Д. т. н. **А. В. Хмелёв** (🖂)

Рижский технический университет, Институт силикатных материалов, г. Рига, Латвия

УДК 666.762.11:666.9.022.6

РАЗРАБОТКА ПЛОТНЫХ И ТВЕРДЫХ МАТЕРИАЛОВ НА ОСНОВЕ ОКСИДНО-БЕЗОКСИДНЫХ СОЕДИНЕНИЙ С ДОБАВКАМИ ИНТЕРМЕТАЛЛИЧЕСКИХ КОМПОНЕНТОВ В ХОДЕ ПЛАЗМЕННО-ИСКРОВОГО СПЕКАНИЯ

Показано влияние добавок Ti₂AlNb, NiTi, NiNbZr и NiVTa в ходе плазменно-искрового спекания составов при нагрузке прессования 60 МПа в интервале 1200-1600 °С на фазовый состав, микроструктуру, размеры зерен кристаллических фаз, относительную плотность, линейную усадку, физико-механические свойства, линейную корреляцию модуля упругости и ударной вязкости образцов муллит-(Ti, Mo)(C, N)-*c*-ZrO₂-*c*-BN, муллит-(Тi, Mo)(C, N)-β-Si₃N₄-*c*-BN. Синтезированные порошки Ti(C_{0.7}N_{0.3}), β-Si₃N₄, *c*-BN, Ti_2AlNb , NiTi, NiNbZr и NiVTa характеризуются интенсивной кристаллизацией фаз $Ti(C_{0.7}N_{0.3})$, β - Si_3N_4 , с-BN, Ti₂AlNb, NiTi, Ni₄₅Nb₃₅Zr₂₀ и Ni₁γV₀iTa₂₂. Спеченные плазменно-искровым способом с-ZrO₂ при 1400 °С и (Ti, Mo)(C, N) при 1800 °C показывают интенсивную кристаллизацию фаз *c*-ZrO₂ и (Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3}). Микроструктура спеченных образцов c-ZrO₂ и (Ti, Mo)(C, N) кристаллическая, состоит из различно спекшихся и уплотненных зерен разных форм. Добавки Ti₂AlNb, NiTi, NiNbZr и NiVTa способствуют разной кристаллизации муллита и фаз (Ti, Mo)(C, N), ZrO₂, β-Si₃N₄, с-BN в интервале 1200-1600 °C. Кристаллизация фазы NiTi более интенсивна по сравнению с фазой Ti₂AlNb, наблюдаются более кристаллические фазы Ni(Zr, Nb), Ni₄₅Nb₃₅Zr₂₀, Ni(Ta, V), Ni₁₇V₆₁Ta₂₂ в спеченных образцах в интервале 1400–1600 °C. Добавки NiTi и NiVTa стимулируют спекание и способствуют формированию более равномерно и плотно спекшейся микроструктуры образцов при 1500 °C, в результате чего образуются полидисперсные составы зерен кристаллических фаз образцов в интервале 1200-1600 °С. Образцы с добавкой NiTi и NiVTa показывают более активный прирост и большие значения физико-механических свойств, трещиностойкости, линейной корреляции модуля упругости и ударной вязкости в интервале 1200-1600 °С.

Ключевые слова: муллит–(Ti, Mo)(C, N)–c-ZrO₂–c-BN, муллит–(Ti, Mo)(C, N)–β-Si₃N₄–c-BN, добавки Ti₂AlNb, NiTi, NiNbZr, NiVTa, плазменно-искровое спекание.

введение

спользование порошка металла, в частно-Исти Мо, Ті или смесей порошков металлов Та и Ni, Zr и Mo, Zr и Ta, в спекаемых безоксидных, оксидно-безоксидных керамических составах способствует решению ряда проблем, связанных с неравномерной и неполной диффузией на границах спекаемых керамических и металлических частиц, формированием необходимой ширины, однородности, с трещиностойкостью, регулированием соотношения хрупкости и уплотнения, укрепления структуры пограничных слоев керамометаллических материалов [1-4]. В ходе спекания керамометаллических составов исходные порошки металла превращаются в безоксидные компоненты разной плотности [1-3, 5, 6], а смеси порошков металлов образуют интерметаллические

> ⊠ A. B. Хмелёв E-mail: aleksejs.hmelov44@gmail.com

соединения и твердые растворы металлических фаз разных составов и стехиометрий [4]. Данные превращения с учетом их разновидности, комплексности (совокупности), разной сложности и интенсивности в металлических составах наряду с различными твердо-/жидкофазными диффузионными и реакционными процессами в спекаемых керамических составах не всегда стимулируют развитие этих процессов на границах спекаемых керамических и металлических частиц [1-6]. Это связано с разным влиянием формирующихся кристаллических фаз в спекаемых керамических составах на однородность, полноту и интенсивность кристаллизации металлических фаз [1-6]. В связи с этим в спекаемые керамометаллические составы добавляют твердый раствор TiC-ZrC с соотношением компонентов, при котором полнее и активнее кристаллизуется твердый раствор более плотной структуры керамической фазы, в частности (Ti, Zr)C, наиболее уплотняющий и укрепляющий структуру пограничных слоев керамической и металлической фаз через твердофазное спекание частиц твердого раствора TiC-ZrC и керамического/металлического порошков [7].

Другой способ стимулирования спекания керамометаллических составов связан с добавлением порошка Ni или Со или смесей порошков Ni и Со в керамические составы, в ходе которого образуются расплавы Ni или/и Co, формирующие легкоплавкие эвтектики, способствующие однородной диффузии и более полному заполнению пор между спекаемыми частицами оксидного и безоксидного порошков [8-11]. Такое жидкофазное спекание вызывает активный рост оксидных и безоксидных частиц, образование в структуре пограничных слоев керамической и металлической фаз микротрещин различных траектории, длины и ширины, в результате чего снижается уплотнение и укрепление структуры данных пограничных слоев материалов [8-11].

Более современный подход к спеканию керамометаллических составов связан с добавлением в керамические составы смесей порошков, например Ni и Ta, Ni и Zr в сочетании с двойным твердым раствором TaB₂-NbC [12]. Это позволяет получать твердые растворы керамических фаз разных состава и стехиометрии, в частности (Nb, Ta)C, B и (Ta, Nb)B, C, интерметаллические соединения, твердый раствор металлической фазы Ni(Nb, Ta) через легкоплавкие эвтектики в расплаве Ni [12]. Такой разнофазовый состав по-разному влияет на формы, размеры, спекаемость частиц твердых растворов керамических и металлических фаз, однородность, ширину, уплотнение, укрепление структуры пограничных слоев керамических и металлических фаз, траекторию, длину распространения и ширину микротрещин в пограничных слоях керамометаллических материалов [12]. Для спекания керамометаллических составов со снижением побочных процессов, вызванных порошками Ni или/и Со, в данной работе использовали добавки Ti₂AlNb, NiTi, NiNbZr, NiVTa в сочетании со смесями оксидного и безоксидного порошков.

Цель настоящей работы — изучение влияния добавок Ti₂AlNb, NiTi, NiNbZr и NiVTa в ходе плазменно-искрового спекания составов с нагрузкой прессования 60 МПа в интервале 1200–1600 °С на фазовый состав, микроструктуру, размеры зерен кристаллических фаз, относительную плотность, линейную усадку, физико-механические свойства, линейную корреляцию модуля упругости и ударной вязкости образцов муллит–(Ti, Mo)(C, N)– *с*-ZrO₂-*c*-BN, муллит–(Ti, Mo)(C, N)–β-Si₃N₄-*c*-BN.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для приготовления смеси порошков Al₂O₃ и SiO₂ использовали Al₂O₃ (компании Aldrich, Бельгия, чистота 97,5 %) и SiO₂ (компании Merck, Германия, чистота 97,5 %). Данные компоненты тщательно взвешивали в весовой пропорции, отвечающей стехиометрии муллита, равной 3:2, перемешивали в планетарной мельнице (RETSCH PM 400) в течение ~ 10 мин. Синтез порошков $Ti(C_{0,7}N_{0,3})$, MoC, β -Si₃N₄, *c*-BN, Ti₂AlNb, NiTi, NiNbZr и NiVTa проводили в плазмохимической установке в вакууме при 1600 °C в течение 1 ч с использованием компонентов (табл. 1) по реакциям:

$$Mo + C \to MoC, \tag{2}$$

$$3SiO_2 + 3,5N_2 \rightarrow \beta - Si_3N_4 + 3NO_2,$$
 (3)

$$2B_2O_3 + 3,5N_2 \to 4c\text{-BN} + 3NO_2, \tag{4}$$

 $2\text{Ti} + \text{Al} + \text{Nb} \rightarrow \text{Ti}_2\text{AlNb},$ (5)

$$Ni + Ti \rightarrow NiTi, \tag{6}$$

$$xNi + yNb + zZr \rightarrow Ni_xNb_yZr_z,$$
(7)

xNi + yV + zTa \rightarrow Ni $_x$ V $_y$ Ta $_z$.

Весовые пропорции исходных компонентов для получения порошков $Ti(C_{0,7}N_{0,3})$, MoC, β -Si₃N₄, *c*-BN, Ti₂AlNb, NiTi, NiNbZr, NiVTa приведены в табл. 2, спеченных *c*-ZrO₂ и (Ti, Mo)(C, N) — в табл. 3. Содержание исходных компонентов, ат. %, в порошках Ti₂AlNb, NiTi, NiNbZr и NiVTa брали из данных [13–15].

