Д. т. н. В. В. Кузин (🖂), д. т. н. С. Н. Григорьев, к. т. н. С. Ю. Федоров

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

УДК 666.3:546.831-31+669.14-62-436.1].017:539.92

ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ТРИБОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ГИБРИДНОЙ ПАРЫ ТРЕНИЯ Y-TZP-КЕРАМИКА – ЗАКАЛЕННАЯ СТАЛЬ

Установлена взаимосвязь параметров режима шлифования с характером фрикционного взаимодействия и трибологическими характеристикам гибридной пары трения образец Y-TZP-керамики – стальной шарик на этапе приработки. Показано, что механизм влияния технологии изготовления керамической детали на условия фрикционного взаимодействия, коэффициент трения, ширину и состояние дорожки трения базируется на изменении шероховатости и морфологии шлифованной поверхности керамики после финишной обработки. С использованием выявленных закономерностей разработаны технологические рекомендации по изготовлению керамических деталей для гибридных трибоузлов.

Ключевые слова: Y–TZP-керамика, режим шлифования, шероховатость, морфология поверхности, трение, трибологические характеристики, перенос материала, износ.

введение

надежность гибридных узлов трения при проектировании обеспечивается за счет выполнения триботехнических требований, сформулированных на основе экспериментально установленных трибологических характеристик для пары металл - керамика, а при изготовлении — безусловным выполнением требований по точности деталей и качеству их поверхности [1, 2]. Практика создания и эксплуатации этих узлов трения показывает, что для керамических деталей, имеющих повышенную чувствительность к условиям эксплуатации, целесообразно объединить исследовательские, конструкторские и технологические процедуры в единую систему принятия рациональных решений в условиях недостаточной информации о поведении гибридных узлов трения при эксплуатации [3].

В настоящее время этот подход фрагментарно используется при создании керамических материалов трибологического назначения и изготовлении деталей из них. Например, в статьях [4-7] показано, что управление трибологическими характеристиками пары циркониевая керамика (Y-TZP-керамика) – металл позволяет повысить эффективность узлов трения из этих

> ⊠ B. B. Кузин E-mail: dr.kuzinvalery@yandex.ru

материалов. Установлена [8, 9] связь условий шлифования с качеством рабочих поверхностей, со степенью дефектности поверхностного слоя, с коэффициентом трения и интенсивностью износа деталей из Al₂O₃- и SiSiC-керамики. Вопросы роста износостойкости Y-TZP-керамики за счет повышения однородности структуры, минимизации дефектов, введения в ее состав наноразмерных волокон и пластин графена обсуждаются в публикациях [10-17]. В статьях [18-22] показана перспективность управления трибологическими характеристиками деталей из Y-TZP-керамики за счет их эффективной механической обработки и структурной модификации поверхностного слоя. Механизм износа рабочих поверхностей трибопары шарик из Y-TZP-керамики – покрытие AlCrN на нержавеющей стали при разных скоростях трения изучен авторами статьи [23]. Несмотря на очевидную актуальность этого научного подхода, многочисленные связи в цепочке исследование - проектирование - изготовление - эксплуатация для керамических деталей остаются неопределенными, что замедляет темпы внедрения гибридных узлов трения.

В настоящей работе поставлена цель — изучить влияние параметров режима шлифования поверхности образцов Y-TZP-керамики на характер фрикционного взаимодействия и трибологические характеристики гибридной пары трения Y-TZP-керамика – закаленная сталь на этапе приработки.

МЕТОДИКА ИССЛЕДОВАНИЙ

Трибологические характеристики пары трения Y-TZP-керамика – закаленная сталь исследовали по кинематической схеме неподвижный шарик – плоская поверхность вращающегося образца на трибометре Basalt-2N. В испытаниях фиксировали тангенциальную силу $F_{\rm rp}$ и коэффициент трения μ , а после окончания испытаний измеряли ширину дорожки трения b на образце в восьми симметрично расположенных точках с последующим нахождением среднего значения, площадь s налипов на дорожке трения (в процентах от ее общей площади) и исследовали ее морфологию.

