К. т. н. В. Г. Бабашов (🖂), В. Г. Максимов, Н. М. Варрик (🖂)

ФГУП «Всероссийский научно-исследовательский институт авиационных материалов», Национального исследовательского центра «Курчатовский институт» (НИЦ «Курчатовский институт» — ВИАМ), Российской Федерации, Москва, Россия

УДК 666.3:661.862'022-494]:549.431.1

ОЦЕНКА ВЛИЯНИЯ ТЕКСТУРЫ КЕРАМИЧЕСКИХ ВОЛОКОН НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ НА ИХ ПРОЧНОСТЬ

Оценено влияние текстуры прозрачных керамических волокон на их прочность. Исследованы три вида непрерывных волокон состава Al₂O₃-SiO₂ зарубежного производства, а также экспериментальные образцы аналогичного состава, полученные в лабораторных условиях. Установлено, что все исследуемые волокна имеют высокосовершенную текстуру, причем характер текстуры волокон опытной партии и серийных образцов существенно различается. Изучены причины появления текстуры в образцах и ее возможное влияние на их потребительские свойства. Предложены пути улучшения свойств разрабатываемых отечественных волокон данного класса.

Ключевые слова: керамическое волокно, текстура волокна, текстурированность, анизотропия структуры, кристаллографическое направление.

введение

Развитие современной техники ставит новые задачи перед разработчиками материалов. Керамические оксидные волокна представляют особый интерес на современном этапе развития технологий, так как эти волокна в результате высокой термостойкости, стойкости к химическому взаимодействию, низкой плотности и теплопроводности перспективны для создания новых видов композиционных материалов и высокотемпературных текстильных [1–3].

Рабочая температура самых термостойких волокон на стекольной основе (плавленые кварцевые) составляет 1200-1250 °С, что на сегодняшний день недостаточно, поэтому ведутся разработки более тугоплавких волокон на основе кристаллической керамики [4-8]. Наиболее популярными материалами на основе оксида алюминия являются муллит и корунд. Высокая прочность керамических волокон, получаемых из хрупких материалов, достигается не только за счет использования при их производстве устойчивых к ползучести фаз, но и за счет максимального удаления из их объема и с поверхности микродефектов, служащих инициаторами разрушения, и обеспечения высокой механической однородности структуры.

> ⊠ В. Г. Бабашов E-mail: viam29@mail.ru H. M. Варрик E-mail: nvarrik@mail.ru

Одним из существенных факторов, влияющих на однородность механических свойств кристаллических материалов, является ориентация кристаллов, причем как отдельных кристаллов относительно друг друга (текстура), так и кристаллографических направлений относительно действующих нагрузок либо характерных направлений (тип текстуры). Следует отметить, что для металлов наиболее существенным фактором, влияющим на их механическую прочность и работоспособность, является тип полученной при производстве текстуры (например, плоскостная, кубическая, пространственной диагонали) [9, 10], а для хрупких материалов однородность механических свойств, исключающая возникновение зон концентрации напряжений из-за существенной анизотропии модуля упругости по разным кристаллографическим направлениям [11]. Это особенно важно для высокотемпературных материалов, в которых однородность механических свойств не может быть достигнута простым измельчением структурных элементов, так как их рабочая температура выше температуры начала рекристаллизации.

С учетом того что практически все высокопрочные углеродные и органические волокна имеют очень высокие уровни текстурированности, авторы настоящей статьи исследовали характер текстуры наиболее типичных керамических волокон и ее влияние на свойства волокон, а также наметили пути улучшения этих свойств. Исследовали текстуру трех видов непрерывных керамических волокон состава Al₂O₃-SiO₂, а также влияние текстуры волокон на их прочность.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для исследования были отобраны образцы непрерывного муллитокорундового волокна партий № 1-3, содержащего оксиды алюминия и кремния. Партии № 1 и 2 представляли собой непрерывные волокна состава Al₂O₃-SiO₂ зарубежного производства, партия № 3 — отечественное непрерывное волокно аналогичного состава, полученное в лабораторных условиях ФГУП ВИАМ [12, 13].

Пля исследования состава и текстуры волокон было выбрано сочетание рентгенофазового анализа (РФА) порошковых проб с минералогическим анализом на оптическом микроскопе. Фазовый состав проб определяли на рентгеновском дифрактометре ДРОН-3М, оборудованном блоком цифрового управления и обработки результатов измерений. Микроструктуру исследовали на оптическом микроскопе BX-51TRF (Olympus) с камерой DP73 и иммерсионным объективом UPLanSApo60x/ 1.350. Волокна изучали в проходящем поляризованном свете (при скрещенных поляризаторах) [14]. Для устранения искажений изображения образцы волокон заливали иммерсионной жидкостью с показателем преломления, близким к показателю преломления волокон. Для увеличения контраста изображения использовали разворот препаратов в положение максимального цветового контраста. Просмотр тонких слоев в объеме образца обеспечивался чрезвычайно малой глубиной резкости используемой оптики. Таким образом, эта особенность высокоаппертурных оптических объективов, являющаяся, как правило, их недостатком, в данном случае была их достоинством.