Спеченный *c*-ZrO₂ получали плазменноискровым способом в вакууме при 1400 °С под

Таблица 1. Характеристика исходных компонентов

Полу- чаемый порошок	Исходные компонен- ты	Производитель	Степень чисто- ты, %
Ti(C _{0,7} N _{0,3})	TiC/TiN	Merck, Германия/	98,5/99,5
MoC	MoC	Merck, Германия	99,5
β -Si ₃ N ₄	SiO_2/N_2	Merck, Германия/	99,5/99,5
<i>c</i> -BN	B_2O_3/N_2	Aldrich, Бельгия Merck, Германия/ Aldrich, Бельгия	99,0/99,5
c-ZrO ₂	ZrO_2/Y_2O_3	Merck, Германия/ Aldrich, Бельгия	98,5/99,5
Ti ₂ AlNb	Ti/Al/Nb	Merck, Германия/ Aldrich, Бельгия/ Merck Германия	99,0/98,5/99,5
NiTi	Ni/Ti	Merck, Германия/ Aldrich, Бельгия	98,5/99,0
NiNbZr	Ni/Nb/Zr	Merck, Германия/ Merck, Германия/ Aldrich Бельгия	99,5/99,7/99,7
NiVTa	Ni/V/Ta	Merck, Германия/ Aldrich, Бельгия/ Aldrich, Бельгия	99,5/99,7/99,7

Таблица	2.	Весовые	пропорции	исходных	компо-
нентов					

Порошки	Исходные компоненты	Весовые пропорции исходных компонентов, г на 100 г смеси
Ti(C _{0,7} N _{0,3})	TiC/TiN	69,23/30,77
MoC	Mo/C	88,89/11,11
β -Si ₃ N ₄	SiO ₂ /N ₂	64,67/35,33
c-BN	B_2O_3/N_2	57,99/42,01
Ti ₂ AlNb	Ti/Al/Nb	50,73/12,1/37,17
NiTi	Ni/Ti	53,49/46,51
Ni45Nb35Zr20	Ni/Nb/Zr	34,2/42,2/23,6
Ni ₁₇ V ₆₁ Ta ₂₂	Ni/V/Ta	12,2/38,5/49,3

(8)

Таблица 3. Весовые пропорции, соотношение спекаемых ZrO₂ и Y₂O₃, Ti(C_{0.7}N_{0.3}) и MoC

Поромотр	Состав		
параметр	c-ZrO ₂	(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})	
Масса компонентов (97 мол. %	94,62/5,38	-	
ZrO ₂ / 3 мол. % Y ₂ O ₃), г на 100			
г смеси			
Соотношение ZrO ₂ /Y ₂ O ₃	17,58/1	-	
Масса компонентов (65 мол. %	-	50,98/49,02	
Ті(С _{0,7} N _{0,3}) / 35 мол. % МоС), г			
на 100 г смеси			
Соотношение Ті(Сол Nоз)/МоС	_	1.04/1	

нагрузкой прессования 35 МПа в течение 2 мин с использованием исходных компонентов (см. табл. 1) в соотношении (см. табл. 3), соответствующем диаграмме равновесия двухфазовой системы ZrO₂-Y₂O₃ (по Брауну и Оделлу, Фан Фукану и Келлеру) [16].

Спеченный (Ті, Мо)(С, N) получали плазменно-искровым способом в вакууме при 1800 °С под нагрузкой прессования 60 МПа в течение 2 мин с использованием исходных компонентов в указанном соотношении (см. табл. 3).

Спеченные *c*-ZrO₂ и (Ti, Mo)(C, N) измельчали в планетарной мельнице RETSCH PM 400 в течение 30 мин до получения порошков с частицами размером от 5 до 10 мкм.

Порошки β-Si₃N₄, *c*-BN, Ti₂AlNb, NiTi, NiNbZr, NiVTa и спеченных *c*-ZrO₂, (Ti, Mo)(C, N) перемешивали в весовых пропорциях (табл. 4) в планетарной мельнице RETSCH PM 400 в течение ~10 мин.

Весовые соотношения керамических и металлических компонентов на 100 г смеси показаны ниже:

M65(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})8ZrO ₂ 5BN22Ti ₂ AlNb	3,47
M65(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})8ZrO ₂ 5BN22NiTi	6,07
M75(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})16Si ₃ N ₄ 8BN1NiNbZr	3,09
M75(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})16Si ₃ N ₄ 8BN1NiVTa	3,00

Полученную смесь порошков Al_2O_3 и SiO₂ перемешивали с приготовленными группами смесей порошков (Ti, Mo)(C, N)/*c*-ZrO₂/*c*-BN/Ti₂AlNb, (Ti, Mo)(C, N)/*c*-ZrO₂/*c*-BN/NiTi, (Ti, Mo)(C, N)/ /β-Si₃N₄/*c*-BN/NiNbZr, (Ti, Mo)(C, N)/β-Si₃N₄/*c*-BN/NiVTa в планетарной мельнице RETSCH PM 400 в течение ~10 мин.

Полученные смеси компонентов насыпали в графитовую пресс-форму диаметром 30 мм и спекали плазменно-искровым методом (SPS, Summimoto, model SPS 825. CE, Dr. Sinter, Япония) в вакууме (6 Па), под нагрузкой прессования 60 МПа, с выдержкой 2 мин в диапазоне 1200-1600 °C со скоростью нагрева 100 °C/мин.

Фазовый состав синтезированных порошков и спеченных образцов определяли с помощью рентгенофазового анализа (model PANAlytical X'Pert PRO) с Си K_{α} -излученим, с интервалом сканирования $2\theta = 10-60^{\circ}$ и со скоростью вращения гониометра 2 град/мин. Микроструктуру спеченных образцов

|--|

	Состав			
Параметр*	M65(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})	M65(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})	M75(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})	M75(Ti _{0,7} Mo _{0,3})(C _{0,7} N _{0,3})
	8ZrO ₂ 5BN22Ti ₂ AlNb	8ZrO ₂ 5BN22NiTi	16Si ₃ N ₄ 8BN1NiNbZr	16Si ₃ N ₄ 8BN1NiVTa
Масса компонентов, г на 100 г				
смеси:				
65 мол. % (Ті _{0,7} Мо _{0,3})(С _{0,7} N _{0,3})	45,09/9,10/1,11/44,7	-	_	_
/ 8 мол. % <i>с-</i> ZrO ₂ / 5 мол. %				
<i>c</i> -BN / 22 мол. % Ti ₂ AlNb				
65 мол. % (Ті _{0,7} Мо _{0,3})(С _{0,7} N _{0,3})	-	58,5/11,8/1,44/28,26	_	_
/ 8 мол. % <i>с-</i> ZrO ₂ / 5 мол. %				
<i>с</i> -BN / 22 мол. % NiTi				
75 мол. % (Ті _{0,7} Мо _{0,3})	-	-	35,73/14,22/1,22/48,83	_
(C _{0,7} N _{0,3}) / 16 мол. % β-Si ₃ N ₄				
/ 8 мол. % <i>с</i> -BN/ 1 мол. %				
$Ni_{45}Nb_{35}Zr_{20}$				
75 мол. % (Ті _{0,7} Мо _{0,3})	-	-	_	34,85/13,86/1,19/50,1
(C _{0,7} N _{0,3}) / 16 мол. % β-Si ₃ N ₄				
/ 8 мол. % <i>с-</i> BN / 1 мол. %				
$Ni_{17}V_{61}Ta_{22}$				
Соотношение:				
3Al ₂ O ₃ ·2SiO ₂ / (Ti _{0,7} Mo _{0,3})	2,21/11,0/90,1/2,23	-	_	_
(C _{0,7} N _{0,3}) / c-ZrO ₂ / c-BN /				
Ti ₂ AlNb				
3Al ₂ O ₃ ·2SiO ₂ / (Ti _{0,7} Mo _{0,3})	-	1,71/8,47/69,4/3,53	-	-
(C _{0,7} N _{0,3}) / <i>c</i> -ZrO ₂ / <i>c</i> -BN / NiTi				
3Al ₂ O ₃ ·2SiO ₂ / (Ti _{0,7} Mo _{0,3})	-	-	2,8/7,03/81,96/2,04	—
$(C_{0,7}N_{0,3}) / \beta$ -Si ₃ N ₄ / c-BN /				
$Ni_{45}Nb_{35}Zr_{20}$				
3Al ₂ O ₃ ·2SiO ₂ / (Ti _{0,7} Mo _{0,3})	-	-	—	2,87/7,22/84,03/2
$(C_{0,7}N_{0,3}) / \beta$ -Si ₃ N ₄ / c-BN /				
Ni ₁₇ V ₆₁ Ta ₂₂				
* Масса компонентов (3Al ₂ O ₃ /2SiO ₂) — 71,8/28,2 г на 100 г смеси.				

изучали с помощью сканирующего электронного микроскопа SEM-analysis model JSM-T200, Япония, и просвечивающего эмиссионно-электронного микроскопа FE-TEM, JEM2100F фирмы JEOL, Япония. Размеры зерен кристаллических фаз образцов определяли с использованием лазерного гранулометра Analysette 22 NanoTec.

Относительную плотность $\rho_{\text{отн}}$, открытую пористость $\Pi_{\text{отк}}$, линейную усадку Δl , модуль упругости *E*, твердость по Виккерсу *HV*, ударную вязкость K_{Ic} образцов определяли по известным методикам [5]. Теоретическая плотность, г/см³: муллит 3,17, ($\text{Ti}_{0,7}\text{Mo}_{0,3}$)($\text{C}_{0,7}\text{N}_{0,3}$) 7,4, *c*-ZrO₂ 6,27, β -Si₃N₄ 3,17, *c*-BN 3,49, Ti₂AlNb 5,26, NiTi 6,6, Ni₄₅Nb₃₅Zr₂₀ 7,94, Ni₁₇V₆₁Ta₂₂ 8,82.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Фазовый состав порошков $Ti(C_{0,7}N_{0,3})$, β - Si_3N_4 , *c*-BN, Ti_2AlNb , NiTi, NiNbZr, NiVTa, синтезированных плазмохимическим способом, показан на рис. 1.

Фазовый состав синтезированных порошков Ті(С_{0.7}N_{0.3}), β-Si₃N₄ и с-ВN представлен интенсивными дифракционными максимумами Ti(C_{0.7}N_{0.3}), β-Si₃N₄ и *с*-BN (см. рис. 1, *а*-в). Порошки Ti₂AlNb, NiTi состоят из кристаллических фаз Ti₂AlNb, NiTi (см. рис. 1, *г*, *д*). Кристаллическая фаза Ti₂AlNb содержит слабо развитые кристаллические фазы Ti₃Al, Nb₂Al и Ti₄Nb, которые образовались в ходе неполного превращения смесей порошков Ті, Al и Nb в Ti₂AlNb. Порошок NiNbZr состоит из кристаллических фаз Ni₄₅Nb₃₅Zr₂₀, NiNb, NiZr, Nb и Zr, а порошок NiVTa представлен интенсивной кристаллической фазой Ni₁₇V₆₁Ta₂₂ и слабо кристаллическими фазами NiV, NiTa, β-TaV₂ (см. рис. 1, е, ж). Формирование разной интенсивности кристаллических фаз NiNb, NiZr и NiV, NiTa, β-TaV₂ обусловлено отличиями эвтектических реакций в ходе растворения смесей порошков Nb и Zr, V и Ta в расплаве никеля [14, 15]. Различия эвтектических реакций при кристаллизации фаз NiNb, NiZr и NiV, NiTa, β-TaV₂ влияют на кристаллизацию фаз Ni₄₅Nb₃₅Zr₂₀ и Ni₁₇V₆₁Ta₂₂ [14, 15]. В результате интенсивность кристаллической фазы Ni₄₅Nb₃₅Zr₂₀ ниже, чем интенсивность кристаллической фазы Ni₁₇V₆₁Ta₂₂ (см. рис. 1, *е*, *ж*). Различия составов порошков Ti₂AlNb, NiTi, NiNbZr, NiVTa связаны с кристаллизацией фаз Ti₂AlNb, NiTi через расплавы Al, Ni и частично расплав Ti с развитыми диффузионными процессами и более полным превращением смесей исходных компонентов в конечные кристаллические продукты через данные расплавы, в отличие от кристаллизации фаз $Ni_{45}Nb_{35}Zr_{20}$ и $Ni_{17}V_{61}Ta_{22}$ * через разноинтенсивные эвтектические реакции с разным взаимодействием NiNb и NiZr, NiV, NiTa и β -TaV₂ в расплаве никеля.

