Д. т. н. **В. В. Кузин** (🖾), д. т. н. **С. Н. Григорьев**, к. т. н. **М. А. Волосова**, к. т. н. **М. Ю. Федоров**

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

удк 666.3:546.28'171]:621.914.22 АНАЛИЗ ВЛИЯНИЯ СХЕМЫ НАГРУЖЕНИЯ НА НАПРЯЖЕННОЕ СОСТОЯНИЕ ПОВЕРХНОСТНОГО СЛОЯ Al₂O₃-TiC-КЕРАМИКИ С ПОКРЫТИЯМИ AIN И TIN

Проанализированы и систематизированы результаты силового, теплового и комбинированного анализов напряженного состояния поверхностного слоя Al₂O₃-TiC-керамики с покрытиями AlN и TiN. Установленные взаимосвязи использованы для создания керамических режущих инструментов нового поколения с расширенной областью применения.

Ключевые слова: Al_2O_3 -TiC-керамика, покрытия AlN и TiN, поверхностный слой (ПС), интенсивность напряжений, системный анализ, компьютерная инженерия.

введение

а эксплуатационную надежность керами-ческих изделий существенно влияют деформационное поведение, напряженное состояние и характер разрушения их поверхностного слоя (ПС), являющегося уникальным элементом изготовленного изделия [1]. Современные технологии позволяют управлять состоянием ПС; в настоящее время имеется возможность создания трех видов ПС [2-6]. Первый вид ПС формируется на керамике в результате механической обработки с использованием алмазных шлифовальных кругов и характеризуется многослойной дефектной структурой, а также присутствием трещин на границе ПС – керамика и высокими остаточными напряжениями [7-11]. Второй вид ПС образуется в результате разрушения (испарения) дефектного ПС первого вида высококонцентрированными источниками энергии, например гидроабразивной струей, лазерным лучом, электронным пучком и плазменной струей. Так, в результате импульсного лазерного воздействия побочным эффектом удаления дефектного слоя является образование «нового» слоя с минимальным числом дефектов, сглаженным внешним рельефом и структурой, сформированной по механизму фрагментации

> ⊠ B. B. Кузин E-mail: dr.kuzinvalery@yandex.ru

внешних зерен керамики [12]. *Третьим видом* ПС являются слои осажденного функционального покрытия на мало дефектную керамику, обеспечивающие залечивание открытых полостей и создание благоприятных условий фрикционного взаимодействия керамического изделия с контрдеталью при эксплуатации [13].

Сравнительные испытания инструментов из Al₂O₃-TiC-керамики с разными видами ПС показали, что наибольшую эксплуатационную надежность обеспечивал ПС третьего вида, образованный слоями AlN и TiN. Позитивное влияние этого ПС на надежность инструментов проявлялось в снижении интенсивности элементарных актов разрушения рабочих поверхностей инструментов. Критический анализ результатов физических и вычислительных исследований оксидной керамики подтвердил этот вывод о существенных различиях в поведении ПС разных видов при разных схемах нагружения [14-28]. Природа этих различий базируется на взаимосвязи деформационного поведения и напряженного состояния ПС с элементарными актами его разрушения. Для понимания этой природы изучено деформационное поведение и напряженно-деформированное состояние ПС Al₂O₃-TiC-керамики с покрытиями AlN и TiN при силовом, тепловом и комбинированном нагружении [29-31]. Повышение информативности закономерностей, установленных в этих работах, весьма актуально для решения инженерных задач.

Цель настоящей работы — установить степень влияния разных видов нагружения на напряженное состояние ПС шлифованной Al₂O₃-TiC-керамики с использованием систематизированных результатов расчетов интенсивности напряжений (σ_i) в контрольных точках (КТ) при силовом, тепловом и комбинированном анализах.

Статья является заключительной в цикле публикаций [29-31].

