К. т. н. **М. В. Сазонова**, д. х. н. **И. Б. Баньковская**, к. х. н. **Д. В. Коловертнов** (🖂)

ФГБУН «Институт химии силикатов имени И. В. Гребенщикова РАН», Санкт-Петербург, Россия

удк 666.3:546.774].017:539.434 ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ КОМПОЗИТОВ И ПОКРЫТИЙ НА ОСНОВЕ MoSi₂-B-Al₂O₃ ПРИ НАГРЕВАНИИ НА ВОЗДУХЕ ДО 1600 °C

Установлена термическая стабильность материалов на основе MoSi₂-B-Al₂O₃ в широком температурновременном интервале. При содержании Al₂O₃ 10-35 мас. % в процессе термообработки исходных компонентов в воздушной среде формируются новые оксидные фазы в виде муллита, бората алюминия и кристобалита, которые снижают жаростойкость материала.

Ключевые слова: *дисилицид молибдена, бор, оксид алюминия, термическая стабильность, стеклообразующий расплав, жаростойкие покрытия.*

введение

Углеродные композиционные материалы работают в самых теплонагруженных зонах изделий авиакосмической и ракетной техники [1]. Однако в воздушной среде эти материалы не выдерживают высоких температур и разрушаются при окислении. Для защиты от окисления разрабатываются высокотемпературные защитные покрытия. Перспективны материалы на основе бескислородных тугоплавких соединений, в частности на основе дисилицида молибдена. Однако при их исследовании [2–8] требуются сложное оборудование и энергозатратная технология.

Авторы настоящей статьи выбрали оптимальные составы, пригодные для нанесения в качестве защитных покрытий, и применили при этом энергосберегающую технологию, позволяющую на основе бор- и кремнийсодержащих соединений получить in situ стеклообразующий расплав, капсулирующий исходные компоненты.

Материалы на основе бор- и кремнийсодержащих соединений для улучшения свойств легируют тугоплавкими оксидами [9]. Следует отметить, что покрытия, используемые в настоящее время в России и за рубежом, не обеспечивают требуемый уровень защиты углеродных материалов в экстремальных условиях эксплуатации, в том числе в условиях гиперзвукового

высокотемпературного окислительного потока до 2000 °C. Таким образом, разработка новых высокотемпературных покрытий для углеродных материалов весьма актуальна.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве исходных компонентов использованы порошки дисилицида молибдена, оксида алюминия квалификации х. ч. с максимальным размером частиц до 50 мкм и порошок аморфного бора с удельной поверхностью 20 м²/г марки Б-99А. Исследуемые композиции (табл. 1) были опробованы в качестве покрытия на графите марки ГМЗ. Обязательными условиями формирования этих покрытий являются содержание в водной суспензии органического клеящего пленкообразующего вещества (2 %-ного водного раствора карбоксиметилцеллюлозы) и последовательное наслоение тонких слоев с последующим высушиванием при 100 °С. Общая толщина покрытия 300-500 мкм. Термообработку проводили в электрической печи в воздушной атмо-

Таблица	1.	Исходные	составы	композиций	на
основе М	1oS	i 2			

Coorren	Содержание компонента в составе, мас. %				
COCIDB	MoSi ₂	В	Al_2O_3		
1	100	_	-		
2	95	5	-		
3	90	5	5		
4	85	5	10		
5	80	5	15		
6	75	5	20		
7	70	5	25		
8	65	5	30		
9	60	5	35		

сфере до 1600 °С и в атмосфере аргона при 1800 °С. Поверхность образцов после термообработки исследовали с применением рентгенофазового анализа (РФА) на дифрактометре ДРОН-2 (Си К_а-излучение, Ni-фильтр). Соотношение кристаллических фаз и стеклофазы, а также количество пор определяли на металлографическом микроскопе МИМ-8.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Установлено, что покрытия имеют высокую термо- и жаростойкость. Показана возможность получать из механической смеси тонкодисперсных порошков на воздухе высокотемпературные безобжиговые покрытия для защиты углеродных материалов от окисления.

В процессе термообработки в покрытии MoSi₂-B-Al₂O₃ протекают сложные физикохимические процессы, приводящие к некоторому уменьшению содержания исходных фаз, образованию стеклообразующего расплава и новых соединений. Так, в покрытии MoSi₂-B уже при 900 °С образуется моноборид молибдена, а при 1000 °С появляются все три борида молибдена, которые сохраняются длительное время при 1600 °C. Все указанные в табл. 1 составы могут формироваться в процессе эксплуатации. Кроме того, в результате физико-химических взаимодействий образуется гетерогенное покрытие. Покрытие представляет собой матрицу из стеклообразующего расплава, в которой статистически распределены частично сохранившиеся первичные фазы MoSi₂, Al₂O₃ и вновь образовавшиеся соединения: бориды молибдена, алюмосиликаты кремния и оксид кремния (α-кварц и α-кристобалит).