Рис. 1. Фазовый состав порошков Ti(C_{0,7}N_{0,3}) (*a*), β-Si₃N₄ (*б*), *c*-BN (*θ*), Ti₂AlNb (*z*), NiTi (*∂*), NiNbZr (*e*) и NiVTa (*ж*), синтезированных плазмохимическим способом при 1600 °C: Ti(C_{0,7}N_{0,3}) — карбонитрид титана; Ti₃Al — трититан алюминий; Nb₂Al — алюминийдиниобий; Ti₄Nb — тетратитанниобий; Ti₂AlNb — дититан алюминийниобий; NiTi — никельтитан, NiNb — никельниобий; NiZr — никельцирконий; Nb — кристаллический ниобий; α-Zr — кристаллический (гексагональный) цирконий; Ni₄₅Nb₃₅Zr₂₀ — никельниобийцирконий; NiV— никельванадий; NiTa — никельтантал; β-TaV₂ — танталдиванадий; Ni₁₇V₆₁Ta₂₂ — никельванадийтантал

Спеченные с-ZrO₂ и (Ti, Mo)(C, N) характеризуются развитыми дифракционными максимумами с-ZrO₂ и (Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3}) со слаборазвитой побочной кристаллической фазой Ti_{1 - (1 - x)}C (рис. 2) в ходе формирования твердого раствора по реакции

$$Ti(C_{0,7}N_{0,3}) + xMoC \rightarrow Ti_{1-x}xMo^{4+}(C_{0,7}N_{0,3}) \rightarrow (Ti_{1-x}Mo_x)(C_{0,7}N_{0,3}) + Ti_{1-(1-x)}C_{(слабо крист.)}.$$
(9)

Образование с-ZrO₂ объясняется встраиванием (интеркаляцией) катионов Y^{3+} в кристаллическую структуру тетрагонального ZrO₂, стимулирующих перестраивание тетрагональной в кубическую структуру ZrO₂ с образованием твердого раствора (кубического) ZrO₂ при 1400 °С и нагрузке прессования 35 МПа. Это соответствует диаграмме равновесия двухфазной системы ZrO₂-Y₂O₃ (по Брауну и Оделлу, Фан Фукану и Келлеру) [16].

^{*} Стехиометрия $Ni_{45}Nb_{35}Zr_{20}$, $Ni_{17}V_{61}Ta_{22}$ и ($Ti_{0,7}Mo_{0,3}$) ($C_{0,7}N_{0,3}$) определялась из процентного содержания Ni, Nb, Zr, Ni, V, Ta и Ti, Mo, C, N в данных соединениях с погрешностью ±2 % методом рентгеновской спектроскопии рассеянных энергий (model JET-2300T).

Рис. 2. Фазовый состав спеченных плазменно-искровым способом *c*-ZrO₂ при 1400 °C (*a*) и (Ti, Mo)(C, N) при 1800 °C (б): (Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3}) — твердый раствор карбонитрида молибдена-титана; Ti_{1-(1-x)}C — нестехиометрический карбид титана

Интенсивная кристаллизация фазы (Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3}) связана со встраиванием катионов Mo⁴⁺ в кристаллическую структуру кубического Ti(C_{0,7}N_{0,3}) с замещением части катионов Ti⁴⁺ на катионы Mo⁴⁺ и образованием кубического (Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3}) в твердой фазе при 1800 °С и нагрузке прессования 60 МПа. Данный процесс развивается по реакции (9).

Микроструктура спеченного c-ZrO₂ — более равномерно и плотно спекшаяся с минимальным количеством мелких пор (рис. 3, *a*) по сравнению с микроструктурой (Ti, Mo)(C, N), в которой заметны отдельные, слабо спекшиеся области твердого раствора (рис. 3, *б*). Это связано с большей диффузией и более равномерным заполнением пор в спекаемом порошке c-ZrO₂ через легкоплавкую эвтектику с добавкой Y₂O₃, в отличие от неоднородных и медленных твердофазных диффузионных процессов в спекаемой смеси порошков Ti(C_{0.7}N_{0.3}) и MoC. Как результат, зерна c-ZrO₂ в основном хорошо спекшиеся и уплотненные с малозаметными пограничными участками и небольшими порами между ними (см. рис. 3, *a*₁). Форма зерен монолитно пластинчатая или призматическая с плотной структурой, размеры зерен в основном составляют 4–6 мкм.

Видно, что спеченные зерна (Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3}) тетра-, гекса- и октаэдрической формы размерами 2–3 мкм, они относительно однородно и плотно уплотнены с заметными пограничными участками (см. рис. 3, δ_1). Это обусловлено различиями твердофазных диффузионных процессов на границах спекаемых частиц Ti(C_{0,7}N_{0,3}) и МоС в силу разной плотности структур, в частности кубической Ti(C_{0,7}N_{0,3}) и гексагональной МоС. В результате неравномерно и постепенно развивается диффузия на пограничных участках спекаемых частиц Ti(C_{0,7}N_{0,3}) и MoC.

Образцы с добавкой Ti₂AlNb и NiTi характеризуются разноинтенсивной муллитизацией, которая менее развита в присутствии Ti₂AlNb, чем с добавкой NiTi (рис. 4, *a*, б). Менее интенсивное развитие муллита с добавкой Ti₂AlNb в интервале 1200–1400 °C связано с реакциями $AlNb_{49}O_{124} \rightarrow$ \rightarrow Al₂Nb₅₀O₁₂₈ \rightarrow ZrSiO₄/AlNb₁₁O₂₉ \rightarrow Al₂Nb₁₈O₄₈ \rightarrow → ZrSiO₄ в интервале 1200-1400 °C [17]. Небольшой прирост муллитизации в образце с добавкой Ti₂AlNb заметен в интервале 1500-1600 °C (см. рис. 4, а). Это обусловлено формированием эвтектических составов $NbSiO_4 \rightarrow AlNbO_4 \rightarrow$ \rightarrow Al₂TiO₅ через частичное растворение Al₂O₃ и SiO₂ в расплаве Ti₂AlNb на линии разделения (узком участке) твердой фазы и области неограниченной растворимости двухфазной системы равновесия диаграммы Ti₃Al-Nb [17], в узком диапазоне легкоплавких эвтектик расплава Ti₂AlNb и двух-, трехфазовых систем Nb₂O₅-SiO₂, $Nb_2O_5-Al_2O_3$, $SiO_2 - TiO_2 - ZrO_2$ В интервале 1500-1600 °C [18-20]. Более активная муллитизация с добавкой NiTi связана с образованием эвтектических составов через равномерное и

Рис. 3. Микроструктура спеченных плазменно-искровым способом c-ZrO₂ при 1400 °C (a, a_1) и (Ti, Mo)(C, N) при 1800 °C (b, b_1): a, b — общая микроструктура; a_1 , b_1 — микроструктура спеченных зерен

Puc. 4. Φазовый состав образцов $M65(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO_25BN22Ti_2AlNb ($ *a* $), <math>M65(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO_25BN22NiTi ($ *b* $), M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si_3N_48BN1NiNbZr ($ *b* $) и M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si_3N_48BN1NiVTa ($ *c* $), спеченных в диапазоне 1200–1600 °C: М — муллит; (Ti, Mo)(C, N) — твердый раствор карбонитрида молибдена-титана состава (Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3}); β-Zr, Nb, β-Nb, Zr — твердые растворы цирконийниобия, ниобийциркония; Ni(Zr, Nb), Ni(Nb, Zr) — твердые растворы никельцирконийниобия, никельванадийтантала; α-, β-TaV₂ — танталдиванадий; Ni₄₅Nb₃₅Zr₂₀ — никельниобийцирконий; Ni₁₇V₆₁Ta₂₂ — никельванадийтантала. α-, β-TaV₂, Ni₄₅Nb₃₅Zr₂₀, Ni₁₇V₆₁Ta₂₂ — химические соединения, составы которых соответствуют составам данных соединений в синтезированных порошках (см. рис. 1,$ *e*,*3*)

полное растворение Al_2O_3 и SiO_2 в конгруэнтном (стабильном) расплаве NiTi: $Ni_2Si_2O_4 \rightarrow NiAl_2O_4 \rightarrow Al_2TiO_5$ в интервалах 1350–1480, 1500–1600 °C [21]. В образцах с добавкой Ti_2AlNb и NiTi наблюдается равное развитие стабильного состава кристалли-

ческой (Ti, Mo)(C, N) фазы в интервале 1200–1600 °С (см. рис. 4, *a*, *б*). Это объясняется схожей кристаллизацией плотной (кубической) структуры фазы (Ti, Mo)(C, N), стойкой к окислению Al₂O₃ и SiO₂, растворению в расплавах Ti₂AlNb и NiTi. Образцы

с добавкой NiNbZr и NiVTa показывают равноинтенсивные муллитизацию и развитие стабильного состава кристаллической фазы (Ti, Mo)(C, N) (см. рис. 4, в, г). В образцах наблюдается примерно равная кристаллизация фаз *с*-BN и β-Si₃N₄ до 1400 °C и более активная кристаллизация фазы β-Si₃N₄ в интервале 1400–1600 °С (см. рис. 4, *а-г*). Это объясняется менее плотной (гексагональной) структурой β-Si₃N₄ в отличие от плотной (кубической) структуры с-BN с выраженными в с-BN ковалентными связями, что способствует более активной диффузии в β-Si₃N₄. В образцах отсутствует фазовая трансформация c-BN \rightarrow h-BN в интервале 1200–1600 °C (см. рис. 4, а-г). Это связано с замедлением/уменьшением роста зерен *с*-BN до 1400 °С/в интервале 1400-1600 °C благодаря формированию и накоплению более мелкодисперсных зерен (Ti, Mo)(C, N), Ti₂AlNb, NiTi, Ni(Nb, Zr), Ni(V, Ta) на пограничных участках зерен *c*-BN/*c*-BN и крупнодисперсных зерен *c*-ZrO₂, β-Si₃N₄, Ni(Zr, Nb), Ni(Ta, V), снижающих/препятствующих диффузии между данными зернами.