МЕТОДИКА ИССЛЕДОВАНИЯ

Системный анализ выполнен с использованием методики [32] для четырех систем Al₂O₃-TiCкерамики с покрытиями: система № 1 — Al₂O₃ (зерно) – MgO (межзеренная фаза) – Al₂O₃ (матрица)/AlN (покрытие), система №2 — TiC-MqO-Al₂O₃/AlN, система № 3 — Al₂O₃-MgO-Al₂O₃/TiN, система № 4 — ТіС-МqО-Аl₂O₃/ТіN. По результатам силового (СА), теплового (ТА) и комбинированного (КА) анализов напряженного состояния ПС Al₂O₃-TiC-керамики с покрытиями AlN и TiN определены значения четырех статистических характеристик (наименьшие о_{мин}, наибольшие $\sigma_{\text{макс}}$, средние $\sigma_{\text{ср}}$ и стандартное отклонение *s* для σ_i) и установлена степень влияния разных видов нагружения на эти характеристики с использованием диаграмм и оценочного коэффициента.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

На рис. 1-4 показано влияние разных видов нагружения на статистические характеристики в поверхностях *C1-C6* ПС керамики четырех систем. Общий анализ этих диаграмм показал, что степень влияния комбинированного нагружения на $\sigma_{\text{мин}}$, $\sigma_{\text{макс}}$ и $\sigma_{\text{ср}}$ оказалась наибольшей в 39 блоках (из 72), силового — в 33 блоках, тепловое нагружение не оказывает превалирующего влияния на эти статистические характеристики. Наибольшее влияние на *s* оказывает комбинированное нагружение; доминирование этого вида нагружения проявляется в 21 блоке (из 24). Силовое нагружение оказывает превалирующее влияние на *s* в двух блоках, тепловое — в одном.

Последовательно проанализируем выявленные взаимосвязи для каждой статистической характеристики.

Влияние вида нагружения на $\sigma_{\text{мин}}$ показано на рис. 1. Видно, что силовое нагружение оказывает превалирующее влияние на $\sigma_{\text{мин}}$ в 14 блоках (из 24), комбинированное нагружение — в 10 блоках.

В поверхности *C1* наибольшие $\sigma_{\text{мин}}$ зафиксированы во всех системах при силовом нагружении (см. рис. 1, *a*), причем уменьшение $\sigma_{\text{мин}}$ в системах происходит в последовательности СА \rightarrow KA \rightarrow TA. Значения коэффициентов для этой поверхности: K_{111} 0,4, 0,18, 0,27 и 0,19; K_{211} 0,75, 0,81, 0,7 и 0,72; K_{311} 1,9, 4,57, 2,59 и 3,76 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C2* наибольшие σ_{мин} зафиксированы в системах № 1, 2 и 4 при комбинированном нагружении, в системе № 3 — при силовом (см. рис. 1, *б*). Уменьшение σ_{мин} в системах № 1 и 4 происходит в последовательности КА → СА → ТА, в системе № 2 — в последовательности КА → ТА →

Рис. 1. Влияние вида нагружения на о_{мин} в поверхностях *C1* (*a*), *C2* (*b*), *C3* (*b*), *C4* (*c*), *C5* (*∂*) и *C6* (*e*) ПС Al₂O₃-TiС-керамики с покрытием систем № 1–4 при CA, TA и KA

