А. Н. Николаев¹ (🖂), д. х. н. И. Б. Баньковская¹, д. х. н. Н. Н. Рожкова²

- ¹ ФГГБУН «Институт химии силикатов имени И. В. Гребенщикова РАН», Санкт-Петербург, Россия
- ² ФГБУН «Институт геологии ФИЦ «Карельский научный центр РАН», Петрозаводск, Республика Карелия, Россия

УДК 621.791.015:544.236.2]:661.66

КОМПОЗИТЫ И ПОКРЫТИЯ НА ОСНОВЕ СТЕКЛООБРАЗУЮЩЕЙ СИСТЕМЫ Si-B₄C-ZrB₂, МОДИФИЦИРОВАННОЙ УГЛЕРОДСОДЕРЖАЩИМИ МАТЕРИАЛАМИ

Изучено влияние углеродсодержащих материалов (графита, шунгитового углерода и ацетиленовой сажи) на свойства композитов и покрытий на основе стеклообразующей системы Si-B₄C-ZrB₂. Приведены результаты термогравиметрического и дифференциально-термического анализов, испытания на термостойкость, исследованы фазовый состав и морфология поверхности покрытий. Показано, что при введении углеродных добавок площадь остеклованной поверхности покрытия увеличивается, в связи с чем повышается сопротивление материала воздействию высоких температур и других агрессивных факторов.

Ключевые слова: кремний, карбид бора, борид циркония, графит, шунгит, ацетиленовая сажа, жаростойкое покрытие, стеклообразующий расплав, жаростойкость.

введение

рафит является конструкционным материалом, обладающим рядом ценных свойств. Для него характерна высокая электропроводность, он легко поддается механической обработке, обладает высокой стойкостью к температурному воздействию в отсутствие кислорода. Однако в окислительной среде выше 500 °C графит нуждается в защите. Графит представляет интерес как материал для высокотемпературных применений из-за его высокой температуры плавления, повышенной прочности и вязкости разрушения, а также слоистой структуры, которая обеспечивает самосмазывающие характеристики и высокую термостойкость. Такие свойства делают графит широко применяемым в композиционных материалах.

Производство стали в России показывает уверенный рост, повышаясь каждый год в среднем на 5 %. Для получения 1 т стали в электродуговой печи графитовый электрод теряет 2,5 кг исходной массы. Поскольку электроды являются дорогостоящим расходным материалом,

стоит задача повысить срок их службы. Применив жаростойкие покрытия, можно снизить расход электродов до 40 %. Для этого можно использовать жаростойкие покрытия на основе стеклообразующей композиции Si-B₄C-ZrB₂, свойства которой могут быть улучшены введением специальных добавок [1].

Для равномерного распределения исходных компонентов в составе покрытия (материала) могут применяться разные углеродные добавки [2]. При их окислении в процессе нагрева в покрытии наблюдаются два эффекта: дополнительное повышение температуры за счет экзотермической реакции окисления углерода и образование газообразной фазы (оксидов углерода), способствующей перемешиванию и более равномерному распределению компонентов покрытия. Локальное повышение температуры в печи на поверхности образцов в дальнейшем приводит к большей остеклованности поверхности и уменьшению ее пористости.

Авторы публикации [3] синтезировали композиты на основе ZrB₂-SiC_w-графен при 1950 °С и 30 МПа в течение 1 ч в процессе спекания. По сравнению с монолитными материалами из ZrB₂ прочность на изгиб и вязкость разрушения композита повышаются за счет синергетического эффекта SiC и графена. При введении добавки графита [4] удалось также улучшить механические свойства материалов на основе ZrB₂-SiC, синтезированных при помощи искрового плазменного спекания. Использование углерода в качестве спекающей добавки [5] способствует уплотнению синтезируемого материала за счет снижения оксидных примесей.

Для изучения эффекта добавления графита в ультравысокотемпературную керамику авторы статьи [6] изготовили керамику методом горячего прессования при 1950 °С и давлении 30 МПа. Установлено, что трещиностойкость и сопротивление термическому удару заметно увеличиваются с введением добавки графита, тогда как твердость и прочность на изгиб немного уменьшаются.