В образцах с добавкой Ti₂AlNb и NiTi различается соотношение интенсивностей кристаллических фаз *c*-ZrO₂ и *c*-BN, где кристаллическая *c*-ZrO₂ более интенсивна по сравнению с менее кристаллической фазой *с*-BN в интервале 1200-1600 °С (см. рис. 4, а, б). Это объясняется большей диффузией *c*-ZrO₂ как оксидного компонента в отличие от меньшей диффузии *с*-BN безоксидного компонента и частичным окислением *c*-BN в присутствии *c*-ZrO₂ в твердой фазе и через эвтектические составы расплавов Ti₂AlNb, NiTi. Интенсивность кристаллизации фазы *c*-ZrO₂ в образце с добавкой Ti₂AlNb ниже, чем в образце с добавкой NiTi в интервале 1200-1600 °С (см. рис. 4, а, б). Так, менее развитая кристаллизация фазы *c*-ZrO₂ с добавкой Ti₂AlNb связана с составами Zr₁₂Nb₂₄O₈₄/Zr₆Nb₁₂O₄₂ и реакциями эв-/периэвтектойдики в трехфазовой системе равновесия диаграммы SiO_2 - TiO_2 - ZrO_2 : α - $ZrSiO_4 \rightleftharpoons$ \neq t-ZrO₂ + SiO₂, ZrTiO₄: ZrTiO₄ \neq ZrTiO₄ + TiO₂ / / α -ZrTiO₄ \rightleftharpoons ZrTiO₄ + *t*-ZrO₂ в интервале 1200−1400 °C [20, 22, 23]. Однако прирост кристаллической фазы *c*-ZrO₂ небольшой через расплав Ti₂AlNb в интервале 1500-1600 °С (см. рис. 4, а). Это связано с неоднородным, постепенным растворением *c*-ZrO₂ в расплаве Ti₂AlNb на линии разделения (узком участке) твердой фазы и области неограниченной растворимости диаграммы равновесия системы Ti₃Al-Nb [17], эвтектическом расплаве ZrSiO₄ трехфазной системы SiO₂-TiO₂-ZrO₂ до 1680±10 °C [20, 22, 23]. Большая кристаллизация фазы *c*-ZrO₂ в образце с добавкой NiTi обусловлена равномерным и полным растворением *c*-ZrO₂ в конгруэнтном (стабильном) расплаве NiTi с формированием твердого раствора кубического NiO-ZrO₂ в интервале 1310-1600 °С [24].

В образцах отсутствуют продукты взаимодействия (безоксидные кристаллические фазы) с-ВN с Ti₂AlNb, с-ВN с NiTi в твердой фазе и в расплавах Ti₂AlNb, NiTi (см. рис. 4, a, δ). Это объясняется окислением и превращением Ti₂AlNb, NiTi в присутствии Al₂O₃, SiO₂, c-ZrO₂ в составы эвтектойдики, периэвтектойдики, эвтектики, периэвтектики, стимулирующие кристаллизацию фаз в интервале 1200–1600 °С и при нагрузке прессования 60 МПа (см. рис. 4, a, δ).

В образцах заметно значительное различие образования кристаллических фаз Ti₂AlNb и NiTi в интервале 1200-1600 °С (см. рис. 4, а, б). Менее активная кристаллизация фазы Ti₂AlNb объясняется образованием составов эв-/периэвтектойдики: AlNb₄₉O₁₂₄ \rightarrow Al₂Nb₅₀O₁₂₈ \rightarrow TiNb₂₄O₆₂ $\rightarrow Zr_{12}Nb_{24}O_{84}/AlNb_{11}O_{29} \rightarrow Al_2Nb_{18}O_{48} \rightarrow Ti_2Nb_{10}O_{29}$ $\rightarrow Zr_6Nb_{12}O_{42}$ в интервале 1200–1400 °C [19, 20, 25, 26]. Небольшой прирост кристаллизации фазы Ti₂AlNb (см. рис. 4, а) объясняется постепенным формированием эвтектических составов: $NbSiO_4 \rightarrow AlNbO_4 \rightarrow Al_2TiO_5 \rightarrow TiNb_2O_7$ на линии разделения (узком участке) твердой фазы и области неограниченной растворимости двухфазной системы равновесия диаграммы Ti₃Al-Nb [17], в узком диапазоне легкоплавких эвтектик расплава Ti₂AlNb и двух-, трехфазных систем Nb₂O₅-SiO₂, Nb₂O₅-Al₂O₃, SiO₂-TiO₂-ZrO₂ [18-20, 25, 26], вызывающих неоднородную и неполную диффузию в эвтектических расплавах в интервале 1500-1600 °C. Это влияет на полноту и интенсивность кристаллизации фазы Ti₂AlNb в данных расплавах. Также небольшое увеличение интенсивности кристаллической фазы Ti₂AlNb объясняется постепенным растворением *c*-ZrO₂ в эвтектических составах расплава Ti₂AlNb со встраиванием катионов Zr⁴⁺ в гексагональную структуру Ti₂AlNb и формированием плотной (орторомбической) структуры стабильного твердого раствора Ti₂AlNb в интервале 1500–1600 °C.

Более активно образуется кристаллическая фаза NiTi в интервале 1200–1600 °С (см. рис. 4, б). Это связано с кристаллизацией фазы NiTi через составы эвтектойдики: твердый раствор NiO-TiO₂ \rightarrow твердый раствор Ni₃TiO₅ (Ni₂TiO_{4тв. р.} + + NiO-TiO_{2 тв. р.}) \rightarrow NiTiO₃ до 1400 °С; эвтектические составы: Ni₂Si₂O₄ \rightarrow NiAl₂O₄ \rightarrow Al₂TiO₅ \rightarrow \rightarrow NiTiO₃ в ходе равномерного и полного растворения Al₂O₃ и SiO₂ в расплаве NiTi в интервале 1400–1600 °С [21, 24, 27, 28].

Формирование вышеуказанных составов эвтектойдики, периэвтектойдики, эвтектики, периэвтектики обусловлено диффузией кислорода в Al₂O₃, SiO₂ и *c*-ZrO₂, встраиванием кислорода в структуры Ti₂AlNb и NiTi, разным окислением Ti₂AlNb и NiTi в твердой и жидкой фазах в интервале 1200–1600 °C и при нагрузке прессования 60 МПа.

В образцах наблюдаются менее развитые кристаллические фазы Ni(Zr, Nb), Ni(Nb, Zr), Ni₄₅Nb₃₅Zr₂₀ по сравнению с большей кристаллизацией фаз Ni(Ta, V), Ni(V, Ta), Ni₁₇V₆₁Ta₂₂ в интервале 1200–1600 °C (см. рис. 4, β , ϵ). Это обусловлено не-

активным, неполным встраиванием (интеркаляцией) катионов Nb²⁺ больших размеров в NiZr, Zr²⁺ в NiNb, постепенным встраиванием плотных структур β-Zr, Nb и β-Nb, Zr в Ni(Zr, Nb), Ni(Nb, Zr) при 1500 °С с их твердофазной кристаллизацией (см. реакцию (10)) по сравнению с развитым, полным встраиванием (интеркаляцией) катионов V²⁺ меньших размеров в NiTa, Ta²⁺ в NiV и жидкофазной кристаллизацией фаз Ni(Ta, V), Ni(V, Ta) через расплав β-TaV₂ (см. реакцию (11)). Менее кристаллическая фаза Ni₄₅Nb₃₅Zr₂₀ объясняется твердофазным структурированием через NiNb и NiZr (см. реакцию (10.2)), а активное развитие фазы $Ni_{17}V_{61}Ta_{22}$ связано с жидкофазной кристаллизацией большего содержания фазы Ni₁₇V₆₁Ta₂₂ из исходного порошка (см. рис. 1, 3) через расплав β-TaV₂. Механизмы процессов кристаллизации данных фаз:

NiNb + NiZr \rightarrow Ni²⁺(Zr_(1-x), xNb²⁺)_(1200-1600 °C) + + Ni²⁺(Nb_(1-x), xZr²⁺)_(1200-1600 °C) \rightarrow Ni(Zr_(1-x), xNb) + + β -Zr, Nb_{(куб. структ. промеж. крист. фаза при 1500 °C) + + Ni(Nb_(1-x), xZr) + β -Nb, Zr_{(куб. струк. промеж. крист. фаза при 1500 °C) \rightarrow \rightarrow Ni(Zr_(1-x)(x + 1)Zr²⁺, xNb(x + 1)Nb²⁺)_(1500-1600 °C) + + Ni(Nb_(1-x)(x + 1)Nb²⁺, xZr(x + 1) Zr²⁺)_(1500-1600 °C) \rightarrow \rightarrow Ni((x + 2)Zr_(1-x), (2x + 1)Nb) + + Ni((x + 2)Nb_(1-x), (2x + 1)Zr), (10)}}

 $57,5NiNb + 42,5NiZr \rightarrow$ $\rightarrow Ni_{45}Nb_{35}Zr_{20 (otgenbhag kpuct. \phiasa 1200-1600 °C)},$ (10.2)

 $NiV + NiTa + \beta \text{-}TaV_{2(\text{otgenshag kpuct. } \varphi \text{asa } 1200-1600 \text{ }^{\circ}\text{C})} \rightarrow$

 $\rightarrow Ni^{2+}(Ta_{(1-x)}xV^{2+})_{(1200-1600 \circ C)} +$

+ Ni²⁺(V_(1 - x) xTa²⁺)_(1200-1600 °C) \rightarrow Ni(Ta_(1 - x), xV) +

+ Ni(V_(1 - x), xTa) + β -TaV_{2(pacinab 1380-1400 °C)} \rightarrow

 $\rightarrow Ni(Ta_{(1-x)}\cdot xV\cdot V_{(1-x)})2V_{(комплексный тв. p-p)}(1400-600 \circ C) +$

- + Ni(V_(1 x), xTa·Ta_(1 x))Ta_{(комплексный тв. p-p)(1400-1600 °C)} \rightarrow
- $\rightarrow \text{Ni}(\text{Ta}_{(1-x)} \cdot 3xV_{(1-x)})_{(1400-1600 \,^{\circ}\text{C})} +$
- + Ni(V_(1 x)·3xTa_(1 x))_(1400-1600 °C) \rightarrow
- $\rightarrow \text{Ni}(\text{Ta}_{(1-x)}, 3xV_{(1-x)})_{(1400-1600 \,^{\circ}\text{C})} +$
- + Ni(V_(1 x), $3xTa_{(1 x)})_{(1400-1600 \circ C)}$ +

+ Ni₁₇V₆₁Ta_{22(отдельная интен. крист. фаза 1200-1600 °C)}, (11)

Кристаллизация $Ni_{45}Nb_{35}Zr_{20}$ и $Ni_{17}V_{61}Ta_{22}$ как отдельных фаз, а не побочных продуктов формирования кристаллических твердых растворов металлических фаз обусловлена разными механизмами образования химических соединений и данных твердых растворов в интервале 1200–1600 °С (см. реакции (10.2) и (11)). При этом не отмечено реакций между кристаллическими оксидными, безоксидными фазами, твердыми растворами металлических фаз и химическими соединениями в образцах, поскольку отсутствуют продукты распада муллита, (Ti, Mo)(C, N) и окисления (Ti, Mo)(C, N), *с*-BN, β -Si₃N₄, Ti₂AlNb, NiTi, Ni(Zr, Nb), Ni(Nb, Zr), Ni₄₅Nb₃₅Zr₂₀, Ni(Ta, V), Ni(V, Ta), Ni₁₇V₆₁Ta₂₂ в интервале 1200–1600 °С.