Использовали образцы Y-TZP-керамики ($\sigma_{\text{изг}}$ = 950 МПа, K_{1c} = 9,0 МПа·м^{1/2}, ρ = 6,0 г/см³) размерами 25×25×5 мм с разной шероховатостью и морфологией поверхностей, а также шарики диаметром 6 мм из стали ШХ15 (63 HRC, класс точности 40), неподвижно закрепленные в цанговом патроне трибометра. Условия трения: частота вращения образца ω 50 мин⁻¹, нормальная сила прижима F_H 20 H, диаметр дорожки трения 18 мм, длина пути L 200 м. Разные значения шероховатости *Ra* и морфологии поверхности на образцах создавали за счет изменения параметров режима плоского шлифования алмазным кругом 1А1В2-01 100 % АС6 160/125 на станке модели ОШ-440. Образцы шлифовали при девяти режимах; изменяли продольную подачу S_{пр} в диапазоне 5–15 м/мин, поперечную подачу $S_{\text{поп}}$ в диапазоне 0,5–1,5 мм/ход, глубину шлифования t в диапазоне 0,01-0,05 мм. Скорость круга $v_{\rm kp}$ в этих экспериментах оставалась неизменной и составляла 30 м/с.

Шероховатость поверхности керамических образцов измеряли на приборе Hommel Tester Т8000 по осям *x* и *y*, причем ось *x* соответствовала продольному направлению шлифования и, соответственно, направлению выступов на поверхности, ось *y* — поперечному направлению шлифования и, соответственно, поперечному направлению выступов. Параметры *b* и *s* измеряли на оптическом микроскопе Stereo Discovery V12 (Zeiss). Морфологию шлифованной поверхности керамики и дорожек трения изучали на сканирующем электронном микроскопе VEGA 3 LMH после нанесения токопроводящей пленки в установке катодного распыления Quorum Q150R ES.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В начальный момент фрикционного взаимодействия микровыступы на поверхности шарика контактируют с гребнями выступов на поверхности образца. Общий вид траектории перемещения шарика по поверхности образца и фрагмент дорожки трения, показанные на рис. 1, свидетельствуют о сложном характере фрикционного взаимодействия в этой трибопаре из-за ориентированного (по оси х) морфологического рисунка поверхности образца. Установлено, что в точках 1 и 3 траектория скольжения шарика совпадает с направлением гребней (см. рис. 1, а), в точках 2 и 4 шарик скользит поперек гребней, а в четырех секторах между этими точками угол преодоления шариком гребней изменяется. Одновременно с этим изменяется значение фактической площади контакта шарика и образца на одном обороте заготовки: в точках 1 и 3 это значение является наименьшим, в точках 2 и 4 — наибольшим.

На следующем этапе приработки гибридной пары трения состояние контактирующих поверхностей ее элементов изменяется: на шарике образуется площадка износа, а на образце формируется дорожка трения, частично покрытая налипами стали. Появление налипов связано с переносом стали на керамику в результате срезания микростружки с шарика заостренными гребнями образца и последующего «размазывания» части этой микростружки по шероховатой поверхности керамики изза образующихся адгезионных мостиков связи между сталью и керамикой. Основной объем налипа равномерно размещается между выступами на поверхности образца, причем толщина налипа определяется размерами поперечного профиля поверхности образца. Установлено, что с ростом длительности трения площадь, занимаемая налипами на дорожке трения, постепенно увеличивается.

Рис. 1. Траектория взаимного перемещения стального шарика и образца Y–TZP-керамики (*a*) и состояние дорожки трения (*б*) на этапе приработки

Наибольшая интенсивность процесса образования налипов зафиксирована в центральной части дорожки трения на поверхности образцов, шлифованных на наиболее интенсивных режимах и имеющих остроконечные зазубренные гребни. По периметру дорожки трения налипы распределены неравномерно; наибольшая интенсивность образования налипов зафиксирована в точках 2 и 4, в которых шарик скользит поперек гребней, наименьшая — в точках 1 и 3, в которых шарик скользит вдоль рисок. В качестве примера на рис. 1, б показаны налипы стали, образовавшиеся на участке дорожки трения между точками 3 и 4.