При помощи конденсации пара и уплотняющей цементации авторы статьи [7] синтезировали композиты SiC, армированные нанопроволокой из SiC, для углерод-углеродного композита. Введение нанопроволоки позволило улучшить вязкость разрушения и износостойкость покрытия из карбида кремния.

Авторы статьи [8] синтезировали многофазное стойкое к окислению покрытие на основе системы TaB₂-SiC-Si для углерод-углеродных композитов, покрытых SiC. Сформированный силикатный слой стекла, содержащий SiO₂ и оксиды тантала, может не только залечивать дефекты в покрытии, но и понижать диффузию кислорода, что, в свою очередь, увеличивает сопротивление окислению.

Авторы публикации [9] исследовали возможность создания многофункциональных композитных электромагнитных материалов на основе безобжиговой термостойкой механически прочной фосфатной керамики. Изучен потенциал использования недопированных и допированных бором многокамерных углеродных нанотрубок (МУНТ и В-МУНТ соответственно) в качестве функциональных добавок к фосфатной матрице. Использование углеродных нанотрубок позволило увеличить прочность и снизить температуру формирования, а также на порядок повысить электропроводность.

Все вышеизложенное позволяет судить о том, что углеродные материалы являются перспективным модификатором боросиликатных композитных материалов, которые улучшают их механические свойства — трещиностойкость и вязкость разрушения, способствуют залечиванию дефектов в покрытии, уплотнению композитов, повышают термостойкость и стойкость к окислению. В этой связи в настоящей работе проведены сравнительные исследования влияния порошкообразных углеродных модификаторов — графита, шунгитового наноуглерода и ацетиленовой сажи на процессы формирования и свойства композитов основе стеклообразующей системы Si-B₄C-ZrB₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве основы для покрытия выбрана система Si-B₄C-ZrB₂, описанная ранее в публикациях [10, 11]. В качестве добавок использовали порошок графита ГМЗ (мельче 5 мкм), ацетиленовую сажу (~40 мкм), а также шунгитовый наноуглерод (C + SiO₂, мельче 1 мкм) в составе гибридного наполнителя [12], взятые в количестве 5-15 мас. % к общей массе шихты. Покрытия наносили шликерно-обжиговым методом на заранее подготовленные образцы графита размерами 10×5×2 мм. В качестве связующего вещества применяли 2 %-ный водный раствор карбоксиметилцеллюлозы. После каждого нанесенного слоя образцы сушили на плитке при 80 °С. Удельную толщину покрытия доводили до 80-120 мг/см². Состав исследованных композиций приведен в таблице.

Состав образцов исследовали методом рентгенофазового анализа (РФА) на дифрактометрах Smartlab 3 (Rigaku) и ДРОН-2 с использованием Си *K*_α-излучения и Ni-фильтра. Дифрактограммы были сняты с поверхности покрытий на графите. Анализ выполнен с помощью пакета прикладных программ ICDD (DDWiew2008). Термостойкость образцов определяли с помощью дифференциального термического анализа (ДТА) на приборе STA 449F1 (Netzsch) при скорости нагрева 10 град/мин на воздухе, ДТА проводили на приборе системы Paulik – Paulik – Erdey Q-1500C (MOM, Венгрия).

Покрытие формировали по так называемому «щадящему» неизотермическому режиму. Образцы помещали в печь при 1000 °С, далее температуру повышали до 1300 °С со скоростью 3 град/мин и выдерживали при этой температуре 10 мин. Обжиг проводили в воздушной атмосфере в печи с нагревателями из карбида кремния. После термообработки большая часть образцов выдержала испытания, выгорание графитовой подложки составило в среднем 5 %, что

Состав	Содержание компонента*, мас. %					
	Si	ZrB_2	B_4C	графит	шунгит	сажа
1	70	20	10	_	_	-
2	66,5	19	9,5	5	-	_
3	66,5	19	9,5	-	5	-
4	66,5	19	9,5	-	-	5
5	59,5	17	8,5	15	-	_
6	59,5	17	8,5	-	15	-
7	59,5	17	8,5	-	-	15
ремний марки	Кр-1 (50 мкм), бор	оид циркония квал	ификации ч. (5–3	30 мкм), карбид б	ора фракции 5–30	мкм.

Исходный состав исследуемых композиций

находится в допустимых пределах; выгорание у остальных образцов не более 20 %.