Микроструктура образца с добавкой Ti₂AlNb при 1300 °С состоит из множества неоднородно спекшихся областей разных размеров различной плотности с большим количеством пор (рис. 5, *a*) по сравнению с микроструктурой образца при 1500 °С, которая относительно равномерно, плотно спекшаяся с небольшим количеством пор разных размеров (см. рис. 5, *a*₁). Неоднородность микроструктуры образца при 1300 °С вызвана твердофазным спеканием через составы эв-/периэвтектойдики: $AlNb_{49}O_{124} \rightarrow Al_2Nb_{50}O_{128} \rightarrow$ $\rightarrow TiNb_{24}O_{62} \rightarrow Zr_{12}Nb_{24}O_{84} \ / \ AlNb_{11}O_{29} \rightarrow Al_2Nb_{18}O_{48} \rightarrow$ \rightarrow Ti₂Nb₁₀O₂₉ \rightarrow Zr₆Nb₁₂O₄₂ в интервале 1200–1400 °C [19, 20, 25, 26] и неоднородным, неполным спеканием частиц (Ti, Mo)(C, N), c-ZrO₂, c-BN, Ti₂AlNb. Относительно равномерная и плотная микроструктура с большим количеством пор разных размеров образца при 1500 °C обусловлена частично активным жидкофазным спеканием через постепенное образование эвтектических составов NbSiO₄ \rightarrow AlNbO₄ \rightarrow Al₂TiO₅ \rightarrow TiNb₂O₇ в интервале 1500-1600 °С [18-20, 25, 26]. В данном образце большее количество пор разных размеров при 1500 °С (см. рис. 5, *a*₁) объясняется более активным ростом зерен муллита, *c*-ZrO₂ и менее интенсивным ростом зерен (Ti, Mo)(C, N), с-BN, Ti₂AlNb (рис. 6). Это соответствует частично раз-

Рис. 5. Микроструктуры образцов M65(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO₂5BN22Ti₂AlNb (*a*, *a*₁), M65(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO₂5BN22NiTi (*б*, *б*₁), M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si₃N₄8BN1NiNbZr (*в*, *в*₁) и M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si₃N₄8BN1NiNbZr (*в*, *в*₁) и M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si₃N₄8BN1NiVbTa (*г*, *г*₁), спеченных при 1300 °C (*a*, *б*, *в*, *г*) и 1500 °C (*a*₁, *б*₁, *в*₁, *г*₁)

витым диффузионным процессам на линии разделения (узком участке) твердой фазы и области неограниченной растворимости двухфазной системы равновесия диаграммы Ti₃Al-Nb [17], в узком диапазоне легкоплавких эвтектик расплава Ti₂AlNb и двух-, трехфазных систем Nb₂O₅-SiO₂, Nb₂O₅-Al₂O₃, SiO₂-TiO₂-ZrO₂ [18-20, 25, 26].

Наиболее равномерно и плотно спекшуюся микроструктуру с небольшим количеством пор имеют образцы с добавкой NiTi при 1300 и 1500 °С (см. рис. 5, б, б₁). Небольшое количество пор разных размеров в образце при 1300 °С (см. рис. 5, б) связано с твердофазным спеканием через составы эвтектойда: твердый раствор NiO-TiO₂ \rightarrow твердый раствор Ni₃TiO₅ (Ni₂TiO_{4тв. р.} + NiO-TiO₂ \rightarrow твердый раствор Ni₃TiO₅ (Ni₂TiO_{4тв. р.} + NiO-TiO₂ \rightarrow NiTiO₃ в диапазоне 1200–1400 °С. Наиболее плотно спекшаяся микроструктура образца при 1500 °С (см. рис. 5, б₁) объясняется развитым

Рис. 6. Размеры зерен кристаллических фаз образцов M65(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO₂5BN22Ti₂AlNb (*a*), M65(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO₂5BN22NiTi (*b*), M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si₃N₄8BN1NiNbZr (*b*) и M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si₃N₄8BN1NiVTa (*b*) в интервале 1200–1600 °C: ■ — 1200 °C; ■ — 1300 °C; ■ — 1400 °C; ■ — 1500 °C; ■ — 1600 °C

жидкофазным спеканием через эвтектические составы: $Ni_2Si_2O_4 \rightarrow NiAl_2O_4 \rightarrow Al_2TiO_5 \rightarrow NiTiO_3$ в ходе растворения Al₂O₃ и SiO₂ в расплаве NiTi в интервале 1310-1600 °С [21, 24, 27, 28]. В результате формируется более полидисперсный состав зерен кристаллических фаз (см. рис. 6), равномернее распределяется диффузия вещества на границах спекаемых частиц (Ti, Mo)(C, N), *c*-ZrO₂, *c*-BN, NiTi и полнее заполняются поры в интервале 1200-1600 °С. Однако заметны значимые различия микроструктур образцов с добавкой Ti₂AlNb и NiTi при 1500 °С (см. рис. 5, *a*₁, *б*₁). Это связано с разным, в частности большим, влиянием NiTi на жидкофазное спекание, в отличие от меньшего влияния Ti₂AlNb на твердо-/ жидкофазное спекание соответствующих смесей керамических и металлического порошков с весовыми пропорциями 3.47 и 6.07.

Микроструктура образца с добавкой NiNbZr более неравномерная, слабо спекшаяся, со множеством более крупных пор по сравнению с относительно плотно спекшейся микроструктурой образца с добавкой NiVTa при 1300 °С (см. рис. 5, в, г). Это объясняется постепенной кристаллизацией фаз Ni(Zr, Nb), Ni(Nb, Zr) и Ni₄₅Nb₃₅Zr₂₀ (см. рис. 4, в) в отличие от активной кристаллизации фаз Ni(Ta, V), Ni(V, Ta) и Ni₁₇V₆₁Ta₂₂ до 1400 °С (см. рис. 4, г) в ходе неполной и менее интенсивной диффузии в спекаемом составе с добавкой NiNbZr по сравнению с развитой диффузией в спекаемом составе с добавкой NiVTa. В результате различно спекаются частицы оксидного, безоксидных, твердых растворов и химических соединений металлических порошков разной плотности в твердой фазе в каждом из составов в интервале 1200-1400 °C. У образцов с добавкой NiNbZr и NiVTa при 1500 °C более равномерно и плотно спекшаяся микроструктура с порами с небольшим различием в размерах (см. рис. 5, в₁, г₁). Это обусловлено активизацией разных видов реакционных превращений (см. реакции (10), (10.2), (11)), по-разному стимулирующих диффузию, спекание частиц оксидного, безоксидных, твердых растворов, химических соединений металлических порошков разной плотности в твердой и жидкой фазах в интервале 1400-1600 °С. Схожесть микроструктур образцов с добавкой NiNbZr и NiVTa при 1500 °С (см. рис. 5, в₁, г₁) объясняется примерно равным влиянием NiNbZr и NiVTa на твердофазное и твердо-/жидкофазное спекание соответствующих смесей керамических и металлического порошков со схожими их весовыми пропорциями 3,09 и 3,00.

Размеры зерен кристаллических фаз, ρ_{отн}, Δ*l* в интервале 1200–1600 °С, микроструктура границ областей керамических (оксидных, безоксидных) и металлических кристаллических фаз при 1500 °С, физико-механические свойства в диапазоне 1200–1600 °С, фото отпечатков вдавливания при 1300 и 1500 °С образцов с добавкой Ti₂AlNb, NiTi, NiNbZr, NiVTa показаны на рис. 6–10.

Изменение $\rho_{\text{отн}}$ и Δl образцов с добавкой Ti₂AlNb, NiTi, NiNbZr, NiVTa отличается, в частности, более постепенный (плавный) прирост спекания показывают образцы с добавкой Ti₂AlNb и NiNbZr по сравнению с большей интенсивностью спекания образцов с добавкой NiTi и NiVTa в интервале 1200-1600 °С. Плавное спекание образца с добавкой Ti₂AlNb связано с неравномерным развитием кристаллических фаз (см. рис. 4, а) через составы эв-/периэвтектойдики: $AlNb_{49}O_{124} \rightarrow Al_2Nb_{50}O_{128} \rightarrow TiNb_{24}O_{62} \rightarrow Zr_{12}Nb_{24}O_{84}/$ $/AlNb_{11}O_{29} \rightarrow Al_2Nb_{18}O_{48} \rightarrow Ti_2Nb_{10}O_{29} \rightarrow Zr_6Nb_{12}O_{42} \ \mathsf{B}$ интервале 1200-1400 °С [19, 20, 25, 26] и эвтектические составы: NbSiO₄ \rightarrow AlNbO₄ \rightarrow Al₂TiO₅ \rightarrow → TiNb₂O₇ в интервале 1500-1600 °C [18-20, 25, 26], неоднородным, неполным спеканием частиц (Ti, Mo)(C, N), c-ZrO₂, c-BN, Ti₂AlNb и множества областей различной плотности, разных размеров с неполным заполнением пор (см. рис. 5, *a*, *a*₁), относительно монодисперсным составом зерен кристаллических фаз (см. рис. 6).

Наиболее активный рост $\rho_{\text{отн}}$ и Δl образца с добавкой NiTi обусловлен развитым жидкофазным спеканием через эвтектические составы: Ni₂Si₂O₄ \rightarrow NiAl₂O₄ \rightarrow Al₂TiO₅ \rightarrow NiTiO₃ в интервале 1400–1600 °C [21, 24, 27, 28], равномерным и плотным спеканием частиц (Ti, Mo) (C, N), *c*-ZrO₂, *c*-BN, NiTi с практически полным заполнением пор (см. рис. 5, *б*, *б*₁), более полидисперсным составом зерен кристаллических фаз (см. рис. 6).

Постепенное спекание образца с добавкой NiNbZr объясняется кристаллизацией фаз Ni₄₅Nb₃₅Zr₂₀ и Ni(Zr, Nb), Ni(Nb, Zr) через твердофазные реакции (см. рис. 4, e, реакция (10)), неравномерным и неполным заполнением, в частности крупных пор (см. рис. 5, e, e_1), монодисперсным составом зерен кристаллических фаз (см. рис. 6).

Более интенсивный прирост значений $\rho_{\text{отн}}$ и Δl образца с добавкой NiVTa объясняется интенсивной кристаллизацией фаз Ni₁₇V₆₁Ta₂₂ и Ni(Ta, V), Ni(V, Ta) через твердофазные до 1400-1430 °С, жидкофазные реакции в интервале 1430-1600 °C (см. рис. 4, г, реакция (11)), более равномерным твердофазным и жидкофазным спеканием частиц с полным заполнением пор (см. рис. 5, г, г₁). Благодаря большей кристаллизации фаз Ni₁₇V₆₁Ta₂₂ и Ni(Ta, V), Ni(V, Ta) (см. рис. 4, г), отличительному механизму кристаллизации фаз (реакция (11)), микроструктурным особенностям (см. рис. 5, г, г) и полидисперсности состава зерен кристаллических фаз (см. рис. 6) образца с добавкой NiVTa такой образец показывает большие значения $\rho_{\text{отн}}$ и Δl в отличие от данных свойств образца с добавкой NiNbZr в интервале 1200-1600 °С.

