К. т. н. **Ю. И. Комоликов**¹ (ᢂ), к. т. н. **В. Р. Хрустов**², д. т. н. **И. Д. Кащеев**³, к. ф.-м. н. **В. И. Пудов**¹

- ¹ ФГБУН «Институт физики металлов имени М. Н. Михеева УрО РАН», Екатеринбург, Россия
- ² ФГБУН «Институт электрофизики УрО РАН», Екатеринбург, Россия
 ³ ФГАОУ ВО «Уральский федеральный университет», Екатеринбург, Россия

УДК 666.3:549.6.04].017:543.575

ИССЛЕДОВАНИЕ ПРОЦЕССОВ СПЕКАНИЯ ЦИРКОНАТОВ МЕТОДОМ ДИЛАТОМЕТРИИ

Представлены результаты дилатометрических исследований процесса высокотемпературной обработки (спекания) цирконатов (CaZrO₃, SrZrO₃, BaZrO₃) и керамики на основе ZrO₂, стабилизированного Y₂O₃ (YSZ). Дилатометрические данные для каждого состава выражены в виде зависимости температурных коэффициентов линейного расширения (ТКЛР) от температуры. Установлено, что высокотемпературная обработка цирконатов имеет несколько стадий, которые различаются для каждого состава и связаны со структурно-фазовыми превращениями, протекающими в образцах. Показано, что проведения 6-ч изотермической выдержки при температуре обжига 1550 °C достаточно для прохождения процесса спекания YSZ и SrZrO₃, но не обеспечивает полного спекания CaZrO₃ и BaZrO₃.

Ключевые слова: цирконаты, диоксид циркония, керамика, ТКЛР, ультрадисперсные порошки, метод дилатометрии.

введение

При разработке химически инертных тугоплавких материалов повышенный интерес вызывают исследования в области создания альтернативных соединений взамен традиционно используемых [1]. В качестве термобарьерного и огнеупорного материала наиболее широко используется стабилизированный ZrO₂, обладающий повышенной температурой плавления, низкой теплопроводностью и относительно высоким температурным коэффициентом линейного расширения (ТКЛР) [2]. В то же время анализ литературных данных показывает, что

некоторые цирконаты (табл. 1) по огнеупорности, химической стойкости, теплопроводности и другим характеристикам могут рассматриваться как альтернатива стабилизированному ZrO₂ [3–5]. Перспективы использования цирконатов в качестве материала для изготовления огнеупорных изделий и термобарьерных покрытий вызывают интерес к процессам их спекания и формирования физических свойств. Наиболее часто для исследования таких процессов используют дилатометрический метод, основанный на тепловом расширении — важной и информатив-

	Таблица 1	 Свойства*1 	цирконатов	и диоксида	циркония
--	-----------	--------------------------------	------------	------------	----------

Материал	<i>Т</i> пл, °С	ρ _{<i>XR</i>} , г/см ³	α, 10 ⁻⁶ 1/Κ	λ, Вт/(м·К)	Модуль Юнга, ГПа	<i>HV,</i> ГПа	<i>K</i> _{Ic} , МПа·м ^{1/2}
CaZrO ₃ [1]	2340	4,78	_	_	_	_	_
SrZrO ₃ [3]	2800	5,46	10,9	-	_	_	-
BaZrO ₃ [4]	2690	6,23	7,9	3,4	181±11	11,1±1,9	-
3YSZ ^{*2} [5] 2680 6,02 12 2,2 210±10 13±1 2-4							
^{*1} <i>T</i> _{пл} — температура плавления; ρ _{xr} — рентгеновская (теоретическая) плотность; α — ТКЛР в интервале 30–1000 °C; λ —							

^{*1} I_{пл} — температура плавления; _{ρ_{XR}} — рентгеновская (теоретическая) плотность; α — ГКЛР в интервале 30–1000 °C; Λ — теплопроводность при 1000 °C; *HV* — микротвердость; *K_{lc}* — вязкость разрушения (трещиностойкость).
*² ЗYSZ — З мол. % Y₂O₃.