На внешней поверхности налипов имеются многочисленные риски 1, ориентированные в направлении скольжения шарика и свидетельствующие о действии абразивного процесса в зоне фрикционного взаимодействия гибридной пары трения (рис. 2). Под действием циклических силовых и тепловых нагрузок на внешнюю поверхность налипов, инициируемых скользящим шариком, в налипах образуются и растут многочисленные трещины 2, приводящие к разрушению 3 и отслоению 4 их фрагментов. Образование сетки крупных трещин 5 способно инициировать полное разрушение налипа, причем его фрагменты оказывают как абразивное воздействие с образованием рисок на внешнюю поверхность налипов и исходную шлифованную поверхность керамики, так и способны шаржироваться в соседний налип 6. В результате полного или частичного разрушения налипов обнажается исходная шлифованная поверхность Y-TZP-керамики. Совместное действие адгезионного и абразивного механизмов износа приводит к зарождению эксплуатационных дефектов в поверхностном слое У-TZP-керамики.

Налипы на дорожке трения оказывают двойственное влияние на трибологические характеристики гибридной пары трения. С одной стороны, сглаживают поверхности трения, увеличивают прилегание их друг к другу при тре-

Рис. 2. Характер образования и разрушения налипов на дорожке трения образца Y-TZP-керамики

нии и снижают интенсивность износа шарика. С другой стороны, образовавшиеся налипы усложняют характер фрикционного взаимодействия шарика и образца за счет: 1 — чередования участков, на которых реализуется трение сталь – керамика и сталь – сталь; 2 — увеличения площади фактического контакта шарика и образца и повышения мощности теплового источника; 3 — периодических разрушений налипов, генерирующих дополнительные циклические нагрузки, негативно влияющие на состояние поверхностного слоя керамики.

Результаты исследования трибологических характеристик скользящего контакта стального шарика с образцом Y-TZP-керамики на этапе приработки показаны на рис. 3. Представление экспериментальных данных в виде зависимостей параметр режима шлифования – трибологические характеристики позволило оценить влияние шероховатости и морфологии поверхности образцов на фрикционное взаимодействие гибридной пары трения.

Установлено, что наименьшие значения трибологических характеристик *F*_{тр}, µ и *b* гибридной трибопары Y-TZP-керамика - сталь зафиксированы при испытании образцов, шлифованных при менее интенсивных режимах. Повышение $S_{\rm np}$ в диапазоне 5-15 м/мин ($S_{\rm non}$ 1 мм/ход и t 0,04 мм) приводит к увеличению F_{тр} от 2,1 до 4,1 Н, µ от 0,09 до 0,23, b от 0,19 до 0,24 мм (см. рис. 3, а). При возрастании S_{пол} в диапазоне 0,5–1,5 мм/ход (S_{пр} 10 м/мин и t 0,04 мм) F_{тр} увеличивается от 2,9 до 4 H, µ от 0,14 до 0,21, b от 0,16 до 0,23 мм (см. рис. 3, б). Повышение t в диапазоне 0,01-0,05 мм (S_{пр} = 10 м/мин и S_{поп} = = 1 мм/ход) приводит к увеличению $F_{\rm TD}$ от 3,5 до 4,8 H, µ от 0,17 до 0,28, b от 0,18 до 0,25 мм (см. рис. 3, в). Наибольшее влияние на трибологические характеристики шлифования оказывает глубина шлифования.

трибологических Характер изменения характеристик гибридной трибопары Y-TZPкерамика – сталь в зависимости от параметров режима шлифования в полной мере коррелирует с изменением шероховатости шлифованной поверхности керамики. Установлено, что увеличение $S_{\text{пр}}$, $S_{\text{поп}}$ и t приводит к повышению параметра *Ra*, измеренного как вдоль, так и поперек направления шлифования, причем значения Ra, измеренного поперек шлифования, выше, чем вдоль шлифования. Установлено, что при повышении $S_{\rm np}$ в диапазоне 5-15 м/мин ($S_{\text{поп}} = 1$ мм/ход и t = 0,04 мм) Ra увеличивается от 0,09 до 0,14 и от 0,44 до 0,53 мкм в продольном и поперечном направлении соответственно. При увеличении $S_{\text{пол}}$ в диапазоне 0,5–1,5 мм/ход (S_{пр} = 10 м/мин и t = 0,04 мм) Ra увеличивается от 0,12 до 0,20 и от 0,49 до 0,57 мкм в продольном и поперечном направлении соответственно. При повышении t в диапазоне

Рис. 3. Влияние S_{np} (*a*), S_{non} (*б*) и *t* (*в*) на трибологические характеристики гибридной трибопары Y-TZPкерамика – сталь

0,01-0,05 мм ($S_{\rm np} = 10$ м/мин и $S_{\rm non} = 1$ мм/ход) *Ra* увеличивается от 0,1 до 0,15 и от 0,42 до 0,54 мкм в продольном и поперечном направлении соответственно.