Развитие физико-механических свойств образцов с добавкой Ti_2AlNb , NiTi, NiNbZr и NiVTa соответствует спеканию данных составов в интервале 1200–1600 °C. Так, наиболее активный прирост E, K_{Ic} и HV показывают образцы с добавкой NiTi и NiVTa в отличие от плавного увеличе-

Рис. 7. Изменение $\rho_{\text{отн}}(a)$ и Δl (б) образцов M65(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})8ZrO₂5BN22Ti₂AlNb (), M65(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})8ZrO₂5BN22NiTi (), M75(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})16Si₃N₄8BN1NiNbZr () и M75(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})16Si₃N₄8BN1NiVTa () в интервале 1200–1600 °C

ния данных свойств образцов с добавкой Ti₂AlNb и NiNbZr.

Постепенное развитие физико-механичес-ких свойств образца с добавкой Ti₂AlNb в интервале 1200-1600 °С обусловлено неоднородным спеканием множества областей различной плотности и разных размеров с частичным заполнением пор (см. рис. 5. а. а₁), относительно монодисперсным составом зерен кристаллических фаз (см. рис. 6), формированием узких пограничных слоев *c*-ZrO₂, с-BN в сочетании с немного широким промежуточным слоем Ti₂AlNb (см. рис. 8, $a-a_2$). Это способствует неравномерному увеличению жесткости и твердости, уплотнению и укреплению, неполному рассеиванию напряжений на границах разнодисперсных частиц и распределению пластических свойств в узких пограничных слоях *c*-ZrO₂, *c*-BN образца. Это связано со смещением дислокаций неплотной структуры возле широкого пограничного слоя Ti₂AlNb (см. рис. 10, a_{1-2}) в сочетании со множеством мелких, точечных и наслоением дислокаций однородной и плотной структуры возле узких пограничных слоев *c*-ZrO₂, *c*-BN (см. рис. 10, *а*₁₋₂, *а*₁₋₃). Это объясняется большей подвижностью и слабым уплотнением на стыках пластинок в смещении дислокаций (см. рис. 10, а1-2), неполным взаимодействием точечных дислокаций с локальными областями напряжений на границе точечных и смещения дислокаций (см. рис. 10, *a*₁₋₂), неравномерным уплотнением и укреплением глобулярных формирований в наслоении дислокаций (см. рис. 10, a_{1-3}). В данном образце узкие микротрещины распространяются извилисто на большие расстояния в большем количестве (см. рис. 10, а1, а1-1), в основном возле смещения дислокаций, частично на границе точечных и смещения дис-

НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

локаций с пограничным слоем Ti₂AlNb при 1500 °C (см. рис. 10, $a_{1\cdot 2}$). Менее извилистая траектория продвижения широких микротрещин заметна в образце при 1300 °C (см. рис. 10, $a, a_{0\cdot 1}$), где уплотнение и укрепление структуры образца ниже.

8. Микроструктуры областей Рис. границ мулc-ZrO₂, $(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3}),$ c-BN, β -Si₃N₄, лита, Ti₂AlNb, NiTi, Ni(Nb, Zr), Ni(Zr, Nb), Ni₄₅Nb₃₅Zr₂₀, Ni(V. Ta). Ni(Ta. V), $Ni_{17}V_{61}Ta_{22}$ образцов M65(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})8ZrO₂5BN22Ti₂AlNb $(a-a_2),$ M65(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})8ZrO₂5BN22NiTi (б-б₂), (в-вз), M75(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})16Si₃N₄8BN1NiNbZr M75(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})16Si₃N₄8BN1NiVTa (г-г₃), спеченных при 1500 °C

Наиболее активный рост свойств образца с добавкой NiTi объясняется равномерно, плотно спекшимися микроструктурами (см. рис. 5, б, б₁), полидисперсным составом зерен кристаллических фаз (см. рис. 6), узкими пограничными слоями *с*-ZrO₂,

Рис. 9. Изменение *E*, *K*_{ic} и *HV* образцов M65(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})8ZrO₂5BN22Ti₂AlNb (■), M65(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})8ZrO₂5BN22NiTi (■), M75(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})16Si₃N₄8BN1NiNbZr (■) и M75(Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3})16Si₃N₄8BN1NiVTa (■) в интервале 1200–1600 °C

НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

Рис. 10. Фото отпечатков вдавливания при измерении *HV* образцов, спеченных из составов M65(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO₂5BN22Ti₂AlNb (*a*, *a*₁), M65(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO₂5BN22NiTi (*б*, *б*₁), M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})8ZrO₂5BN22NiTi (*б*, *б*₁), M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si₃N₄8BN1NiNbZr (*в*, *в*₁) и M75(Ti_{0.7}Mo_{0.3})(C_{0.7}N_{0.3})16Si₃N₄8BN1NiVTa (*z*, *z*₁) с указанием траекторий и ширины распространяющихся микротрещин в образцах (*a*₀₋₁, *a*₁₋₁, *b*₀₋₁, *b*₀₋₁, *b*₁₋₁, *z*₁₋₁, *z*₁₋₁), видов дислокаций возле пограничных слоев (*a*₁₋₂, *a*₁₋₃, *б*₁₋₂, *б*₁₋₃, *в*₁₋₂-*e*₁₋₄, *z*₁₋₂-*e*₁₋₄), при 1300 °C (*a*-*z*, *a*₀₋₁-*e*₀₋₁) и 1500 °C (*a*₁-*z*₁, *a*₁₋₁, *b*₁₋₁, *z*₁₋₁, *a*₁₋₂, *a*₁₋₃, *б*₁₋₂, *б*₁₋₃, *b*₁₋₂, *c*₁₋₄, *c*₁₋₂-*e*₁₋₄):*A*-Ni₁₇V₆₁Ta₂₂; *A*₁-границы области смещения дислокаций; *A*₂-стыки пограничных слоев

с-BN, NiTi (см. рис. 8, *б*-*б*₂). Это в целом наиболее увеличивает жесткость и твердость, уплотнение и укрепление пограничных структур разнодисперсных частиц, рассеивание напряжений на границах разнодисперсных частиц и равномерное распределение пластических свойств в узких пограничных слоях *c*-ZrO₂, *c*-BN, NiTi образца. Это связано с формированием идеальных и объединением дислокаций вблизи узких пограничных слоев *c*-ZrO₂, *c*-BN и NiTi (см. рис. 10, δ_{1-2} , δ_{1-3}), которые активно взаимодействуют с разнодисперсными частицами муллита, (Ti, Mo)(C, N), *c*-ZrO₂, *c*-BN, NiTi (см. рис. 6) и локальными областями напряжений вокруг данных частиц, стимулирующих однородное рассеивание напряжений в данных дислокациях и пограничных слоях. Это объясняется прочным уплотнением (малоподвижностью) и развитыми упругими свойствами на стыках разноразмерных пластинок данных дислокаций. Благодаря наиболее равномерному и полному рассеиванию напряжений в данных дислокациях и пограничных слоях отсутствуют места локализации микротрещин. Таким образом, в данном образце отсутствуют микротрещины при 1500 °С (см. рис. 10, б₁) по сравнению с извилистой траекторией распространения узкой микротрещины большой длины при 1300 °С (см. рис. 10, б, б₀₋₁).

Менее активное увеличение физикомеханических свойств показывает образец с добавкой NiNbZr в интервале 1200-1600 °C. Это объясняется неравномерно и слабо спекшейся микроструктурой (см. рис. 5, в, в1), менее полидисперсным составом зерен кристаллических фаз (см. рис. 6), более широкими пограничными слоями β-Si₃N₄, Ni(Nb, Zr), Ni(Zr, Nb), Ni₄₅Nb₃₅Zr₂₀ (см. рис. 8, $e_1 - e_3$). В результате уменьшаются жесткость и твердость, уплотнение и укрепление, неоднородно рассеиваются напряжения на границах разнодисперсных частиц, распределяются пластические свойства и образуются различные участки хрупкости, в частности меньшие в узком пограничном слое Ni(Nb, Zr), а большие в широких пограничных слоях β-Si₃N₄, Ni(Zr, Nb) и Ni₄₅Nb₃₅Zr₂₀ образца (см. рис. 8, в₂, в₃). Это вызвано наслоением дислокаций разной однородности и плотности возле разношироких пограничных слоев β-Si₃N₄, Ni(Nb, Zr), Ni(Zr, Nb), Ni₄₅Nb₃₅Zr₂₀ (см. рис. 10, в1-2-в1-4). Как результат, образуются сильно неравномерные участки напряжений в данных дислокациях и пограничных слоях, вызванные разной подвижностью и уплотнением на стыках пластинок и глобулярных формирований данных дислокаций. Это сильно выражено в наслоении дислокаций неравномерной и неплотной структуры с неравномерно уплотненными глобулярными формированиями возле неоднородного, широкого пограничного слоя Ni₄₅Nb₃₅Zr₂₀ (см. рис. 10, в₁₋₄), менее выражено в наслоении дислокаций частично плотной структуры с немного уплотненными широкими пластинками возле равномерных, равношироких пограничных слоев β -Si₃N₄ и Ni(Nb, Zr), между которыми имеется стык (см. рис. 10, в₁₋₂) в ходе постепенного деформационного сдвига от β-Si₃N₄ слоя к слою Ni(Nb, Zr) в силу высокой плотности наслоения дислокаций и большей твердости слоя Ni(Nb, Zr), минимально — в наслоении дислокаций равномерной и плотной структуры с сильно уплотненными глобулярными формированиями возле неоднородных, разношироких пограничных слоев β-Si₃N₄ и Ni(Zr, Nb) (см. рис. 10, в_{1.3}). Расположение более плотной и твердой структуры Ni(Nb, Zr) между менее плотными и хрупкими структурами Ni(Zr, Nb), Ni₄₅Nb₃₅Zr₂₀ разной плотности (см. рис. 8, в₃) не уплотняет и не укрепляет структуры Ni(Zr, Nb) и Ni₄₅Nb₃₅Zr₂₀. Это вызвано большей подвижностью на стыках глобулярных формирований в наслоении дислокаций возле пограничного слоя Ni₄₅Nb₃₅Zr₂₀ (см. рис. 10, в1-4), частично на стыках широких пластинок в наслоении дислокаций возле пограничного слоя Ni(Nb, Zr) (см. рис. 10, в₁₋₂), неполным, слабым уплотнением и укреплением структур Ni(Zr, Nb) и Ni(Nb, Zr), Ni(Zr, Nb) и Ni₄₅Nb₃₅Zr₂₀ (см. рис. 8, е₃). В таком образце широкие микротрещины распространяются сильно извилисто на большие расстояния (см. рис. 10, в₁, в₁₋₁) возле наслоения дислокаций неравномерных, неплотных структур с пограничным слоем Ni₄₅Nb₃₅Zr₂₀ (см. рис. 10, *в*₁₋₄), частично с пограничными слоями β-Si₃N₄ и Ni(Nb, Zr) при 1500 °С (см. рис. 10, в₁₋₂) по сравнению с извилисто-прямолинейной траекторией продвижения микротрещин большей длины (см. рис. 10, в) и с наличием возле микротрещины разной плотности и размеров частиц *c*-BN, Ni(Nb, Zr), Ni(Zr, Nb), Ni₄₅Nb₃₅Zr₂₀ при 1300 °C (см. рис. 10, в₀₋₁).