⊠ Ю. И. Комоликов E-mail: yikom@yandex.ru

ной характеристике твердых тел, связанной с термодинамическими (свободная энергия, энтальпия) и структурными (фононный спектр, ангармонизм решетки, дефекты) показателями материала. Цель настоящей работы — дилатометрические исследования спекания и физических свойств керамики из порошков CaZrO₃, SrZrO₃, BaZrO₃ и YSZ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реактивов для синтеза цирконатов использовали СаСО₃ квалификации ч. д. а. по ГОСТ 4530-76, SrCO₃ квалификации ч. д. а. по ТУ 6-09-4165-84. ВаСО₃ квалификации ч. д. а. по ГОСТ 4158-80, а также цирконий углекислый основной водный Zr(CO₃)₂·nZr(OH)₄·mH₂O производства КНР (GAS N12671-00-0). Синтез цирконатов проводили по технологии «мокрого сжигания», описанной в публикациях [6, 7]. Полученные порошки дополнительно прокаливали при 1100 °С с выдержкой 1 ч. После прокаливания, согласно данным рентгенофазового анализа (РФА), все синтезированные порошки цирконатов представляли собой монофазный кристаллический продукт. Диоксид циркония, стабилизированный 12 мол. % Y₂O₃ (YSZ), находился в кубической модификации. В дальнейшем порошки механоактивировали и добавляли связку. Из полученной массы полусухим одноосным статическим прессованием под давлением 160 МПа формовали образцы. Спрессованные образцы представляли собой цилиндры диаметром (4.5±0.2) мм и длиной *l* около 10 мм. Противоположные грани цилиндров делали плоскопараллельными, расстояние между гранями l_{0} фиксировали до эксперимента. Изменение этого расстояния *l*_e измеряли дилатометром в процессе термообработки. Результатом дилатометрических исследований явилась зависимость $(l_e - l_0)/l_0 = f(\tau), \Delta T/\Delta \tau = \text{const.}$ Для эксперимента использовали дилатометр DIL 402 C (Netzsch, Германия) в режиме нагрева до 1550 °С, изотермической выдержки при этой температуре и последующего охлаждения с постоянной скоростью (5 °С/мин). Эксперименты проводили в потоке воздуха с расходом 100 мл/мин.

Плотность спеченной керамики определяли методом гидростатического взвешивания в спирте на весах AUW-220 D (Shimadzu, Япония), оснащенных специальной приставкой. Фазовый состав и характеристики структуры измеряли на дифрактометре XRD-7000D8 (Shimadzu, Япония) при Cu K_{α} -излучении с длиной волны 1,54056 Å.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 показаны временны́е зависимости относительной линейной усадки $(l_e - l_0)/l_0$ образцов в режиме нагрева со скоростью 5 °С/мин до температуры 1550 °С с последующей 2-ч выдержкой. Для каждого состава характерны своя уникальная температура начала усадки $T_{\rm po}$, скорость усадки V_e и ее глубина (табл. 2). Видно, что цирконат кальция характеризуется наибольшей температурой начала спекания (1170 °С), а цирконат бария — наименьшей.

Скорость и глубина усадки образцов определяются начальной плотностью. Чем больше ее

Рис. 1. Зависимость Δ*l*/*l*₀ CaZrO₃ (1), SrZrO₃ (2), BaZrO₃ (3) и YSZ (4) при нагреве со скоростью 5 °С/мин и 2-ч выдержкой т при 1550 °C; *t* — температура (5)

Таблица 2. Характеристики дилатометрических кривых спекания образцов цирконатов и YSZ

•					-
Матери- ал	ρ₀, г/см³	ρ _{о отн} , %	T _{po} , ⁰C	V _e , 10 ⁻⁵ 1/мин	ρ _т , г/см ³
CaZrO₃	2,495	52,2	1170	21,0	4,78
SrZrO ₃	1,886	34,5	1050	0,45	5,46
BaZrO ₃	1,280	23,4	992	4,80	6,23
YSZ	2,858	43,8	1094	5,23	6,02

отклонение от теоретической, тем выше скорость усадки и больше ее глубина. В табл. 2 приведены плотность образцов до спекания ρ_0 и их относительные значения $\rho_{o \text{ отн}} = \rho_o / \rho_T (\rho_T - \text{теоре$ тическая плотность). Косвенным параметром, определяющим степень завершенности усадки, может являться скорость усадки ($V = \partial (\Delta l/l_0)/\partial \tau$). По определению, завершение усадки характеризуется нулевой скоростью усадки. В табл. 2 приведены значения скорости усадки Ve по завершении 2-ч выдержки при 1550 °С, которые показывают, что до завершения усадки далеки все материалы. Сравнив эти значения, можно отметить, что у цирконата стронция скорость усадки минимальная, а у цирконата кальция максимальная.