Прочность волокон определяли на разрывной машине «Инстрон» методом рамки с базой 25 мм при скорости деформирования 2 мм/мин. Моноволокно закрепляли клеем «Момент» в картонной рамке с окном, длина которого равнялась выбранной базе испытаний. Для получения одного значения испытывали 30-60 образцов, при этом учитывали только те измерения, при которых разрушение волокна происходило внутри окна рамки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Фазовый состав. Основными фазами в исследуемых волокнах были корунд и муллит. Содержание оксидов определяли по соотношению корунд : муллит методом внешнего эталона (по корундовым числам). Количественное содержание оксидов, определенное по диаграмме состояния (принимая состояние материала близким к равновесному), примерно соответствовало соотношению Al₂O₃ : : SiO₂ в образцах партий № 1–3 и составляло примерно 85 : 15, 80 : 20 и 75 : 25 соответственно.

Морфология. Все образцы представляли собой цилиндры с прозрачной поверхностью, не имеющие видимых внутренних дефектов. На поверхности некоторых образцов встречались продольные дефекты в виде ровных одиночных бороздок, вызванных, предположительно, взаимным спеканием волокон в процессе термообработки. Следует отметить, что при продольном просмотре осевая линия волокон партий № 1 и 2 представляла собой прямую линию, а на некоторых волокнах опытной партии № 3 наблюдались следы ее нерегулярных изгибов с радиусами от нескольких десятков до сотен диаметров.

Микроструктура. На рис. 1 показана микроструктура волокна партии № 1; волокно партии № 2 имеет аналогичную структуру. На рис. 2 показана микроструктура волокна партии № 3. Из рис. 1 и 2 видно, что все волокна представляют собой плотные конгломераты достаточно однородных по размерам двупреломляющих кристаллов размерами от менее 0,14 до 0,3 мкм. Кристаллы имеют умеренную неизометричность, но ориентированы беспорядочно относительно оси волок-

Рис. 1. Волокна партии № 1 при скрещенных поляризаторах: *а* — ×570; *б* — перекрещивающиеся волокна. ×190

Рис. 2. Волокно партии № 3 при скрещенных поляризаторах. ×570

42

на. Пространство между кристаллами заполнено оптически изотропным прозрачным материалом (в поляризованном свете выглядит темным).

Следует отметить, что количество оптически изотропной матрицы в экспериментальных волокнах в сравнении с образцами зарубежных производителей минимально. Во всех волокнах наблюдается высокая текстурированность в поляризованном свете, видимая как окрашивание отдельных зерен в ограниченное число одинаковых оттенков. Кроме того, из рис. 1, б видно, что направление преимущественной ориентации не случайно, а связано с продольной осью волокон. Видимые в скрещенных поляризаторах цвета двух разных групп кристаллов (см. рис. 2) являются дополнительными. Из этого следует, что угол между проекциями их одноименных осей на плоскость, перпендикулярную оптической оси микроскопа, близок к 90°. При этом ориентация структуры, видимая на снимках с большим увеличением, не имеет явной связи с геометрическим расположением большой оси неизометрических кристаллов. Кроме того, видимая ориентация кристаллов двух основных фаз, присутствующих в волокнах (см. рис. 1), полностью совпадает, что делает их практически неразличимыми на снимках. Эффект дополнительно усиливается тем, что кристаллы корунда и муллита имеют качественно сходные оптические параметры — оба минерала одноосные и одного знака, т. е. в поляризованном свете их окраска зависит от ориентации, а не от состава.

В серийных волокнах обычно наблюдается один цвет для всех различимых кристаллов, а в волокнах опытной партии (см. рис. 2) видны два направления преимущественной ориентации. Причем кристаллы с одинаковой ориентацией имеют ярко выраженную склонность к группировке в однородные, компактные и достаточно обширные области (с типичными размерами 1–4 мкм при среднем диаметре волокон ~10 мкм).

По результатам исследований можно сделать вывод о присутствии в керамических волокнах корундомуллитового состава весьма совершенной текстуры, причем в серийных волокнах зарубежного производства текстура одноосная, связанная одним из направлений с продольной осью волокна, а в волокнах опытной партии наблюдается мозаичная структура из участков с ориентацией 0 и 90. В обоих случаях отсутствует явная связь между габитусом кристаллов и их ориентацией.