Большее развитие физико-механических свойств образцов с добавкой NiVTa связано с относительно равномерно и плотно спекшимися микроструктурами (см. рис. 5, г, г₁), более полидисперсным составом зерен кристаллических фаз (см. рис. 6), более узкими пограничными слоями β-Si₃N₄, Ni(Ta, V) и Ni(V, Ta) (см. рис. 8, г-г₃). Как результат, увеличение жесткости и твердости, уплотнения и укрепления, рассеивания напряжений на границах разнодисперсных частиц и распределения пластических свойств в пограничных слоях образца более равномерны. Причиной является в основном объединение, частично наслоение дислокаций высокой, немного низкой однородности и плотности с примерно равноширокими пластинками возле равномерных, узких пограничных слоев β-Si₃N₄, Ni(Ta, V), Ni(V, Ta) (см. рис. 10, г₁₋₂, г₁₋₃). Это значительно снижает инициацию неоднородных участков напряжений в данных дислокациях и пограничных слоях благодаря меньшей подвижности и большему уплотнению на стыках пластинок данных дислокаций. Данные процессы обратно развиты в наслоении дислокаций неравномерной и неплотной структуры со слабо уплотненными широки-

ми пластинками возле неоднородного, широкого пограничного слоя Ni₁₇V₆₁Ta₂₂ (см. рис. 10, *г*₁₋₄). В то же время между пограничными слоями β-Si₃N₄ и Ni(Ta, V) появляется двойной стык (см. рис. 10, г₁₋₂) в ходе активного деформационного сдвига от слоя β-Si₃N₄ к слою Ni(Ta, V) в силу низкой плотности наслоения дислокаций и низкой твердости Ni(Ta, V). В результате данный образец характеризуется различными видами и траекториями продвижения микротрещин, в частности разветвленностью и извилистостью с замедлением продвижения микротрещин при 1500 °С (см. рис. 10, *г*₁, *г*₁₋₁, *г*₁₋₁₋₁). Схожая извилистая траектория распространения микротрещин (см. рис. 10, г) и небольшой ширины микротрещины, посреди которой расположен мостик Ni(V, Ta), частично замедляющий продвижение микротрещины, заметны в образце при 1300 °С (см. рис. 10, г₀₋₁). Так, разветвленность широкой микротрещины с извилистой траекторией продвижения (см. рис. 10, г₁₋₁) развита возле наслоения дислокаций неравномерной и неплотной структуры с пограничным слоем Ni₁₇V₆₁Ta₂₂ (см. рис. 10, г₁₋₄). Это вызвано неоднородной, неплотной структурой Ni₁₇V₆₁Ta₂₂ возле слоистой структуры Ni(Ta, V), слабым уплотнением, укреплением структур Ni(Ta, V) и Ni₁₇V₆₁Ta₂₂ (см. рис. 10, *г*₁₋₁), отсутствием механизма уплотнения и укрепления данных структур через разветвленность микротрещины [5], что вызывает охрупчивание, разрушение данных структур и соответствующих пограничных слоев, при этом первично Ni₁₇V₆₁Ta₂₂, вторично Ni(Ta, V). Встраивание плотной структуры Ni(V, Ta) в хрупкую структуру Ni₁₇V₆₁Ta₂₂ (см. рис. 8, г₃) не уплотняет и не укрепляет структуру Ni₁₇V₆₁Ta₂₂. Это связано с большей подвижностью на стыках широких пластинок в наслоении дислокаций возле пограничного слоя Ni₁₇V₆₁Ta₂₂ (см. рис. 10, г₁₋₄), неполным уплотнением, укреплением структур Ni(V, Ta) и Ni₁₇V₆₁Ta₂₂ (см. рис. 8, *г*₃). Замедление продвижения узкой микротрещины по извилистой траектории с полным приостановлением возле частиц Ni(V, Ta) (см. рис. 10, г₁₋₁₋₁). Активное продвижение возле объединения дислокаций равномерной и плотной структуры с максимально уплотненными малыми пластинками и пограничными слоями β-Si₃N₄, Ni(V, Ta) (см. рис. 10, г₁₋₃). Это объясняется интенсивным взаимодействием распространяющейся микротрещины с объединением дислокаций, разнодисперсными частицами β-Si₃N₄ и Ni(V, Ta) (см. рис. 6) и рассеиванием напряжений впереди микротрещины с уменьшением напряжений на границе микротрещины и частиц Ni(V, Ta) благодаря большему уплотнению и укреплению стыков малых пластинок (см. рис. 10, г₁₋₂), разнодисперсных частиц β-Si₃N₄, Ni(V, Ta) (см. рис. 6) и развитым пластическим свойствам на стыках малых пластинок в объединении дислокаций (см. рис. 10, г₁₋₃), на границах разнодисперсных частиц β-Si₃N₄, Ni(V, Ta) (см. рис. 6). В результате объединение дислокаций (см. рис. 10, *г*₁₋₃) и разнодисперсные частицы β-Si₃N₄, Ni(V, Ta) (см. рис. 6) наиболее уплотняют и укрепляют структуру пограничных слоев β-Si₃N₄, Ni(V, Ta) в отличие от наслоения дислокаций с пограничными слоями β-Si₃N₄ и Ni(Ta, V) (см. рис. 10, *г*₁₋₂). Вышеуказанные процессы и результаты физико-механических свойств образцов различно влияют на линейную корреляцию *E* и *K*_{Ic} образцов в интервале 1200–1600 °C (рис. 11).

В образцах с добавкой Ti₂AlNb и NiTi, NiNbZr и NiVTa заметно различие R^2 , равное 0,0173 и 0,0256. Данная разница R² схоже коррелирует с расположением значений Е и К_{Ic} относительно линейных прямых образцов в интервале 1200-1600 °C. Корреляционная точность значений свойств относительно линейных прямых в образце с добавкой NiTi выше, чем в образце с добавкой Ti₂AlNb, а расположение линейных прямых относительно значений Е и К_{Ic} образцов с добавкой Ti₂AlNb, NiTi совпадает в интервале 1200–1600 °C. Схожая корреляционная точность значений свойств относительно линейных прямых и схожее расположение линейных прямых относительно значений Е и Кыс заметно в образцах с добавкой NiNbZr, NiVTa в интервале 1200-1600 °C.

Схожесть корреляционной точности значений свойств относительно линейных прямых и расположения линейных прямых образцов с добавкой Ti₂AlNb и NiTi в интервале 1200–1600 °C обусловлена схожими реакционными механизмами твердофазной и жидкофазной кристаллизации фаз Ti₂AlNb и NiTi (см. рис. 4, *a*, *б*), полидисперсным составом зерен кристаллических фаз (см. рис. 6), схожей шириной пограничных слоев *c*-ZrO₂, *c*-BN с более узким пограничным слоем NiTi, чем Ti₂AlNb (см. рис. 8, *a*–*a*₂, *б*–*б*₂), равной

Рис. 11. Линейная корреляция *Е* и *K*_{lc} образцов в интервале 1200–1600 °C

трещиностойкостью (см. рис. 10, а, б) и траекторией распространения микротрещин с небольшим различием ширины при 1300 °С (см. рис. 10, *а*₀₋₁, *б*₀₋₁), высокой плотностью разных видов дислокаций и схожего их уплотняющего и укрепляющего воздействия на структуру пограничных слоев (см. рис. 10, а1-2, а1-3, б1-2, б1-3). Однако небольшие отличия значений R² вызваны неоднородностью микроструктур (см. рис. 5, *a*, *б*, *a*₁, *б*₁), различием трещиностойкости (см. рис. 10, *a*₁, *б*₁) с наличием и отсутствием распространения микротрещин при 1500 °С (см. рис. 10, *a*₁₋₁), что не вызывает изменений корреляционной точности значений свойств относительно линейных прямых образцов с добавкой Ti₂AlNb и NiTi. Это связано с высоким уплотняющим и укрепляющим эффектом процессов на микроструктурном уровне (см. рис. 8, $a-a_2$, $b-b_2$ и 10, a, b, $a_{1,2}$, $a_{1,3}$, $b_{1,2}$, $b_{1,3}$).

В образцах с добавкой NiNbZr и NiVTa cxoжесть корреляционной точности значений свойств относительно линейных прямых и расположения линейных прямых в интервале 1200-1600 °C объясняется схожей однородностью микроструктур (см. рис. 5, в, г, в₁, г₁), полидисперсным составом зерен кристаллических фаз (см. рис. 6). Однако большие отличия значений R₂ образцов с добавкой NiNbZr, NiVTa связаны с различием реакционных механизмов кристаллизации металлических фаз твердых растворов (см. рис. 4, в, г, реакции (10), (11)), отличием ширины пограничных слоев β-Si₃N₄, Ni(Nb, Zr) и Ni(Ta, V), Ni(Zr, Nb) и Ni(Ta, V), Ni₄₅Nb₃₅Zr₂₀ и Ni₁₇V₆₁Ta₂₂ (см. рис. 8, в-в₃, г-г₃), разным расположением хрупких структур Ni(Zr, Nb), Ni₄₅Nb₃₅Zr₂₀ и Ni(Ta, V), Ni₁₇V₆₁Ta₂₂ относительно плотных структур Ni(Nb, Zr) и Ni(V, Ta) (см. рис. 8, в₃, г₃), разной трещиностойкостью (см. рис. 10, в, г, в₁, г₁), различной траекторией распространения микротрещин разной ширины при 1300, 1500 °С (см. рис. 10, в₀₋₁, г₀₋₁, в₁₋₁, г₁₋₁, г₁₋₁₋₁), отличием однородности, плотности, видов дислокаций и их уплотняющего, укрепляющего эффекта на

Библиографический список

40

1. **Vedant, R.** Development of ZrB_2-B_4C-Mo ceramic matrix composite for high temperature applications / *R. Vedant //* A thesis submitted to National institute of Technology Rourkela. — 2014. — P. 1–61.

2. Anupam, P. Development of ZrB₂-SiC-Ti by multi stage spark plasma sintering at 1600 °C / P. Anupam, M. Ragini, K. Nagarajan // J. Ceram. Soc. Jpn. — 2016. — Vol. 124, № 4. — P. 393-402.

3. *Naidoo, M.* Preparation of (Ti, Ta)(C, N) by mechanical alloying / *M. Naidoo, J. Raethel, I. Sigalas, M. Herrmann* // Int. J. Refract. Met. Hard Mater. — 2012. — Vol. 35, № 2. — P. 178–184.

4. *Hmelov, A. V.* Development of dense materials by spark-plasma sintering of oxide – oxide-free components with different mixtures of metal powders / *A. V. Hmelov* // Refract. Ind. Ceram. -2020. -Vol. 61, Nol. -P. 313–321.

структуру пограничных слоев (см. рис. 10, *в*₁₋₂-*в*₁₋₄, *г*₁₋₂-*г*₂₋₄).