Характерно, что в процессе термообработки образцов до 1400 °С происходит увеличение их массы, а при 1500 °С — уменьшение (симбатно содержанию Al₂O₃ и увеличению длительности термообработки, см. рисунок). Оксид алюминия благоприятно влияет на термические свойства покрытия лишь при его содержании 5–7 мас. %. В процессе длительной термообработки при вы-

Изменение массы образцов после термообработки при 1400 °C в течение 3 ч в зависимости от их состава (см. табл. 1)

соких температурах на поверхности покрытий кристаллизуется муллит в виде тонкой пленки. При охлаждении муллит частично отслаивается в виде тонких чешуек. При содержании Al₂O₃ более 7 мас. % покрытие в процессе термообработки деградирует (появляется сквозная пористость, углерод выгорает).

Как видно из рисунка, при содержании в образцах до 15 % Al₂O₃ (составы 2–5) прирост массы составляет в среднем 5 мг/см², а при повышении содержания Al₂O₃ до 35 % увеличивается в среднем до 30 мг/см². Возможно, введение значительного количества Al₂O₃ оказывает разрыхляющее воздействие на структуру композиций, приводящее к окислению исходных частиц. При введении бора и малых количеств Al₂O₃ формируется стеклообразующий расплав, капсулирующий исходные частицы дисилицида молибдена.

При термообработке образцов при 1500 °С в течение 15 ч при содержании в них от 2 до 10 % Al₂O₃ наблюдается незначительная потеря массы, которая увеличивается при содержании Al₂O₃ более 12 % (табл. 2). Это связано с возрастающей летучестью продуктов протекающих реакций.

Таблица 2. Изменение массы (жаростойкость) образцов системы (93–х)MoSi₂–5B–хAl₂O₃ после термообработки при 1500 °C в зависимости от их состава

Состав образца, мас. %		Изменение массы образца, мг/см², после термообработки при 1500 °С в течение			
MoSi ₂	В	Al ₂ O ₃	1 ч	5 ч	15 ч
93	5	2	_	+0,14	-0,5
91	5	4	-0,4	-0,4	-0,9
90	5	5	-0,2	-0,2	-1,2
89	5	6	-0,2	-0,1	-0,1
87	5	8	-0,45	-0,9	-1,3
85	5	10	-0,5	-1,6	-1,4
83	5	12	-2,1	-4,0	-6,0
81	5	14	-3,4	-6,2	-11,0
80	5	15	-4,2	-10,2	-14,0
79	5	16	-4,0	-15,0	-26,0
77	5	18	-0,3	-7,0	-17,0
75	5	20	+1,4	-1,7	-8,0

В табл. З приведены результаты изменения массы образцов двухкомпонентной системы в зависимости от скорости их нагрева (изотермический и неизотермический режимы). Установлено, что в течение 500 ч скорость нагрева образцов при 1400 °С не оказывает существенного влияния на их жаростойкость.

Кристаллические фазы составов 95MoSi₂-5B, образовавшиеся при кратковременной или длительной термообработке при 1600 °С, приведены в табл. 4. Все образцы нагревали от комнатной температуры (20 °С) до 1600 °С со скоростью 10 °С/мин и в дальнейшем выдерживали при 1600 °С.

Таблица 3. Изменение массы образцов состава 90MoSi₂-10В после термообработки при 1400 °C в зависимости от условий формирования покрытия (скорости нагрева)

Длительность тер-	Изменение массы образца, мг/см², при скорости его нагрева			
мооораоотки, ч	~500 °С/мин*	10 °С/мин		
1	+2,63	-		
5	+1,25	-		
25	+2,23	-		
50	+3,56	+0,91		
100	+3,97	+0,54		
150	+3,21	+1,02		
200	+3,54	+1,06		
250	+5,95	+1,29		
500	-	+2,62		
* Образцы были помещены в печь, разогретую до 1400 °С.				

Таблица 4. Фазовый состав поверхности образцов состава 95MoSi₂–5В

Выдержка	Кристаллическая фаза				
после нагрева до 1600°С, ч	MoSi ₂	Mo_2B_5	MoB	MoB_2	
-	+	_	-	-	
0,17	+	+	+	+	
1	+	+	+	+	
5	+	+	+	+	
25	+	+	+	+	
50	+	+	+	+	

Как видно из табл. 4, при таком режиме термообработки фазовый состав поверхности образцов в течение 50 ч сохраняется постоянным: в стеклообразующей матрице распределены частицы исходной фазы дисилицида молибдена и все три борида молибдена.