Кроме покрытий на основе композиций, приведенных в таблице, испытания проводили на компактированных образцах. Образцы в виде таблеток прессовали под давлением 100 МПа и нагревали в воздушной атмосфере при 1000–1300 °С в течение 2,5 ч с 15-мин выдержкой при 1300 °С. Определяли кажущуюся плотность, открытую и общую пористость по ГОСТ 2409–67. Образцы выдерживали 24 ч в керосине, затем взвешивали. Среднее значение пористости образцов 50 %, кажущаяся плотность 2,59 г/см³.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Жаростойкость образцов графита с покрытиями и компактированных образцов показана на кривых термогравиметрического анализа, которые характеризуют изменение массы образцов на единицу поверхности при заданной температуре за определенное время испытаний *m*, г (рис. 1, *a*). Готовили по два образца каждого состава.

Если у образцов графита с покрытиями происходит некоторая убыль массы, а затем залечивание дефектов в покрытии и увеличение массы благодаря образованию новых фаз — продуктов окисления (см. рис. 1, б), то у компактированных образцов наблюдается постоянство массы в течение всего времени обжига благодаря образованию защитного слоя и стойкости исходных

Рис. 1. Изменение массы *m* компактированных образцов (*a*) и образцов графита с покрытиями (*б*) составов *1*-7 (см. таблицу) при термоциклировании (500–1300 °С в течение 90 мин)

компонентов к окислениию под воздействием высокой температуры (см. рис. 1, *a*).

Как видно из рис. 1, б, все образцы успешно прошли испытания, серьезного выгорания графита не наблюдается на всем протяжении обжига. Лучшие результаты показывают образцы составов 1 (без добавок) и 5 (с 15 % графита), худший результат показал образец состава 6 (с 15 % шунгита), у которого наблюдается некоторая убыль массы после испытаний.

Определение фазового состава поверхности покрытий

На дифрактограммах образцов графита с покрытием (рис. 2) на малых углах θ четко видно гало, свидетельствующее об образовании стеклообразующего расплава. Наиболее ярко это выражено у образца состава 7, что свидетельствует о наибольшей остеклованности его поверхности. Кроме того, присутствуют две исходные фазы — кремний и борид циркония и еще не-

Рис. 2. Дифрактограммы поверхности образцов графита с покрытиями составов 1, 5, 6 и 7 (см. таблицу) после нагрева при 1000–1300 °С в течение 2,5 ч с 15-мин выдержкой при 1300 °С: ■ — Si; □ — ZrB₂; ■ — ZrSiO₄; ● — ZrO₂; ● — SiO₂; ○ — H₃BO₃

52

сколько фаз: диоксид циркония, силикат циркония и α -кристобалит; возможно также присутствие борной кислоты при θ = 12,5 град.

Результаты ДТА

Окисление графита происходит при 550-560 °С, а окисление диборида циркония начинается уже при 580 °С и продолжается до 650 °С (рис. 3). На рис. 3, б видны два пика, что свидетельствует о наличии двух фаз графита.

Результаты РФА продуктов окисления порошков состава 5 после ДТА (термообработка при 20–1000 °C) показали присутствие исходных компонентов — кремния и диборида циркония.

Рис. 3. Термограммы порошкообразной смеси исходных компонентов состава 1 (*a*), чистого порошка графита (б) и порошка состава 5 (в)

Основываясь на результатах РФА и данных литературы [9], можно предположить протекание следующих реакций:

$$ZrB_2 + 2,5O_2 = ZrO_2 + B_2O_3,$$
 (1)

$$\mathrm{Si} + \mathrm{O}_2 = \mathrm{SiO}_2,\tag{2}$$

$$B_4C + 4O_2 = 2B_2O_3 + CO_2, \tag{3}$$

 $mB_2O_3 + nSiO_2 = mB_2O_3 \cdot nSiO_2, \qquad (4)$

$$C + O_2 = CO_2. \tag{5}$$

Из данных ДТА (см. рис. 3) видно, что в порошке графита первый пик — образование CO₂, затем происходит замедление реакции и вновь начинается окисление. В порошке состава 5 окисление графита совпадает с окислением ZrB₂, поэтому виден только один пик. Результаты РФА после ДТА показали, что графит после термообработки не обнаружен. Кроме исходных компонентов был обнаружен моноклинный диоксид циркония, который образуется в процессе окисления ZrB₂.