→ СА, в системе № 3 — в последовательности СА → КА → ТА. Значения коэффициентов для этой поверхности: K_{112} 0,8, 1,04, 0,55 и 0,73; K_{212} 1,06, 1,41, 0,86 и 1,1; K_{312} 1,33, 1,36, 1,56 и 1,51 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C3* наибольшие $\sigma_{\text{мин}}$ зафиксированы в системах № 1 и 2 при комбинированном нагружении, в системах № 3 и 4 — при силовом (см. рис. 1, в). Уменьшение $\sigma_{\text{мин}}$ в системах № 1 и 2 происходит в последовательности КА $\rightarrow CA \rightarrow TA$, в системах № 3 и 4 — в последовательности СА $\rightarrow KA \rightarrow TA$. Значения коэффициентов для этой поверхности: K_{113} 0,67, 0,77, 0,46 и 0,53; K_{213} 1,06, 1,22, 0,88 и 0,98; K_{313} 1,58, 1,58, 1,92 и 1,83 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C4* керамики всех систем наибольшие $\sigma_{\text{мин}}$ зафиксированы при силовом нагружении (см. рис. 1, *г*). Уменьшение $\sigma_{\text{мин}}$ в системах № 1-4 происходит в последовательности СА \rightarrow КА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{114} 0,28, 0,15, 0,2 и 0,09; K_{214} 0,8, 0,92, 0,73 и 0,79; K_{314} 2,8, 6,01, 3,73 и 8,49 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C5* наибольшие $\sigma_{\text{мин}}$ зафиксированы в системах № 1 и 2 при комбинированном нагружении, в системах № 3 и 4 — при силовом (см. рис. 1, ∂). Уменьшение $\sigma_{\text{мин}}$ в системах № 1 и 2 происходит в последовательности КА → СА → ТА, в системах № 3 и 4 — в последовательности СА → КА → ТА. Значения коэффициентов для этой поверхности: K_{115} 0,21, 0,1, 0,06 и 0,05; K_{215} 1,05, 1,03, 0,92 и 0,92; K_{315} 5,03, 10,14, 15,86 и 17,28 для систем № 1, 2, 3 и 4 соответственно. В поверхности *C6* наибольшие $\sigma_{\text{мин}}$ зафиксированы в системах № 1, 3 и 4 при комбинированном нагружении, в системе № 2 — при силовом (см. рис. 1, *e*). Уменьшение $\sigma_{\text{мин}}$ в системах № 1, 3 и 4 происходит в последовательности КА \rightarrow СА \rightarrow ТА, в системе № 2 — в последовательности СА \rightarrow КА \rightarrow \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{116} 0,07, 0,1, 0,32 и 0,32; K_{216} 1,15, 0,97, 1,43 и 1,35; K_{316} 17,04, 9,58, 4,43 и 4,27 для систем № 1, 2, 3 и 4 соответственно.

На рис. 2 показано влияние вида нагружения ния на σ_{макс}. Видно, что силовое нагружение оказывает превалирующее влияние на σ_{макс} в 10 блоках (из 24), комбинированное нагружение в 14 блоках.

В поверхности *C1* наибольшие $\sigma_{\text{макс}}$ зафиксированы в системах № 2, 3 и 4 при силовом нагружении, в системе № 1 — при комбинированном (см. рис. 2, *a*). Уменьшение $\sigma_{\text{макс}}$ в системах № 2–4 происходит в последовательности СА \rightarrow КА \rightarrow ТА, в системе № 1 — в последовательности КА \rightarrow СА \rightarrow \rightarrow ТА. Значения коэффициентов для поверхности *C1*: K_{121} 0,46, 0,5, 0,39 и 0,4; K_{221} 1,03, 0,98, 0,93 и 0,92; K_{321} 2,22, 1,99, 2,4 и 2,27 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C2* наибольшие $\sigma_{\text{макс}}$ зафиксированы во всех системах при комбинированном нагружении (см. рис. 2, б), причем уменьшение $\sigma_{\text{макс}}$ происходит в последовательности KA \rightarrow CA $\rightarrow \rightarrow$ TA. Значения коэффициентов для этой поверхности: K_{122} 0,85, 0,99, 0,68 и 0,79; K_{222} 1,68, 1,71, 1,48 и 1,51; K_{322} 1,99, 1,72, 2,16 и 1,9 для систем № 1, 2, 3 и 4 соответственно.

Рис. 2. Влияние вида нагружения на σ_{макс} в поверхностях *C1* (*a*), *C2* (*b*), *C3* (*b*), *C4* (*c*), *C5* (*d*) и *C6* (*e*) ПС Al₂O₃−TiC-керамики с покрытием систем № 1–4 при CA, TA и KA