Выявленное изменение шероховатости свидетельствует о трансформации морфологии шлифованной поверхности образцов Y-TZPкерамики при изменении режима шлифования. На основе анализа морфологических рисунков поверхностей, шлифованных при разных режимах и приведенных в статьях [24, 25], выделены три характерных морфологии, отражающих специфику их сложной рельефной анизотропии. Фрагмент поверхности со сглаженной морфологией, образующейся при наименее интенсивных режимах шлифования, показан на рис. 4, а, с развитой морфологией, образующейся при средних режимах шлифования, — на рис. 4, б, с грубой морфологией, образующейся при интенсивных режимах шлифования, — на рис. 4, в.

Основными элементами базового морфологического рисунка этих поверхностей являются чередующиеся выступы 1 и впадины 2, создающие условия для срезания микростружки с шарика и образования налипов на дорожке трения. Размеры и частота чередования выступов существенно зависят от параметров режима шлифования: например, с увеличением t значительно повышается контрастность рельефа шлифованной поверхности. Специфические особенности в эти морфологические рисунки вносят дополнительные элементы, к которым относятся продольные риски и наплывы, каплеобразные частицы, чешуйчатые наплывы, создающие ступенчатые перепады на выступах, а также разнонаправленные трещины и зоны локального разрушения. Появление этих дополнительных элементов в базовом морфологическом рисунке поверхности происходит под действием определенной совокупности силовых и тепловых на-

Рис. 4. Влияние режима шлифования на морфологию поверхности образцов У-ТZР-керамики

грузок, характерных для конкретного режима шлифования.

Установлено, что поверхности первого вида со сглаженной морфологией характеризуются равномерным волнообразным рельефом, образованным выступами 1 со скругленными гребнями и впадинами 2 (см. рис. 4, *a*). Внутреннее пространство впадин заполняют многочисленные чешуйчатые наплывы 3, а на поверхности выступов имеются продольные риски 4, продольные наплывы 5 и хаотично расположенные каплеобразные частицы 6. На поверхности Y-TZP-керамики со сглаженной морфологией не обнаружены трещины и зоны локального разрушения. Значения *Ra* для морфологии этого вида не превышают 0,1 и 0,4 мкм в продольном и поперечном направлении соответственно.

Поверхности второго вида с развитой морфологией характеризуются волнообразным рельефом с нестабильной частотой чередования выступов 1 с угловатыми гребнями и впадин 2 (см. рис. 4, б). Чешуйчатые наплывы 3, продольные многочисленные риски 4 и продольные наплывы 5, образующие ступенчатые переходы от выступа к впадине, придают дополнительную развитость и разновысотный профиль поверхностям этого вида. На поверхности этого вида также присутствуют скопления каплеобразных частиц 6, продольные гребнеобразные выступы 7 и складчатые разрывы 8; трещины и области локального разрушения отсутствуют. Значения *Ra* для морфологии этого вида изменяются в диапазонах 0,1-0,3 и 0,3-0,5 мкм в продольном и поперечном направлении соответственно.

Поверхности третьего вида с грубой морфологией имеют все элементы морфологического рисунка, присущие уже проанализированным поверхностям, а также многочисленные зоны локального разрушения 9, образовавшиеся в результате отслоения фрагментов дефектного поверхностного слоя на гребне выступов (см. рис. 4, в). От зон локального разрушения растут многочисленные поперечные трещины 10, а от продольных гребнеобразных выступов развиваются продольные трещины 11. Поверхности с этим типом морфологии имеют наиболее разновысотный профиль при увеличенной ширине впадин и выступов; значения *Ra* превышают 0,3 и 0,5 мкм в продольном и поперечном направленияи соответственно.