Взаимодействие шунгитового наноуглерода с шихтой при термообработке иллюстрируют результаты синхронного термического анализа (рис. 5, 6). На кривой ДСК композиции (см. рис. 5, кривая 2) наблюдается несколько максимумов (при 668, 797 и 980 °C). Наложение термограммы гибридного наполнителя (см. рис. 5, кривая 1) позволяет связать максимум при 668 °C с горением шунгитового углерода. Завершение процесса горения при 718 °C сопровождается подъемом на кривой *TГ* (см. рис. 5, кривая 3) и увеличением массы композиции на 10,5 %, связанным с образованием новых оксидных фаз.

Максимумы на кривых ДСК композиций после термообработки при 1200 °С (рис. 6) наблюдаются как с гибридным наполнителем (кривая 1), так и с шунгитовым углеродом (кривая 2). В про-

Рис. 4. Дифрактограммы порошков состава 5 (см. таблицу) до (*a*) и после термообработки при 20–1000 °С (*б*, измельченный спек): • — ZrB₂ (75-7050); † — Si куб (75-0590); С — графит; **]** — ZrO₂ мон

Рис. 5. Термограммы шунгита (1, 3) и композиции Si-B₄C-ZrB₂ с добавкой шунгита, термообработанной при 1200 °C (2, 4)

Рис. 6. Термограммы композиций Si-B₄C-ZrB₂ с добавками шунгита (1, 3) и шунгитового углерода (2, 4), термообработанных при 1200 °C

цессе обработки происходят выделение и упорядочение структурных элементов шунгитового углерода на контакте с зернами смеси (максимумы при 697, 751 и «плечо» при 840 °C). При завершении процесса наблюдается увеличение массы композиции на 38,6 %. В образовании новых фаз в композиции на основе Si-B₄C-ZrB₂ участвует лишь третья часть шунгитового углерода. Как видно из рис. 7, поверхность образцов обоих видов имеет темно-серый цвет с блеском, что свидетельствует о присутствии на их поверхности стеклофазы.

Рис. 7. Компактированные образцы (верхний ряд) и образцы графита с покрытиями составов 1, 5, 6 и 7 (нижний ряд) после нагрева в интервале 1000–1300 °C в течение 2,5 ч с 15-мин выдержкой при 1300 °C

Рис. 8. АСМ-изображение (слева) и оптическое изображение (справа) поверхности покрытий на образцах составов 1 (верх) и 2 (низ); ширина кантилевера 35 мкм. Образцы нагревали в интервале 1000–1300 °C в течение 2,5 ч с 15-мин выдержкой при 1300 °C

Рис. 9. Микроструктура образцов без добавок (состав 1) и образцов составов 5, 6 и 7 с углеродными добавками (см. таблицу). ×130

Определение морфологии поверхности покрытий на атомно-силовом микроскопе

Исследования проводили на атомно-силовом микроскопе (ACM) NTEGRA фирмы NT-MDT. Установлено, что поверхность образцов неоднородная — имеются как остеклованные гладкие участки, так и те, на которых отчетливо видны отдельные кристаллы. Белые пузыри на поверхности — следы выхода газообразных продуктов. На рис. 9 показана микроструктура образцов. Наибольшую остеклованность показывает образец состава 7 с добавкой 15 % сажи: на его поверхности видно большее количество остеклованных участков, чем у других образцов. Микроструктура поверхности образцов составов с углеродными добавками отличается от микроструктуры поверхности образцов без добавок большей неоднородностью, связанной с улетучиванием газообразных продуктов при термообработке.

ЗАКЛЮЧЕНИЕ

На основе системы Si-B₄C-ZrB₂, модифицированной углеродсодержащими материалами (графитом, шунгитовым углеродом и ацетиленовой сажей), нагретыми при 1000-1300 °C на воздухе, получены композиты и покрытия с остеклованной поверхностью темно-серого цвета. Поверхность материала, состоящего из нескольких разных по составу слоев (поверхностного оксидного слоя и неокисленных исходных частиц в подповерхностном слое), в результате введения углеродсодержащих модификаторов обладает наибольшей остеклованностью.