В табл. З приведена плотность образцов, спеченных при 1550 °С с выдержкой 2 и 6 ч. В первом случае спекание проводили в дилатометре с фиксацией изменения длины образцов, во втором — в камерной печи. Нагрев в обоих случаях осуществлялся со скоростью 5 °С/мин. Из табл. З видно, что увеличение длительности изотермической выдержки от 2 до 6 ч не дало значимых изменений в спекании цирконатов стронция и бария, а также диоксида циркония. Однако в случае CaZrO₃ удлинение выдержки вызвало заметное увеличение плотности керамики — от 76 до 82 %. Собственно, это является подтверждением отмеченной ранее высокой скорости усадки CaZrO₃ во время изотермической выдержки (см. рис. 1, табл. 2). Следует от-

Таблица 3. Плотность образцов цирконатов и YSZ до и после спекания при 1550 °C*							
Материал	ρ₀, г/см³	ρ _{о отн} , г/см ³	ρ _{2ч} , г/см ³	ρ _{отн 2ч} , г/см ³	ρ _{6ч} , г/см ³	ρ _{отн 6ч} , г/см ³	XR, %
CaZrO ₃ 2,50 52,2 3,63 75,9 3,90 81,7 77							
SrZrO ₃ 1,89 34,5 5,39 9,6 5,44 99,6 63							
BaZrO ₃	1,28	20,5	5,12	82,2	5,09	81,7	44
YSZ 2,59 43,8 5,38 91,2 5,70 96,6 99							
* ρ _{2ч} и ρ _{6ч} — плотность после спекания при 1550 °C с 2-ч и 6-ч выдержкой соответственно; ρ _{отн 2ч} = ρ _{2ч} / ρ _τ ; ρ _{отн 6ч} = ρ _{6ч} / ρ _τ ;							
XR — массовая доля основной фазы после спекания.							

метить, что одним из требований, предъявляемых к материалам термобарьерных покрытий, является отсутствие доспекания при рабочих температурах. Поэтому обнаруженная термическая инертность цирконатов стронция и бария — положительный фактор.

Полученные после окончательного спекания разноплотные образцы использовали для исследования термического расширения материалов и ТКЛР (α). Дилатометрические зависимости $(l_e - l_0)/l_0 = f(\tau)$, $\Delta T/\Delta \tau = \text{const}$ показаны на рис. 2. Дилатометрические кривые YSZ и CaZrO₃ отражают термическое расширение материалов, при котором изменение длины *l* образца прямо пропорционально т при постоянной скорости изменения температуры. Наблюдаемый скачок на кривой CaZrO₃ вблизи точки переключения режима нагрева связан с аппаратными особенностями дилатометра, поэтому этот диапазон данных не рассматривается (1500-1550-1400 °C).

Обращает на себя внимание тот факт, что дилатометрические кривые BaZrO₃ и SrZrO₃ имеют немонотонный характер. Результаты РФА показали, что спеченная BaZrO₃- и SrZrO₃керамика неоднофазна и содержит около 50 % моноклинного ZrO₂ (*m*-ZrO₂). При его охлаждении происходит мгновенное уменьшение объема из-за структурного превращения, имеющего мартенситный характер. Диоксид циркония, вероятно, появился при термическом разложении цирконатов в процессе высокотемпературного спекания.

Дилатометрические данные, выраженные в виде зависимости ТКЛР = $\alpha = 1/l(T)[\partial l(T)/\partial T] =$ = f(t) на рис. 3, дают более точное представление о природе обнаруженных скачков на дилатометрических кривых. Близость температур экстремумов BaZrO₃ (895 °C), SrZrO₃ (875 °C) и *m*-ZrO₂ (820 °C) подтверждает одинаковую природу отмеченных эффектов. Таким образом, температурный диапазон устойчивости SrZrO₃ и BaZrO₃ ограничен температурой 700 °С.

Полученные экспериментальные кривые температурных зависимостей ТКЛР показаны на рис. 4. Эти данные были аппроксимированы функцией *a* = *A* + *B*·*T*. Результаты показаны на рис. 5. Численные значения множителя В и средние значения ТКЛР по диапазону температур приведены в табл. 4.

Рис. 2. Относительное изменение длины $\Delta l/l_0$ предварительно спеченных образцов $CaZrO_3$ (1), $SrZrO_3$ (2), BaZrO₃ (3) и YSZ (4) при нагреве и охлаждении со скоростью 5 °С/мин

Рис. 3. Температурные зависимости α *m*-ZrO₂ (1), SrZrO₃ (2) и BaZrO₃ (3) при охлаждении со скоростью 5 °С/мин

Стабилизированный диоксид циркония кубической структуры характеризуется слабым монотонным ростом ТКЛР в диапазоне 20–1200 °С.