В табл. 5 приведены сравнительные данные фазового состава поверхности образцов двух- и трехкомпонентной системы после термообработки при 1400 и 1600 °С в течение длительного времени.

После термообработки в воздушной среде композиции MoSi₂-В фиксируется образование новых фаз наряду с частичным сохранением исходных компонентов. Определено влияние температурно-временных параметров на количественное содержание кристаллических фаз и стеклофазы, а также пор. Показано, что в процессе термообработки компоненты композиции взаимодействуют с кислородом воздуха с образованием борокремнеземистого стеклообразующего расплава, а также боридов молибдена МоВ, МоВ₂ и Мо₂В₅. При этом часть первичного дисилицида молибдена сохраняется. При 900 °С образуется МоВ, при 1000 °С дополнительно образуются МоВ₂ и Мо₂В₅. При дальнейшем повышении температуры до 1700 °C фиксируются борокремнеземистый стеклообразующий расплав, а также MoSi₂, MoB, МоВ₂ и Мо₂В₅, которые длительное время сосуществуют; целостность и форма образца сохраняются. Поверхность образца ровная, остеклованная и представляет собой малопористый спек черного цвета.

После кратковременной (10 мин) и длительной (5 ч) термообработки при 1400 и 1500 °С в образцах зафиксирован большой разброс содержания кристаллической, газообразной фаз и стеклофазы. Повышение температуры до 1650 °С приводит к существенному уменьшению пористости образцов (до 4 %), а содержание

Таблица 5. Результаты РФА поверхности образцов системы MoSi₂-B-Al₂C
--

Состав образца, мас. %		Downed Toppeoperation	Kowara www.acowa.doova	
MoSi ₂	В	Al_2O_3	гежим термооораоотки	кристаллические фазы
95	5	_	1400 °С, 10 мин	MoSi ₂ , MoB, Mo ₂ B ₅
95	5	-	1400 °С, 100 ч	MoSi ₂ , MoB, Mo ₂ B ₅ , α-кристобалит
95	5	-	1400 °С, 500 ч	MoSi ₂ , MoB, Mo ₂ B ₅
95	5	-	1600 °С, 10 мин	MoSi ₂ , MoB, MoB ₂ , Mo ₂ B ₅
95	5	-	1600 °С, 50 ч	MoSi ₂ , MoB, MoB ₂ , Mo ₂ B ₅
90	5	5	1400 °С, 10 мин	MoSi ₂ , MoB, Mo ₂ B ₅
90	5	5	1400 °С, 500 ч	MoSi ₂ , MoB, Mo ₂ B ₅ , α-кристобалит
90	5	5	1500 °С, 20 ч	MoSi ₂ , MoB, Mo ₂ B ₅
85	5	10	1400 °С, 10 мин	MoSi ₂ , MoB, 9Al ₂ O ₃ ·2B ₂ O ₃
85	5	10	1400 °С, 500 ч	MoSi ₂ , MoB, Mo ₂ B ₅ , α-кварц
85	5	10	1500 °С, 20 ч	MoSi ₂ , MoB, Mo ₂ B ₅ , Al ₂ O ₃
80	5	15	1400 °С, 10 мин	MoSi ₂ , MoB, Mo ₂ B ₅ , 9Al ₂ O ₃ ·2B ₂ O ₃ , α-кварц
80	5	15	1400 °С, 500 ч	MoSi ₂ , MoB, 3Al ₂ O ₃ ·2SiO ₂ (муллит), α-кристобалит
80	5	15	1500 °С, 20 ч	MoSi ₂ , MoB, 3Al ₂ O ₃ ·2SiO ₂ (муллит), α-кристобалит
75	5	20	1400 °С, 10 мин	MoSi ₂ , $9Al_2O_3 \cdot 2B_2O_3$, $3Al_2O_3 \cdot 2SiO_2$
75	5	20	1400 °С, 500 ч	MoSi ₂ , 3Al ₂ O ₃ ·2SiO ₂ , α-кристобалит
75	5	20	1500 °С, 20 ч	MoSi ₂ , MoB, 3Al ₂ O ₃ ·2SiO ₂ (муллит), α -кристобалит

кристаллической и газообразной фаз становится примерно одинаковым (до 48 %).