В поверхности *C3* наибольшие $\sigma_{\text{макс}}$ зафиксированы во всех системах при комбинированном нагружении (см. рис. 2, в), причем уменьшение $\sigma_{\text{макс}}$ происходит в последовательности КА \rightarrow СА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{123} 0,82, 0,94, 0,67 и 0,76; K_{223} 1,67, 1,66, 1,47 и 1,48; K_{323} 2,03, 1,77, 2,21 и 1,96 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C4* наибольшие $\sigma_{\text{макс}}$ в системах № 1, 3 и 4 зафиксированы при силовом нагружении, в системе № 2 — при комбинированном (см. рис. 2, *г*). Уменьшение $\sigma_{\text{макс}}$ в системах № 1, 3 и 4 происходит в последовательности СА \rightarrow КА \rightarrow ТА, в системе № 2 — в последовательности КА \rightarrow СА \rightarrow тА. Значения коэффициентов для этой поверхности: K_{124} 0,56, 0,63, 0,43 и 0,48; K_{224} 0,99, 1,04, 0,93 и 0,97; K_{324} 1,76, 1,65, 2,16 и 2 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C5* наибольшие значения $\sigma_{\text{макс}}$ зафиксированы в системах № 1 и 2 при комбинированном нагружении, в системах № 3 и 4 — при силовом (см. рис. 2, ∂). Уменьшение $\sigma_{\text{макс}}$ в системах № 1 и 2 происходит в последовательности КА \rightarrow СА \rightarrow ТА, в системах № 3 и 4 — в последовательности СА \rightarrow КА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{125} 0,52, 0,46, 0,4 и 0,36; K_{225} 1,04, 1,05, 0,98 и 1; K_{325} 2, 2,28, 2,48 и 2,76 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C6* наибольшие значения σ_{макс} зафиксированы в системах № 1 и 2 при комбинированном нагружении, в системах № 3 и 4 — при силовом (см. рис. 2, *e*). Уменьшение σ_{макс} в системах № 1 и 2 происходит в последовательности КА → СА → ТА, в системах № 3 и 4 — в последовательности СА → КА → ТА. Значения коэффициентов для этой поверхности: K_{126} 0,15, 0,14, 0,21 и 0,21; K_{226} 1,04, 1,04, 0,93 и 0,93; K_{326} 7,03, 7,27, 4,35 и 4,53 для систем № 1, 2, 3 и 4 соответственно.

Влияние вида нагружения на σ_{ср} показано на рис. 3. Видно, что комбинированное нагружение оказывается приоритетным для σ_{ср} в 15 (из 24) блоках, силовое нагружение — в 9 блоках.

В поверхности *C1* наибольшие σ_{cp} зафиксированы во всех системах при силовом нагружении (см. рис. 3, *a*), причем уменьшение σ_{cp} происходит в последовательности СА \rightarrow КА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{131} 0,5, 0,47, 0,39 и 0,37; K_{231} 0,92, 0,92, 0,84 и 0,83; K_{331} 1,82, 1,95, 2,17 и 2,23 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C2* наибольшие σ_{cp} зафиксированы во всех системах при комбинированном нагружении (см. рис. 3, б), причем уменьшение σ_{cp} происходит в последовательности КА \rightarrow СА \rightarrow \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{132} 0,9, 1, 0,68 и 0,76; K_{232} 1,31, 1,39, 1,13 и 1,18; K_{332} 1,45, 1,39, 1,65 и 1,55 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C3* наибольшие σ_{cp} зафиксированы во всех системах при комбинированном нагружении (см. рис. 3, 6), причем уменьшение σ_{cp} происходит в последовательности КА \rightarrow СА \rightarrow \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{133} 0,85, 0,91, 0,64 и 0,69; K_{233} 1,27, 1,3, 1,1 и 1,12; K_{333} 1,49, 1,43, 1,72 и 1,61 для систем № 1, 2, 3 и 4 соответственно.

Рис. З. Влияние вида нагружения на σ_{ср} в поверхностях *С1* (*a*), *С2* (*б*), *С3* (*в*), *С4* (*г*), *С5* (*∂*) и *С6* (*e*) ПС Al₂O₃–TiС-керамики с покрытием систем № 1–4 при СА, ТА и КА

В поверхности *C4* наибольшие σ_{cp} зафиксированы во всех системах при силовом нагружении (см. рис. 3, *г*). Уменьшение σ_{cp} происходит в последовательности СА \rightarrow КА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{134} 0,6, 0,61, 0,47 и 0,47; K_{234} 0,92, 0,95, 0,83 и 0,85; K_{334} 1,52, 1,56, 1,77 и 1,81 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C5* наибольшие σ_{cp} зафиксированы во всех системах при комбинированном нагружении (см. рис. 3, ∂), причем уменьшение σ_{cp} происходит в последовательности КА \rightarrow СА \rightarrow \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{135} 0,36, 0,31, 0,24 и 0,23; K_{235} 1,09, 1,08, 1,09 и 1,02; K_{335} 3,07, 3,56, 4,16 и 4,36 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C6* наибольшие σ_{cp} зафиксированы в системе № 1 при силовом нагружении, в системах № 2-4 — при комбинированном (см. рис. 3, *e*). Уменьшение σ_{cp} в системе № 1 происходит в последовательности СА \rightarrow КА \rightarrow ТА, в системах № 2-4 — в последовательности КА \rightarrow СА \rightarrow \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{136} 0,09, 0,1, 0,23 и 0,23; K_{236} 0,99, 1,01, 1,06 и 1,07; K_{336} 11,7, 9,9, 4,67 и 4,59 для систем № 1, 2, 3 и 4 соответственно.