Механическая прочность. Пределы прочности при растяжении образцов партий № 1 и 2, измеренные методом рамки, незначительно различались и составляли 1300–1600 МПа; для образцов партии № 3 этот показатель составил 550–900 МПа.

Работа выполнена с использованием оборудования ЦКП «Климатические испытания» НИЦ «Курчатовский институт» – ВИАМ.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Метод РФА позволяет с достаточно высокой точностью количественно оценить степень анизотропии текстуры и дать привязку основных кристаллографических направлений к механическим осям исследуемого образца. Однако получаемые данные усреднены по достаточно большому объему и не позволяют получить привязку результатов к отдельным элементам микроструктуры.

Традиционный для исследования прозрачных анизотропных материалов метод наблюдения в поляризованном свете позволяет получать достаточно точные сведения об ориентации отдельных кристаллов в объеме материала одновременно с наблюдением микроструктуры в виде весьма наглядного цветного изображения. Недостатком метода можно считать необходимость приготовления прецизионных шлифов и существенные затраты времени для однозначной количественной идентификации конкретных кристаллов по их оптическим параметрам. Достоинство метода — получение качественной наглядной картины относительной угловой ориентации отдельных элементов микроструктуры с применением чрезвычайно простых в приготовлении препаратов.

Возникновение текстурированности в керамических волокнах может быть связано как с наследованием структуры волокна-прекурсора, возникшей в процессе вытяжки, так и с воздействием технологических напряжений в процессе кристаллизации. Учитывая характерные особенности технологии получения волокон муллитового состава по золь-гель методу, текстурирование через наследование структуры прекурсора (аналогично описанному [11]) в данном случае маловероятно. Это связано с исходной структурой полуфабриката, в котором имеет место пространственное разнесение компонентов — микросфер SiO₂ и геля оксосолей Al₂O₃, стабилизированного органическим полимером. Образование одной из существенных целевых фаз (муллита) в подобной системе происходит путем взаимной диффузии компонентов на расстояния, сопоставимые с размером первичных (до стабилизирующей рекристаллизации) кристаллов. Причем этот процесс сопровождается выгоранием временных компонентов и возгонкой продуктов разложения, что ведет к объемной усадке волокон, которая может достигать 80 %. Кроме того, вероятность текстурирования по данному механизму снижает аморфность гелей алюминиевых оксосолей, подвергающихся полной перестройке в процессе кристаллизации муллита и корунда.

В то же время высокая усадка при обычно наблюдающейся в реальности радиальной разноплотности волокон, полученных растворным способом, и послойная разновременность (т. е. поверхностные слои пиролизуются быстрее) разложения прекурсоров в их объеме неизбежно порождают значительные радиальные и тангенциальные напряжения в конечном продукте. Характер текстурированности (0/90) опытной партии волокон, заведомо не подвергавшихся вытяжке при стабилизирующем отжиге, позволяет сделать вывод о тангенциальном (луковичном) характере естественных технологических напряжений в невытянутых волокнах. Качественная одноосная текстура волокон партий № 1 и 2 с высокой вероятностью указывает на присутствие дополнительного источника напряжений при их обжиге. Подобные напряжения могут возникать при использовании как «стесненного» отжига на жесткой оправке, так и классического отжига под натяжением в проходной печи. Классический пример использования последнего технологического приема — получение высокопрочных углеволокон из целлюлозного прекурсора [11]. Причем эта технология, хотя и в существенно меньших объемах, чем ранее, используется в настоящее время. Учитывая, что при обжиге усаживающихся волокон на жесткой оправке неизбежно некоторое «замораживание» на их поверхности отпечатков соседних волокон, а наилучшие из исследованных продуктов имеют очень высокую степень прямизны осевой линии, наиболее вероятным способом*, применяемым их производителями, является проведение отжига под натяжением. Причем под натяжением могут проводиться как обработка, направленная на выращивание кристаллов, так и обработка на зарождение центров кристаллизации.

ЗАКЛЮЧЕНИЕ

44

Учитывая сходство фазового состава и степени механической дефектности исследуемых волокон, а также исходя из существенно анизотропной структуры корунда и особенно муллита, можно предположить, что присутствие разноосно-ориентированных и, как следствие, разномодульных текстурных блоков в структуре опытного волокна (в отличие от строго одноосной текстуры аналогов) является одной из основных причин его пониженной прочности.

Ослабление волокон в данном случае вызывается присутствием в их структуре зон с существенно различающимися модулями упругости, что ведет к сосредоточению напряжений в зонах с «жестким» направлением вдоль волокон. Кроме того, «рваные» очертания видимых краев (см. рис. 2) текстурных блоков, развернутых в направление с меньшим модулем, играют роль надрезов, вызывающих существенную концентрацию напряжений и дополнительное ослабление волокон.