Сопоставление зависимостей, описывающих связи параметров режима шлифования с трибологическими характеристиками и с морфологией шлифованной поверхности образцов, показало, что механизм влияния технологии изготовления керамической детали на условия фрикционного взаимодействия, коэффициент трения, ширину и состояние дорожки трения базируется на изменении шероховатости и морфологии шлифованной поверхности керамики после финишной обработки. С интенсификацией режима шлифования возрастает число и высота выступов на поверхности, по которым происходит контактное взаимодействие стального шарика в первоначальный момент трения. В результате интенсификации режимов шлифования увеличивается высота поперечного профиля поверхности образцов и формируются заостренные гребни, ступенчатые перепады и зоны локального разрушения. Эти изменения существенно влияют на характер фрикционного взаимодействия шарика и образца, так как являются препятствиями для свободного скольжения шарика, инициируют многочисленные акты схватывания контактирующих поверхностей, увеличивают размеры и толшину налипов, а также неоднородность их распределения на дорожке трения. В совокупности с режимом трения эти взаимосвязанные факторы порождают эффект скачкообразного движения и генерируют нестационарные силовые и тепловые нагрузки, негативно влияющие на состояние поверхностного слоя керамики. В наибольшей степени негативность этих факторов проявляется при трении шарика и поверхности третьего вида; при длине трения *L* 200 м обнаружено появление новых очагов разрушения поверхностного слоя керамики на дорожке трения. В двух других случаях изменений в состоянии поверхностного слоя керамики на дорожке трения не зафиксировано.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований вскрыта природа связи параметров режима шлифования образцов Y-TZP-керамики с характером фрикционного взаимодействия и трибологическими характеристиками гибридной пары трения Ү-ТZР-керамика – закаленная сталь на этапе приработки. Установлено, что шероховатость и морфология поверхности керамических образцов, определяемые режимом шлифования, приводят к увеличению тангенциальной силы, коэффициента трения, ширины дорожки трения, размеров налипов и неоднородности их распределения на дорожке трения. С использованием выявленных закономерностей разработаны технологические рекомендации по изготовлению керамических деталей для гибридных трибоузлов, обеспечивающие более полное использование их потенциальных возможностей. Основное положение предложенных рекомендаций — обоснованная целесообразность применения для финишной обработки рабочих поверхностей керамических деталей гибридных узлов трения технологиче-

52

ских методов, создающих разнонаправленный морфологический рисунок с минимальной высотой профиля.

Библиографический список

1. *Garg, H. C.* Performance of slot-entry hybrid journal bearings considering combined influences of thermal effects and non-Newtonian behavior of lubricant / *H. C. Garg, V. Kumar, H. B. Sharda* // Tribology International. — 2010. — Vol. 43, № 8. — P. 1518–1531.

2. **ГОСТ Р 50740-95** Триботехнические требования и показатели. Принципы обеспечения. Общие положения. Дата введения 01-01-1996.

3. *Kuzin, V. V.* Service-induced damages of the ceramic thrust bearing pivot in the seal section of electrical centrifugal pump system / *V. V. Kuzin, S. Y. Fedorov, V. L. Reutov, V. V. Koshcheev* // Refract. Ind. Ceram. -2019. - Vol. 59, \mathbb{N} 5. - P. 564–568.

Кузин, В. В. Эксплуатационные повреждения пяты упорного керамического подшипника в узле гидрозащиты установки электроцентробежных насосов / В. В. Кузин, С. Ю. Федоров, В. Л. Реутов, В. В. Кощеев // Новые огнеупоры. — 2018. — № 1. — С. 63-67.

4. **Birkby, I.** The effect of surface transformation on the wear behaviour of zirconia TZP ceramics / *I. Birkby, P. Harrison, R. Stevens* // J. Eur. Ceram. Soc. — 1989. — Vol. 5, № 1. — P 37–45.

5. *Novak, S.* Structural changes in ZrO₂ ceramics during sliding under various environments / S. Novak, G. Drazic, M. Kalin // Wear. — 2005. — Vol. 259, № 1–6. — P. 562–568.

6. *Tucci, A.* Microstructure and tribological properties of ZrO₂ ceramics / *A. Tucci, L. Esposito* // Wear. — 1994. — Vol. 172, № 2. — P. 111–119.