Влияние вида нагружения на *s* показано на рис. 4. Видно, что наибольшее влияние на *s* оказывает комбинированное нагружение; доминирование этого вида нагружения проявляется в 21 блоке (из 24). Силовое нагружение оказывает превалирующее влияние на *s* в двух блоках, тепловое — в одном. В поверхности *C1* наибольшие *s* зафиксированы во всех системах при комбинированном нагружении (см. рис. 4, *a*), причем уменьшение *s* происходит в последовательности КА \rightarrow СА \rightarrow \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{141} 0,5, 0,85, 0,53 и 0,71; K_{241} 1,44, 1,27, 1,32 и 1,27; K_{341} 2,89, 1,49, 2,51 и 1,79 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C2* наибольшие *s* зафиксированы во всех системах при комбинированном нагружении (см. рис. 4, б), причем уменьшение *s* происходит в последовательности КА \rightarrow СА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{142} 0,9, 0,93, 0,92 и 0,92; K_{242} 2,65, 2,07, 2,56 и 2,12; K_{342} 2,95, 2,23, 2,77 и 2,3 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C3* наибольшие *s* зафиксированы во всех системах при комбинированном нагружении (см. рис. 4, 6), причем уменьшение *s* в системах № 1, 2 и 4 происходит в последовательности КА \rightarrow СА, в системе № 3 — в последовательности КА \rightarrow СА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{143} 1,02, 1,17, 0,99 и 1,13; K_{243} 2,45, 2,11, 2,31 и 2,18; K_{343} 2,4, 1,81, 2,33 и 1,93 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C4* наибольшие *s* зафиксированы в системах № 1, 3 и 4 при комбинированном нагружении, в системе № 2 — при тепловом (см. рис. 4, *г*). Уменьшение *s* в системах № 1, 3 и 4 происходит в последовательности КА → СА → ТА, в системе № 2 — в последовательности ТА → КА → → СА. Значения коэффициентов для этой поверх-

Рис. 4. Влияние вида нагружения на *s* в поверхностях *C1* (*a*), *C2* (*b*), *C3* (*b*), *C4* (*z*), *C5* (*d*) и *C6* (*e*) ПС Al₂O₃−TiC-керамики с покрытием систем № 1–4 при CA, TA и KA

ности: *K*₁₄₄ 0,79, 1,15, 0,64 и 0,96; *K*₂₄₄ 1,11, 1,07, 1,07 и 1,1; *K*₃₄₄ 1,4, 0,94, 1,67 и 1,15 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C5* наибольшие значения *s* зафиксированы во всех системах при комбинированном нагружении (см. рис. 4, ∂), причем уменьшение *s* в системах № 2–4 происходит в последовательности КА \rightarrow СА \rightarrow ТА, в системе № 1 — в последовательности КА \rightarrow ТА \rightarrow СА. Значения коэффициентов для этой поверхности: K_{145} 1,01, 0,82, 0,85 и 0,66; K_{245} 1,11, 1,02, 1,11 и 1,03; K_{345} 1,1, 1,25, 1,3 и 1,56 для систем № 1, 2, 3 и 4 соответственно.

В поверхности *C6* наибольшие *s* зафиксированы в системах № 1 и 2 при комбинированном нагружении, в системах № 3 и 4 — при силовом (см. рис. 4, *e*). В поверхности *C6* уменьшение *s* в системах № 1 и 2 происходит в последовательности КА \rightarrow СА \rightarrow ТА, в системах № 3 и 4 — в последовательности СА \rightarrow КА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{146} 0,18, 0,15, 0,16 и 0,14; K_{246} 1,07, 1,05, 0,78 и 0,78; K_{346} 5,81, 7,11, 4,9 и 5,71 для систем № 1, 2, 3 и 4 соответственно.