ЗАКЛЮЧНИЕ

Показано влияние добавок Ti₂AlNb, NiTi, NiNbZr и NiVTa в ходе плазменно-искрового спекания составов при нагрузке прессования 60 МПа в интервале 1200–1600 °С на фазовый состав, микроструктуру, размеры зерен кристаллических фаз, ρ_{отн}, Δ*l*, физико-механические свойства, линейную корреляцию *E* и *K*_{Ic} образцов муллит–(Ti, Mo)(C, N)–*c*-ZrO₂–*c*-BN, муллит–(Ti, Mo)(C, N)–β-Si₃N₄–*c*-BN.

Синтезированные порошки $Ti(C_{0,7}N_{0,3})$, β -Si₃N₄, *c*-BN, Ti₂AlNb, NiTi, NiNbZr и NiVTa характеризуются интенсивной кристаллизацией фаз Ti(C_{0,7}N_{0,3}), β -Si₃N₄, *c*-BN, Ti₂AlNb, NiTi, Ni₄₅Nb₃₅Zr₂₀ и Ni₁₇V₆₁Ta₂₂. Спеченные плазменно-искровым способом *c*-ZrO₂ при 1400 °C и (Ti, Mo)(C, N) при 1800 °C показывают интенсивную кристаллизацию фаз *c*-ZrO₂ и (Ti_{0,7}Mo_{0,3})(C_{0,7}N_{0,3}). Микроструктура спеченных *c*-ZrO₂ и (Ti, Mo)(C, N) кристаллическая, состоит из различно спекшихся и уплотненных зерен разных форм.

Побавки Ti₂AlNb. NiTi. NiNbZr и NiVTa способствуют разной кристаллизации фаз муллита, (Ti, Mo)(C, N), ZrO₂, β-Si₃N₄, *c*-BN в интервале 1200-1600 °С. Кристаллическая фаза NiTi более интенсивная по сравнению с кристаллизацией фазы Ti₂AlNb, наблюдаются более кристаллические фазы Ni(Zr, Nb), Ni₄₅Nb₃₅Zr₂₀, Ni(Ta, V), Ni₁₇V₆₁Ta₂₂ в спеченных образцах в интервале 1400-1600 °С. Добавки NiTi и NiVTa способствуют формированию более равномерно и плотно спекшейся микроструктуры образцов при 1500 °C и стимулируют спекание, в результате образуются полидисперсные составы зерен кристаллических фаз образцов в интервале 1200-1600 °С. Образцы с добавкой NiTi и NiVTa показывают более активный прирост и большие значения физико-механических свойств, большую трещиностойкость, высокую линейную корреляцию Е и *К*_{IC} в интервале 1200-1600 °С.

Хмелёв, А. В. Развитие плотных материалов плазменно-искровым спеканием оксиднобезоксидных компонентов с различными смесями порошков металлов / *А. В. Хмелёв* // Новые огнеупоры. — 2020. — № 6. — С. 27–36.

5. *Hmelov, A. V.* Development of oxide-free oxide materials under spark-plasma sintering conditions of a mixture of oxide-free components and various metal powder additives / *A. V. Hmelov* // Refract. Ind. Ceram. — 2020. — Vol. 61, № 1. — P. 73–81.

Хмелёв, А. В. Разработка оксидно-безоксидных материалов в условиях плазменно-искрового спекания смеси безоксидных компонентов и различных добавок порошка металла / А. В. Хмелёв // Новые огнеупоры. — 2020. — № 2. — С. 18–24.

6. *Yu, J.* Dependence of Nb doping on microstructure and mechanical properties of Al_2O_3/Ti_3SiC_2 composites / *J. Yu*,

G. Shi, O. Li, J. Wu, L. Zhang // J. Mater. Sci. — 2020. — Vol. 55, № 17. — P. 7259–7267.

7. *Hmelov, A. V.* Spark-plasma sintering of oxide–nonoxide components with the addition of a TiC–ZrC solid solution and various metal powder mixtures / *A. V. Hmelov* // Refract. Ind. Ceram. — 2021. — Vol. 61, № 5. — P. 568–579.

Хмелёв, А. В. Плазменно-искровое спекание оксидно-безоксидных компонентов с добавлением твердого раствора TiC-ZrC и различных смесей порошков металла / *А. В. Хмелёв* // Новые огнеупоры. — 2020. — № 10. — С. 27–38.

8. *Ren, X.* Spark plasma sintered WC–Ni carbides with various contents of ZrC nanopowder / *X. Ren, Z. Peng, Y. Peng, C. Wang* // Key Eng. Mater. — 2014. — Vol. 591, № 1. — P. 75–78.

9. *Zhang, J.* Spark plasma sintering and characterization of WC-Co-*c*-BN composites / *J. Zhang, R. Tu, T. Goto //* Eng. Mater. — 2014. — Vol. 616, № 4. — P. 194–198.

10. *Fei, Y.* The phase composition and mechanical properties of Al_2O_3 -TiC-TiN ceramic materials with different Ni content / *Y. Fei, Ch. Huang, H. Liu //* J. Ceram. Sci. Tech. – 2019. – Vol. 10, N2. - P. 1-8.

11. **Verma, V.** Processing of TiCN–WC–Ni/Co cermets via conventional and spark plasma sintering technique / V. Verma, M. Kumar // Trans. Ind. Inst. Met. — 2017. — Vol. 70, № 3. — P. 843–853.

12. *Hmelov, A. V.* Stimulation of spark-plasma sintering of mixtures of oxide-non-oxide components by adding a solid solution TaB_2 -NbC and through a nickel melt in mixtures of metal powders / *A. V. Hmelov //* Refract. Ind. Ceram. — 2021. — Vol. 62, No 1. — P. 74–88.

Хмелёв, А. В. Стимулирование плазменноискрового спекания смесей оксидно-безоксидных компонентов добавлением твердого раствора TaB₂-NbC и через расплав никеля в смесях порошков металлов / *А. В. Хмелёв* / Новые огнеупоры. — 2021. — № 2. — С. 14–29.

13. *Karakozov, B. K.* Structural and phase transformations in alloys during spark plasma sintering of Ti + 23,5 at. % Al + 21 at. % Nb powder mixtures / *B. K. Karakozov, M. K. Skakov, Sh. R. Kurbanbekov, A. A. Sitnikov* // Inorg. Mater. — 2018. — Vol. 54, № 1. — P. 37–42.

14. **Tokunaga, T.** Thermodynamic analysis of the phase equilibria in the Ni–Nb–Zr system / *T. Tokunaga, S. Matsumoto, H. Ohtani, M. Hasebe //* Mater. Trans. — 2007. — Vol. 48, № 9. — P. 2263–2271.

15. *Wang, C.* Phase equilibria in the Ni–V–Ta ternary system / *C. Wang, Y. Liang, S. Yang, J. Zhang //* Metals. — 2018. — Vol. 8, № 10. — P. 762–774.

16. **Торопов, Н. А.** Диаграммы состояния силикатных систем / Н. А. Торопов, В. П. Барзаковский, Р. В. Лапин. — Л. : Наука, 1979. — С. 437–439. 17. **Zhang, H.** Phase transformation and microstructure control of Ti₂AlNb-based alloys: a review / H. Zhang, N. Yan, H. Liang, Y. Li // J. Mater. Sci. Technol. — 2021. — Vol. 80, № 30. — P. 203–216.

18. **Ibrahim, M.** The binary system Nb₂O₅−SiO₂ / M. *Ibrahim, N. Bright* // J. Am. Ceram. Soc. — 2006. — Vol. 45, № 5. — P. 221, 222.

19. **Zhang, X.** Preparation and characterization of Nb₂O₅-Al₂O₃ system ceramics with different Al₂O₃ additions / X. *Zhang, J. Zhou, Y. Jiang, C. Wu, C. Lin //* Eng. Mater. — 2013. — Vol. 544, Ne 4. — P. 60–63.

20. *Garcia-Prieto, A.* Influence of microstructural characteristics on fracture toughness of refractory materials / *A. Garcia-Prieto, M. D. Ramos-Lotito, D. Gutierrez-Campos, C. Baudin //* J. Eur. Ceram. Soc. - 2015. - Vol. 35, No 6. - P. 1956–1970.

21. *Phillips, B.* Phase equilibria in the system NiO-Al₂O₃-SiO₂ / *B. Phillips, J. J. Hutta, I. Warshaw* // J. Am. Ceram. Soc. — 2006. — Vol. 46, № 12. — P. 579–583.

22. **Wannagon, A.** Formation and thermal stability in the SiO₂-TiO₂-ZrO₂ system / A. Wannagon, N. Mishima, T. Wakasugi, R. Ota, J. Fukanaga // J. Ceram. Soc. Jpn. — 1997. — Vol. 105, № 11. — P. 940–946.

23. *Ilatovskaia, M.* Thermodynamic description of the Al_2O_3 -TiO_2-ZrO₂ system based on experimental data / *M. Ilatovskaia, G. Savinykh, O. Fabrichnaya //* J. Eur. Ceram. Soc. — 2017. — Vol. 37, № 10. — P. 3461–3469.

24. **Zygmuntowicz**, **J**. Fabrication and characterization of ZrO_2/Ni composites / J. Zygmuntowicz, P. Falkowski, A. Miazga, K. Konopka // J. Aust. Ceram. Soc. — 2018. — Vol. 54, N $ext{ } 4.$ — P. 655–662.

25. Choi, S. H. Reaction kinetics and morphological study of $TiNb_2O_7$ synthesized by solid-state reaction / S. H. Choi, B. Ali, S. K. Hyun, J. J. Sim // Arch. Metall Mater. -2017. - Vol. 62, N2. - P. 1051-1056.

26. **Perez, R. J.** Thermodynamic evaluation of the Nb–O– Zr system / R. J. Perez, A. R. Massih // J. Nucl. Mater. — 2007. — Vol. 360, № 3. — P. 242–255.

27. *Chuprina, G. V.* Reactions of NiTi with oxygen / *G. V. Chuprina, M. I. Shalya* // Powder Metall Met. Ceram. — 2002. — Vol. 41, № 1/2. — P. 85–89.

28. *Qiu, A.-T.* Calculation of phase diagram of Ti–Ni–O system and application to deoxidation of NiTi alloy / *A.-T. Qiu, L.-J. Liu, W. Pang, X.-G. Lu, C.-H. Li* // Trans. Non-ferrous Met. Soc. China. — 2011. — Vol. 21, № 8. — P. 1808–1816.

Получено 14.09.21 © А. В. Хмелёв, 2021 г.

 научно-техническая информация

 14-я ТИХООКЕАНСКАЯ КОНФЕРЕНЦИЯ ПО ТЕХНОЛОГИИ КЕРАМИКИ И СТЕКЛА (PACRIM) и ежегодное собрание по стеклу и оптическим материалам (gomd 2021)

 14TH PACIFIC RIM CONFERENCE ON CERAMIC AND GLASS TECHNOLOGY including

 Glass & Optical Materials Division Meeting (GOMD 2021)

 December 12-17, 2021 | Vancouver, BC, Canada | ceramics.org/pacrim14

 12–17 декабря 2021 г. Ванкувер, Канада