Таким образом, в результате термообработки в воздушной среде образцов состава $MoSi_2-B$ образуется новая гетерогенная неравновесная композиция сложного состава, положительно проявившая себя в качестве защитного покрытия на углеродсодержащих материалах при высоких температурах и длительных выдержках (более 500 ч при 1650 °C). Следует отметить, что при термообработке в аргоне при 1800 °C уже через 2 мин фиксируются $MoSi_2$, MoB, MoB_2 , Mo_2B_5 , которые сохраняются более 20 мин.

ЗАКЛЮЧЕНИЕ

Впервые в результате систематических исследований новых композиционных материалов получен комплекс данных об их составе и термических свойствах в зависимости от соотношения исходных компонентов и режима термообработки.

Определены составы (95-х)MoSi₂-хВ и (95-х)MoSi₂-5B-хAl₂O₃, способные формировать в воздушной среде в широком интервале темпе-

Библиографический список

1. **Шурик, А. Г.** Искусственные углеродные материалы / А. Г. Щурик. — Пермь : Изд. Пермского гос. ун-та, 2009. — 342 с.

2. *Niu, Y. R.* Comparison of ZrB₂-MoSi₂ composite coatings fabricated by atmospheric and vacuum plasma spray processes / *Y. R. Niu, Z. Wang, J. Zhao* [et al.] // J. Therm. Spray Technol. — 2017. — № 26. — P. 100–107.

3. *Zhang, Y. L.* C/SiC/Si-Mo-B/glass multilayer oxidation protective coating for carbon/carbon composites / Y. L. *Zhang, H. J. Li, X. Y. Yao* [et al.] // Surf. Coat. Technol.— 2011. — № 206. — P. 492–496.

4. *Feng, T.* Microstructure and oxidation of multilayer MoSi₂-CrSi₂-Si coatings for SiC coated carbon/carbon composites SiC internal layer / *T. Feng, H. J. Li, Q. G. Fu Yao* [et al.] // Corros. Sci. — 2010. — № 52. — P. 3011–3017.

5. Li, T. Effect of LaB₆ on the thermal shock property of $MoSi_2$ -SiC coating for carbon/carbon composites / T. Li, H. J. Li, X. H. Shi // Appl. Surf. Sci. -2013. $-N_2$ 264. -P. 88–93.

6. $\it Wu, ~H.$ Effect of spraying power on microstructure and bonding strength of $\rm MoSi_2\text{-}based$ coatings prepared

ратур (от 500 до 1600 °C) на поверхности некоторых углеродных материалов ровные и прочные покрытия. Количество бора и оксида алюминия изменяли от 1 до 20 мас. %. Установлено, что плотные со стекловидным блеском и прочно сцепленные с субстратом слои формируются при содержании бора 2–12 мас. % и оксида алюминия 2–10 мас. %.

Разработанные авторами настоящей статьи материалы формируются при относительно низких температурах по сравнению с температурой эксплуатацииблагодаря способности залечивать образующиеся дефекты при окислении нижележащих неокисленных исходных компонентов.

Установлена термическая стабильность материалов на основе $MoSi_2-B-Al_2O_3$ в широком температурно-временном интервале. При содержании оксида алюминия 10–35 мас. % в процессе термообработки исходных компонентов в воздушной среде формируются новые оксидные фазы в виде муллита, бората алюминия и кристобалита, которые снижают жаростойкость материала.

by supersonic plasma spraying / H. Wu, H. J. Li, Q. Lei [et al.] // Appl. Surf. Sci. — 2011. — № 257. — P. 5566–5570. 7. **Wang, C. C.** Oxidation behavior and microstructural evolution of plasma sprayed La₂O₃-MoSi₂-SiC coating on carbon/carbon composites / C. C. Wang, K. Z. Li, C. X. Huo [et al.] // Surf. Coat. Technol. — 2018. — № 348. — P. 81–90. 8. **Chen, Peng.** Preparation of oxidation protective MoSia-SiC coating on graphite using recycled waste

MoSi₂-SiC coating on graphite using recycled waste MoSi₂ by one-step spark plasma sintering method / *Peng Chen, Lu Zhu, Xuanru Ren* [et al.] // Ceram. Int. — 2019. — № 45. — P. 22040-22046.

9. **Николаев, А. Н.** Синтез и исследование свойств жаростойких покрытий на основе композиции Si-B₄C-ZrB₂-ZrO₂ / А. Н. Николаев, И. Б. Баньковская, Д. В. Коловертнов // Физика и химия стекла. — 2020. — Т. 46, № 6. — С. 649-657.

> Получено 28.04.21 © М. В. Сазонова, И. Б. Баньковская, Д. В. Коловертнов, 2021 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