Библиографический список

1. *Kuzin, Valery V.* A new generation of ceramic tools / *Valery V. Kuzin, Sergey N. Grigor'ev, David R. Burton, Andrey D. Batako //* Proceedings of the 10th International Conference on Manufacturing Research ICMR 2012. — 2012. — P. 523–528.

2. *Zan, Qing Feng.* Temperature mechanical properties of Al₂O₃/Ti₃SiC₂ multilayer ceramics / *Qing Feng Zan, Chang An Wang, Li Min Dong, Yong Huang //* Key Eng. Mater. — 2007. — Vols. 280–283. — P. 1877–1880.

3. *Nie, Guanglin.* Fabrication of Al₂O₃/AlN composite ceramics with enhanced performance via a heterogeneous precipitation coating process / *Guanglin Nie, Yehua Li, Pengfei Sheng, Zhuo Tian //* Ceram. Int. — 2020. — Vol. 46, № 13. — P. 21156–21165.

4. *Xue, Weijiang.* Al_2O_3 ceramics with well-oriented and hexagonally ordered pores: The formation of microstructures and the control of properties / *Weijiang Xue, Yong Huang, Zhipeng Xie, Wei Liu* // J. Eur. Ceram. Soc. - 2012. - Vol. 32, No 12. - P. 3151-3159.

5. *Kuzin, V. V.* Correlation of Al_2O_3 -ceramic structure with the mechanism of surface layer formation for workpieces during diamond grinding / *V. V. Kuzin, S. N. Grigor'ev, S. Yu. Fedorov //* Refract. Ind. Ceram. — 2019. — Vol. 60, Ne 1. — P. 82–85.

Кузин, В. В. Взаимосвязь структуры Al₂O₃керамики с механизмом формирования поверхностного слоя заготовок при алмазном шлифовании / В. В. Кузин, С. Н. Григорьев, С. Ю. Федоров // Новые огнеупоры. — 2019. — № 1. — С. 65-68.

6. *Kuzin, V.* Surface modification of zirconia (Y-TZP) ceramics induced by pulsed laser machining / *V. Kuzin, S. Grigoriev, M. Fedorov, M. Portnoy* // Applied Mechanics and Materials. — 2015. — Vols. 752–753. — P. 481–484.

7. *Kuzin, V. V.* Correlation of diamond grinding regimes with Al_2O_3 -TiC-ceramic surface condition / *V. V. Kuzin, S. Yu. Fedorov* // Refract. Ind. Ceram. — 2017. — Vol. 57, No 5. — P. 520–525.

Кузин, В. В. Взаимосвязь режимов алмазного шлифования с состоянием поверхности Al₂O₃-TiC-

ЗАКЛЮЧЕНИЕ

С использованием систематизированных результатов расчетов интенсивности напряжений при силовом, тепловом и комбинированном анализах определены взаимосвязи вида нагружения со статистическими характеристиками напряженного состояния ПС Al₂O₃-TiC-керамики с покрытиями AlN и TiN. Установлено, что силовое нагружение оказывает превалирующее влияние на напряженное состояния ПС керамики с покрытиями. Выявленные взаимосвязи позволили разработать рекомендации для выбора покрытий для керамических режущих инструментов из Al₂O₃-TiC-керамики с расширенной областью применения.

Настоящая работа финансируется в рамках государственного задания Министерства науки и высшего образования Российской Федерации, проект № 0707-2020-0025.

* * *

керамики / В. В. Кузин, С. Ю. Фёдоров // Новые огнеупоры. — 2016. — № 9. — С. 63-68.

8. *Kuzin, V. V.* Features of Al_2O_3 -TiC ceramic specimen edge morphology formation during diamond grinding / *V. V. Kuzin, S. Yu. Fedorov, S. N. Grigor'ev* // Refract. Ind. Ceram. — 2017. — Vol. 58, № 3. — P. 319–323.

Кузин, В. В. Закономерности формирования морфологии кромок образцов Al₂O₃-TiC-керамики при алмазном шлифовании / В. В. Кузин, С. Ю. Фёдоров, С. Н. Григорьев // Новые огнеупоры. — 2017. — № 5. — С. 63-67.