По результатам исследований корундомуллитовых волокон разных производителей сделан вывод о существенном влиянии типа текстуры волокон на их свойства. Наилучшие свойства были получены на волокнах с наиболее совершенной одноосной текстурой. Для увеличения прочности волокон целесообразно существенно повысить сте-

* В данный момент является ноу-хау производителя и не раскрывается.

пень анизотропии текстуры волокон и максимально приблизить ее к строго одноосной.

Библиографический список

1. **Онищенко, Г. Г.** Научно-технологическое развитие России в контексте достижения национальных целей: проблемы и решения / Г. Г. Онищенко, Е. Н. Каблов, В. В. Иванов // Иннновации. — 2020. — № 6. — С. 3-16.

2. **Каблов, Е. Н.** Из чего сделать будущее? Материалы нового поколения, технологии их создания и переработки — основа инноваций / *Е. Н. Каблов* // Крылья Родины. — 2016. — № 5. — С. 8-18.

3. **Каблов, Е. Н.** Ключевая проблема — материалы // Тенденции и ориентиры инновационного развития России / *Е. Н. Каблов.* — М. : ВИАМ, 2015. — С. 458–464.

4. **Шавнев, А. А.** Непрерывные волокна оксида алюминия (обзор) / А. А. Шавнев, В. Г. Бабашов, Н. М. Варрик // Авиационные материалы и технологии. — 2020. — № 4. — С. 27–34. DOI: 10.18577/2071-9140-2020-0-4-27-34.

5. *Истомин, А. В.* Электростатический метод формования ультратонких волокон тугоплавких оксидов / *А. В. Истомин, С. Г. Колышев* // Авиационные материалы и технологии. — 2019. — № 2 (55). — С. 40-46. DOI: 10.18577/2071-9140-2019-0-2-40-46.

6. Бабашов, В. Г. Оксидные непрерывные волокна как компонент гибкой высокотемпературной изоляции / В. Г. Бабашов, Е. В. Степанова, А. М. Зимичев, О. В. Басаргин // Авиационные материалы и технологии : электрон. науч.-техн. журн. — 2021. — № 1. — Ст. 04. URL: http:// www.journal.viam.ru (дата обращения 08.07.2021). DOI: 10.18577/2713-0193-2021-0-1-34-43.

7. *Kaya, C.* Mullite (NextelTM 720) fibre-reinforced mullite matrix composites exhibiting favourable thermomechanical properties / *C. Kaya, E. G. Butlera, A. Selcuk* [et al.] // J. Eur. Ceram. Soc. – 2002. – Vol. 22. – P. 2333–2342.

8. **Bunsel**, **A**. **M**. Fine diameter ceramic fibres / A. M. Bunsel, M.-H. Berger // J. Eur. Ceram. Soc. — 2000. — Vol. 20, № 13. — P. 2249–2260.

9. *Новиков, И. И.* Термическая обработка металлов и сплавов / *И. И. Новиков, М. В. Захаров.* — М. : Металлургиздат, 1962. — 87 с.

10. **Беняковский, М. А.** Автомобильная сталь и тонкий лист / М. А. Беняковский, В. А. Масленников. — Череповец : Изд. дом «Череповец», 2007. — С. 305-431.

11. Справочник по композиционным материалам. Т. 1 ; под ред. Дж. Любина (George Lubin). — М. : Машиностроение, 1988. — 448 с.

12. **Зимичев, А. М.** Исследование процесса экструзии непрерывных тугоплавких волокон / А. М. Зимичев, А. В. Сумин, Н. М. Варрик // Труды ВИАМ : электрон. науч.-техн. журн. — 2017. — № 1. — Ст. 6. URL: http://www.viam-works. ru (дата обращения 08.07.2021). DOI: 10.18577/2307-6046-2017-0-1-6-6.

13. **Зимичев, А. М.** Особенности получения непрерывных муллитовых волокон / А. М. Зимичев, Н. М. Варрик, А. В. Сумин, О. Н. Самородова // Химические волокна. — 2019. — № 6. — С. 22–29.

14. **Сиротин, Ю. И.** Основы кристаллофизики / Ю. И. Сиротин, М. П. Шаскольская. — М. : Наука, 1979. — 240 с.

15. **Торопов, Н. А.** Диаграммы состояния силикатных систем. Двойные системы / *Н. А. Торопов, В. П. Барзаковский, В. В. Лапин, Н. Н. Курцева.* — Л. : Наука, Ленингр. отд, 1969. — 65 с. ■

Получено 02.10.21 © В. Г. Бабашов, В. Г. Максимов, Н. М. Варрик, 2022 г.