7. *Woydt, M.* Unlubricated sliding behaviour of various zirconia-based ceramics / *M. Woydt, J. Kadoori, K.-H. Habig, H. Hausner* // J. Eur. Ceram. Soc. — 1991. — Vol. 7, № 3. — P. 135–145.

8. *Kuzin, V. V.* Effect of conditions of diamond grinding on tribological behavior of alumina-based ceramics / *V. V. Kuzin, S. Yu. Fedorov, A. E. Seleznev* // Journal of Friction and Wear. — 2016. — Vol. 37, № 4. — P. 371–376.

Кузин, В. В. Влияние режимов алмазного шлифования на трибологические характеристики керамики на основе оксида алюминия / В. В. Кузин, С. Ю. Фёдоров, А. Е. Селезнев // Трение и износ. — 2016. — Т. 37, № 4. — С. 475–481.

9. **Марков, М. А.** Трибологические экспрессисследования износостойкой керамики на основе Al₂O₃ с волокнами SiC в паре трения со сталью / *М. А. Марков, Д. В. Снимщиков, А. В. Красиков* // Вопросы материаловедения. — 2016. — № 3 (87). — С. 97-103.

10. **Madhav Reddy, K.** Microstructure-mechanicaltribological property correlation of multistage spark plasma sintered tetragonal ZrO_2 / K. Madhav Reddy, Amartya Mukhopadhyay. Bikramjit Basu // J. Eur. Ceram. Soc. — 2010. — Vol. 30, № 16. — P. 3363–3375.

11. **Venkata Manoj Kumar, B.** Effect of grain size on wear behavior in Y-TZP ceramics / B. Venkata Manoj Kumar, Won-Sik Kim, Seong-Hyeon Hong, Hung-Tak Bae, Dae-Soon Lim // Mater. Sci. Eng., A. — 2010. — Vol. 527, № 3. — P. 474–479.

12. *Hvizdoš, P.* Effect of heat treatment on wear damage mechanisms in 3Y–TZP ceramics / *Pavol Hvizdoš, Álvaro*

Mestra, Marc Anglada // Wear. — 2010. — Vol. 269, № 1/2. — P. 2–30.

13. **Zhang, Fei.** High-translucent yttria-stabilized zirconia ceramics are wear-resistant and antagonist-friendly / *Fei Zhang, Benedikt C. Spies, Jef Vleugels* [et al.] // Dental Materials. — 2019. — Vol. 35, № 12. — P. 1776–1790.

14. **Schiltz**, **Jessica**. Wear of structural oxide ceramics produced through additive manufacturing / Jessica Schiltz, Andrew Rosenberger, Todd Render [et al.] // Procedia Manufacturing. — 2019. — Vol. 34. — P. 780-788.

15. *Lu, Chen.* Microstructure and tribological properties of $ZrO_2(Y_2O_3)$ - Al_2O_3 -graphite composite ceramic fabricated by milling with graphite balls / *Chen Lu, Yunlong Ai, Weihua Chen* [et al.] // Tribology International. -2019. - Vol. 140. - P. 105874.

16. *Harrer, Walter.* Failure analysis of a ceramic ball race bearing made of Y–TZP zirconia / *Walter Harrer, Marco Deluca, Roger Morrell //* Engineering Failure Analysis. — 2014. — Vol. 36. — P. 262–268.

17. **Rodríguez-Rojas, Fernando.** Effect of 1-D and 2-D carbon-based nano-reinforcements on the dry sliding-wear behaviour of 3Y–TZP ceramics / Fernando Rodríguez-Rojas, Rafael Cano-Crespo, Oscar Borrero-López [et al.] // J. Eur. Ceram. Soc. — 2021. — Vol. 41, № 6. — P. 3595–3602.

18. **Pereira**, **G. K. R.** The effect of grinding on the mechanical behavior of Y-TZP ceramics: A systematic review and meta-analyses / G. K. R. Pereira, S. Fraga, A. F. Montagner [et al.] // Journal of the Mechanical Behavior of Biomedical Materials. — 2016. — Vol. 63. — P. 417–442.

19. **Buciumeanu, M.** The effect of surface treatment on the friction and wear behavior of dental Y–TZP ceramic against human enamel / *M. Buciumeanu, J. R. C. Queiroz, A. E. Martinelli* [et al.] // Tribology International. — 2017. — Vol. 116. — P. 192–198.