9. *Kuzin, V. V.* Estimation of the sensitivity of a complex of characteristics of the stressed state of ceramics — coating boundary to the changes in the properties of structural elements of this system / *V. V. Kuzin, M. Yu. Fedorov, M. A. Volosova //* Refract. Ind. Ceram. — 2018. — Vol. 58, № 6. — P. 697–703.

Кузин, В. В. Оценка чувствительности комплекса характеристик напряженного состояния границы «керамика – покрытие» к изменению свойств структурных элементов этой системы / В. В. Кузин, М. Ю. Федоров, М. А. Волосова // Новые огнеупоры. — 2017. — № 12. — С. 75-81.

10. *Kuzin, V.* A model of forming the surface layer of ceramic parts based on silicon nitride in the grinding process / *V. Kuzin //* Key Eng. Mater. Precision Machining. — 2012. — Vol. 496. — P. 127–131.

11. **Němeček, J.** X-ray diffraction study of macroscopic residual stresses of Al_2O_3 + TiC oxide cutting ceramics after surface machining / J. Němeček, K. Kolařík, J. Čapek, N. Ganev, K. Trojan, V. V. Kuzin // Experimental Stress Analysis — 56th International Scientific Conference, EAN 2018. Conference Proceedings. — 2018. — P. 296–302.

12. *Kuzin, V. V.* Oxide ceramic surface layer modification using continuous laser radiation / *V. V. Kuzin* // Refract. Ind. Ceram. — 2016. — Vol. 57, № 1. — P. 53–57.

Кузин, В. В. Модификация поверхностного слоя оксидной керамики с использованием непрерывного лазерного излучения / *В. В. Кузин* // Новые огнеупоры. — 2016. — № 1. — С. 51–55.

13. *Grigoriev, S.* The stress-strained state of ceramic tools with coating / *S. Grigoriev, V. Kuzin, D. Burton, A. D. Batako //* Proceedings of the 37th International MATADOR Conference. — 2013. — P. 181–184.

14. **Yin, Zengbin.** Cutting performance and life prediction of an Al_2O_3/TiC micro-nano-composite ceramic tool when machining austenitic stainless steel / *Zengbin Yin, Chuanzhen Huang, Juntang Yuan, Bin Zou //* Ceram. Int. — 2015. — Vol. 41, Ne 5 (B). — P. 7059–7065.

15. *Kıvak, Turgay.* Study on turning performance of PVD TiN coated Al₂O₃ + TiCN ceramic tool under cutting fluid reinforced by nano-sized solid particles / *Turgay Kıvak, Murat Sarıkaya, Çağrı Vakkas Yıldırım, Şenol Şirin //* Journal of Manufacturing Processes. — 2020. — Vol. 56, Part A. — P. 522–539.

16. **Erbacher**, **T**. Determination of Residual Stress Gradients in Al_2O_3 Ceramics after Thermal and Mechanical Loading / *T. Erbacher*, *Michael Ott*, *Tilmann Beck*, *Otmar Vöhringer* // Mater. Sci. Forum. — 2005. — Vols. 490, 491. — P. 485–490.

17. *Konovalenko, Igor S.* Numerical study of deformation and fracture of ceramics nanocomposite with different structural parameters under mechanical loading / *Igor S. Konovalenko, Egor M. Vodopjyanov, Evgeniy V. Shilko //* Key Eng. Mater. — 2016. — Vol. 683. — P. 601–608.

18. Sadowski, Tomasz. Theoretical meso-model of Al_2O_3 / ZrO₂ ceramic response under compression / Tomasz Sadowski, Liviu Marsavina // Key Eng. Mater. — 2014. — Vol. 601. — P. 92–95.

19. **Sevecek**, **Oldrich**. Assessment of crack-related problems in layered ceramics using the finite fracture mechanics and coupled stress-energy criterion / Oldrich Sevecek, Michal Kotoul, D. Leguillon, Eric Martin // Procedia Structural Integrity. — 2016. — Vol. 2. — P. 2014–2021.

20. *Medvedovski, Eugene.* Influence of corrosion and mechanical loads on advanced ceramic components / *Eugene Medvedovski* // Ceram. Int. — 2013. — Vol. 39, № 3. — P. 2723–2741.

