron-based superalloys / *Xianhua Tian, Jun Zhao, Xinya Wang* [et al.] // Ceram. Int. — 2018. — Vol. 44, № 13. — P. 15579–15587.

12. *Kuzin, V.* Tool life and wear mechanism of coated Si_3N_4 ceramic tools in turning grey cast iron / *V. Kuzin, S. Grigoriev* // Key Eng. Mater. — 2014. — Vol. 581. — P. 14–17.

13. **Brovkova**, **M. B.** The main directions for increasing the tool life of a metal cutting tool with modified working parts / *M. B. Brovkova*, *V. V. Martynov*, *E. S. Pleshakova* // Journal of Machinery Manufacture and Reliability. — 2020. — Vol. 49, № 2. — P. 137–143.

14. *Liu, Wei.* PVD-CrAlN and TiAlN coated Si₃N₄ ceramic cutting tools–1. Microstructure, turning performance and wear mechanism / *Wei Liu, Quanquan Chu, Junjie Zeng* [et al.] // Ceram. Int. — 2017. — Vol. 43, № 12. — P. 8999–9004.

15. *Grigoriev, S.* The stress-strained state of ceramic tools with coating / *S. Grigoriev, V. Kuzin, D. Burton, A. D. Botako //* Proceedings of the 37th International MATADOR Conference, 2013. — P. 181–184.

16. *Liu, Wei.* Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools / *Wei Liu, Quanquan Chu, Rongxuan He* [et al.] // Ceram. Int. — 2018. — Vol. 44, № 2. — P. 2209–2215.

17. **Blugan, G.** Si_3N_4 -TiN based micro-laminates with rising R-curve behavior / G. Blugan, R. Dobedoe, M.

Lugovy [et al.] // Composites. Part B: Engineering. — 2006, — Vol. 37, № 6. — P. 459-465.

18. *Liu, Wei.* PVD-CrAlN and TiAlN coated Si₃N₄ ceramic cutting inserts-2. High speed face milling performance and wear mechanism study / *Wei Liu, Quanquan Chu, Junjie Zeng* [et al.] // Ceram. Int. — 2017. — Vol. 43, № 12. — P. 9488-9492.

19. *Ševeček, Oldřich.* Assessment of crack-related problems in layered ceramics using the finite fracture mechanics and coupled stress-energy criterion / *Oldřich Ševeček, Michal Kotoul, Dominique Leguillon* [et al.] // Procedia Structural Integrity. — 2016. — Vol. 2. — P. 2014–2021.

20. *Lugovy, M.* Apparent fracture toughness of Si_3N_4 -based laminates with residual compressive or tensile stresses in surface layers / *M. Lugovy, V. Slyunyayev, N. Orlovskaya* [et al.] // Acta Materialia. — 2005. — Vol. 53, $N \ge 2$. — P. 289–296.

21. Sun, X. Computer-aided three-dimensional ceramic product design / X. Sun, X. Yang, B. Song, X. Liu // Computer-Aided Design and Applications. -2022. -Vol. 19, $N \le S3$. -P. 97–107.

22. **Kuzin, V. V.** Basic framework for computer-aided engineering of polished ceramic surface layers / V. V. Kuzin, S. N. Grigor'ev, M. A. Volosova // Refract. Ind. Ceram. -2020. - Vol. 61, \mathbb{N} 3. - P. 349–354.

Кузин, В. В. Основы компьютерной инженерии поверхностного слоя шлифованной керамики / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. — 2020. — № 6. — С. 64-69.

23. *Kuzin, V.* Method of investigation of the stressstrain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35. ■

> Получено 13.03.22 © В. В. Кузин, С. Н. Григорьев, М. А. Волосова, М. Ю. Федоров, 2022 г.

68