Рис. 5. Линейная аппроксимация температурной зависимости α CaZrO₃ (1), SrZrO₃ (2), BaZrO₃ (3) и YSZ (4) при охлаждении со скоростью 5 °С/мин

Таблица 4. Средние значения ТКЛР и коэффициенты линейной аппроксимации температурных зависимостей ТКЛР при охлаждении материалов со скоростью 5 °С/мин

Материал	Δ <i>T</i> , °C	Средний ТКЛР, 10 ⁻⁶ 1/К	$B \\ (a = A + B \cdot T)$
CaZrO ₃	200-1200	9,15	1,08E-09
SrZrO ₃	900-1450	10,18	4,74E-09
	230-700	4,84	-6,73E-09
BaZrO ₃	900-1450	11,11	3,97E-09
	300-650	5,24	-1,83E-09
YSZ	200-1200	9,07	9,70E-10

Библиографический список

1. *Vassen, R.* Zirconates as new materials for thermal barrier coatings / *R. Vassen, X. Cao, F. Tietz* [et al.] // J. Am. Ceram. Soc. — 2000. — Vol. 83, № 8. — P. 2023–2028.

2. *Tian, Y. S.* Recent developments in zirconia thermal barrier coatings / Y. S. *Tian, C. Z. Chen, D. Y. Wang, Q. M. Ji* // Surf. Rev. Lett. — 2005. — Vol. 12, № 3. — P. 369–374.

3. *Tarrida, M.* Structural investigations of $(Ca, Sr)ZrO_3$ and $Ca(Sn, Zr)O_3$ perovskite compounds / *M. Tarrida, H. Larguem, M. Madon //* Phys. Chem. Miner. — 2009. — Vol. 3, No 6. — P. 403–413.

4. **Noguchi, T.** Reactions in the system ZrO₂-SrO / *T.* Noguchi, *T. Okubo, O. Yonemochi* // J. Am. Ceram. Soc. — 1969. — Vol. 52, № 4. — P. 178–181.

5. **Odoj**, **R**. Evaporation and standard enthalpy of formation of $BaZrO_3(s) / R$. Odoj, K. Hilpert // Z. Phys. Chem. Neue Folge. — 1976. — Bd 102. — S. 191–201.

Температурные зависимости ТКЛР CaZrO₃ и YSZ практически совпадают. Для BaZrO₃ и SrZrO₃ вычислены также средние ТКЛР и углы наклона температурных зависимостей ТКЛР. TКЛР BaZrO₃ и SrZrO₃ значительно меньше, чем у YSZ, тогда как с точки зрения термобарьерного применения требуется высокое термическое расширение.

ЗАКЛЮЧЕНИЕ

В результате исследований установлено:

– при 6-ч выдержке при 1550 °С качественного уплотнения достигли только SrZrO₃ и YSZ. Плотность CaZrO₃ и BaZrO₃ сформировалась только на 80 %. Для их полного спекания требуются температура обжига выше 1550 °С и длительная изотермическая выдержка;

 диапазон температурной устойчивости SrZrO₃ и BaZrO₃ ограничен температурой 700 °C, что подтверждает литературные данные об ограничении их использования в качестве термобарьерных материалов;

 – CaZrO₃ и кубический YSZ остаются стабильными до 1200 и 1550 °С соответственно;

– измеренные ТКЛР CaZrO₃ и YSZ приблизительно одинаковы и составляют 9,1·10⁻⁶–9,4·10⁻⁶ 1/К.

* * *

Работа выполнена в рамках государственного задания Минобрнауки России (тема «Диагностика», № АААА-А18-118020690196-3).

6. *Ianos, R.* Solution combustions synthesis of calcium zirconate, CaZrO₃, powders / *R. Ianos, P. Barvinschi* // J. Solid St. Chem. — 2010. — Vol. 183, № 3. — P. 491–496.

7. *Komolikov, Y. I.* Properties of ceramics obtained Based on mechanically mixed powders of zirconium hydroxide and a dopant / Y. I. *Komolikov, I. D. Kashcheev, V. I. Pudov* // Refract. Ind. Ceram. — 2019. — Vol. 60, № 2. — P. 163–167.

Комоликов, Ю. И. Свойства керамики, полученной на основе порошков механической смеси гидроксида циркония и допанта / Ю. И. Комоликов, И. Д. Кащеев, В. И. Пудов // Новые огнеупоры. — 2019. — № 3. — С. 44-48.

Получено 17.08.21 © Ю.И. Комоликов, В. Р. Хрустов, И. Д. Кащеев, В.И. Пудов, 2022 г.