21. *Liu, Changxia.* Fracture behaviour, microstructure, and performance of various layered-structured Al₂O₃–TiC–WC–Co composites / *Changxia Liu, Junlong Sun, Chao Wang, Fengxun Li* // Ceram. Int. — 2021. — Vol. 47, № 14. — P. 19766–19773.

22. *Yin, Zengbin.* Dynamic fatigue behavior of Al₂O₃/ TiC micro-nano-composite ceramic tool materials at ambient and high temperatures / *Zengbin Yin, Chuanzhen Huang, Bin Zou, Hanlian Liu //* Mater. Sci. Eng., A. — 2014. — Vol. 593. — P. 64–69.

23. *Sullivan, John Lawrence.* Microtribological studies of two-phase Al₂O₃-TiC ceramic at low contact pressure / *John Lawrence Sullivan, Baogui Shi, S. O. Saied* // Tribology International. — 2006. — Vol. 38, № 11/12. — P. 987–994.

24. **Ruiz-Hervias, Jesus.** Residual stresses in Al₂O₃/Y-TZP ceramic laminates fabricated by tape and slip casting / Jesus Ruiz-Hervias, Giovanni Bruno, Jonas Gurauskis, A. J. Sanchez-Herencia, C. Baudin // Mater. Sci. Forum. — 2008. — Vols. 571, 572. — P. 327–332.

25. **Del Valle, Rosa.** Optimizing substrate and intermediate layers geometry to reduce internal thermal stresses and prevent surface crack formation in 2D-multilayered ceramic coatings / Rosa Del Valle, D. Lévêque, M. Parlier // J. Eur. Ceram. Soc. -2008. -Vol. 28, $N \ge 4$. -P. 711–716.

26. **Zhang, Gaofeng.** Discrete element simulation of the ultrasonic-assisted scratching process of Al_2O_3 ceramic under compressive pre-stress / *Gaofeng Zhang, Gaocan Wu, Yijiang Zeng, Guoguang Xie //* Ceram. Int. — 2020. — Vol. 46, No 18 (A). — P. 29090–29100.

27. **Zhang, Mengwen.** A study on the failure behavior of Al₂O₃–Ni micro-layered beams under three point bending / Mengwen Zhang, Xudong Sun, Xiaozhi Hu // Theoretical and Applied Fracture Mechanics. — 2020. — Vol. 110.

28. **Sakuma, Taketo.** A modern approach to control grain boundaries in ceramics / *Taketo Sakuma, Yuichi Ikuhara, Takahisa Yamamoto //* Mater. Sci. Forum. — 2004. — Vols. 467–470. — P. 557–566.

29. **Кузин, В. В.** Силовой анализ напряженнодеформированного состояния поверхностного слоя Al₂O₃-TiC-керамики с покрытиями AlN и TiN / *В. В. Кузин, М. А. Волосова, М. Ю. Федоров* // Новые огнеупоры. — 2021. — № 6. — С. 64-69.

30. **Кузин, В. В.** Тепловой анализ напряженнодеформированного состояния поверхностного слоя Al₂O₃-TiC-керамики с покрытиями AlN и TiN / *В. В. Кузин, М. А. Волосова, М. Ю. Федоров* // Новые огнеупоры. — 2021. — № 7. — С. 57-62.

31. **Кузин, В. В.** Комбинированный анализ напряженно-деформированного состояния поверхностного слоя Al₂O₃-TiC-керамики с покрытиями AlN и TiN / В. В. Кузин, М. А. Волосова, М. Ю. Федоров // Новые огнеупоры. — 2021. — № 8. — С. 66-71.

32. *Kuzin, V. V.* Systematic analysis of the stress-strain state of the surface layer of ground Si_3N_4 -TiC ceramics / *V. V. Kuzin, S. N. Grigor'ev, M. A. Volosova //* Refract. Ind. Ceram. — 2021. — Vol. 62, $N \ge 2$. — P. 189–195.

Кузин, В. В. Системный анализ напряженнодеформированного состояния поверхностного слоя шлифованной Si₃N₄-TiC-керамики / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. — 2021. — № 3. — С. 64-70.

> Получено 27.10.21 © В. В. Кузин, С. Н. Григорьев, М. А. Волосова, М. Ю. Федоров, 2021 г.