20. **Pereira, G. K. R.** Effect of grinding with diamonddisc and -bur on the mechanical behavior of a Y-TZP ceramic / G. K. R. Pereira, M. Amaral, R. Simoneti [et al.] // Journal of the Mechanical Behavior of Biomedical Materials. — 2014. — Vol. 37. — P. 133–140.

21. **Scatimburgo Polli, Gabriela.** Fatigue behavior and surface characterization of a Y–TZP after laboratory grinding and regeneration firing / *Gabriela Scatimburgo Polli, Gabriel Rodrigues Hatanaka, Filipe de Oliveira Abi-Rached* [et al.] // Journal of the Mechanical Behavior of Biomedical Materials. — 2018. — Vol. 88. — P. 305–312.

22. **Yan, Shuai.** Fabrication and tribological characterization of laser textured engineering ceramics: Si_3N_4 , SiC and ZrO_2 / Shuai Yan, Chibin Wei, Hongbo Zou [et al.] // Ceram. Int. — 2021. — Vol. 47, No 10. — P. 13789-13805.

23. **Antonov, M.** The effect of temperature and sliding speed on friction and wear of Si_3N_4 , Al_2O_3 , and ZrO_2 balls tested against AlCrN PVD coating / M. Antonov, H. Afshari, J. Baronins [et al.] // Tribology International. — 2018. — Vol. 118. — P. 500–514.

24. *Kuzin, V. V.* Correlation of diamond grinding regime with surface condition of ceramic based on zirconium dioxide / *V. V. Kuzin, S. Yu. Fedorov, S. N. Grigor'ev* // Refract. Ind. Ceram. — 2017. — Vol. 57, № 6. — P. 625–630.

Кузин, В. В. Взаимосвязь режимов алмазного шлифования с состоянием поверхности керамики на основе диоксида циркония / В. В. Кузин, С. Ю. Фёдоров, С. Н. Григорьев // Новые огнеупоры. — 2016. — № 11. — С. 60-65.

25. **Kuzin, V. V.** Level of Y–TZP ceramic specimen edge defects after diamond machining / V. V. Kuzin, S. Yu. Fedorov, S. N. Grigor'ev // Refract. Ind. Ceram. — 2017. — Vol. 58, \mathbb{N} 4. — P. 415–417.

Кузин, В. В. Уровень дефектности кромок образцов Y-TZP-керамики после алмазного шлифования / *В. В. Кузин, С. Ю. Фёдоров, С. Н. Григорьев* // Новые огнеупоры. — 2017. — № 7. — С. 63-65. ■

> Получено 30.12.21 © В. В. Кузин, С. Н. Григорьев, С. Ю. Федоров, 2022 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Tecna 2022 — 27-я международная выставка технологий и оборудования для керамической промышленности

27-30 сентября 2022 г.

г. Римини, Италия

Tecnargilla будет проходить в выставочном центре Римини в соответствии с традицией, которая существовала ранее. Принимая во внимание текущую международную ситуацию, единственный способ обеспечить высокий уровень ведущей мировой выставкой керамических технологий — это поддержание ее обычного двухгодичного формата. По этой причине было принято решение не изменять двухгодичную периодичность выставки, которая традиционно проводится в Римини в четные годы. Tecnargilla, организованная Итальянской выставочной группой в сотрудничестве с Acimac, меняет свое название на **Tecna**.

Секторы выставки:

- Сырье и массы, химические изделия и добавки
- Добыча сырья и подготовка, взвешивание и дозирование
- Прессование, формование и литье
- Сушка, обжиг и тепловые системы
- Сортировка, упаковка и паллетизация
- Качество и управление производственным процессом
- Обработка поверхности, инструменты для окончательной обработки и принадлежности

- Лабораторное и измерительное оборудование
- Приспособления для применения сжатого воздуха, электричества, электронной и нагревательной системы
- Огнеупорные материалы, ролики, печная фурнитура и плиты
- Инструменты, запасные части и принадлежности
- Разное: проектирование, консультационные услуги издательства, торговые ассоциации, разные организации и т. д.

https://en.tecnaexpo.com/

54