Модифицированные материалы могут быть использованы в разных отраслях промышленности, а также для защиты оксидной керамики от эрозионного воздействия и придания ей темной окраски.

* * *

Работа выполнена в рамках государственного задания ИХС РАН при поддержке Минобрнауки России (тема № АААА-А19-119022290090-1) и ААААА18118020690131-4 (РНН).

Библиографический список

1. **Николаев, А. Н.** Синтез и исследование жаростойких покрытий на основе композиции Si-B₄C-ZrB₂-ZrO₂ / А. Н. Николаев, И. Б. Баньковская, Д. В. Коловертнов // Физика и химия стекла. — 2020. — Т. 46, № 6. — С. 649-657.

2. **Красовский, А. Н.** Ближний порядок и фрактальная кластерная структура агрегатов микрочастиц титаната бария в композите на основе цианэтилового эфира поливинилового спирта / А. Н. Красовский, Д. В. Новиков, Е. С. Васина [и др.] // Физика твердого тела. — 2015. — Т. 57, № 12. — С. 2479–2484.

3. **Yumin, An.** Effect of SiC whiskers and graphene nanosheets on the mechanical properties of ZrB_2-SiC_w- Graphene ceramic composites / An Yumin, Xu Xianghong, Gui Kaixuan // Ceram. Int. — 2016. — Vol. 42, No 12. — P. 14066–14070.

4. Cheng, YeHong. ZrB_2 -SiC-G composite prepared by spark plasma sintering of in-situ synthesized ZrB_2 -

SiC-C composite powders / YeHong Cheng, Qi Yushi, Hu Ping, Zhou Shanbao // J. Am. Ceram. Soc. — 2016. — Vol. 99, № 6. — P. 2131–2137.

5. *Khoeini, M.* Comprehensive study on the effect of SiC and carbon additives on the pressureless sintering and microstructural and mechanical characteristics of new ultra-high temperature ZrB_2 ceramics / *M. Khoeini, A. Nemati, M. Zakeri, M. Tamizifar, H. Samadi //* Ceram. Int. -2015. - Vol. 41. - P. 11456-11463.

6. *Wang, Zhi.* Fabrication, mechanical properties and thermal shock resistance of a ZrB_2 -graphite ceramic / *Zhi Wang, Wu Zhanjun, Shi Guodong //* Int. J. Refract. Met. Hard Mater. -2011. - Vol. 29. - P. 351-355.

7. *Hejun, Li.* Wear behavior of SiC nanowire-reinforced SiC coating for C/C composites at elevated temperatures / *Li Hejun, Chen Zishan, Li Keshi* [et al.] // J. Eur. Ceram. Soc. — 2013. — Vol. 33. — P. 2961–2969.

8. **Xuanru, Ren.** TaB₂-SiC-Si multiphase oxidation protective coating for SiC-coated carbon/carbon composites / *Ren Xuanru, Li Hejun, Fu Qiangang* [et al.] // J. Eur. Ceram. Soc. — 2013. — Vol. 33. — P. 2953–2959.

9. Плющ, А. О. Влияние допирования углеродных нанотрубок бором на электрические и электромагнит-

ные свойства фосфатных композитных материалов / А. О. Плющ, А. А. Сокол, К. Н. Лапко [и др.] // Вестник БГУ. Серия 1. Физика. Математика. Информатика. — 2014. — № 3. — С. 40-46.

10. **Николаев, А. Н.** Синтез и исследование жаростойких покрытий на основе композиции кремний-карбид бора – борид циркония – оксид алюминия / А. Н. Николаев, И. Б. Баньковская, Д. В. Коловертнов, И. Г. Полякова // Физика и химия стекла. — 2018. — Т. 44, № 5. — С. 450-454.

11. **Николаев, А. Н.** Исследование морфологии и твердости покрытий на основе композиции Si-B₄C-ZrB₂ / А. Н. Николаев, И. Б. Баньковская, К. Э. Пугачев, Д. В. Коловертнов // Физика и химия стекла. — 2019. — Т. 45, № 2. — С. 196-200.

12. Пат. 2448899 Российская Федерация, МПК С 01 В 31/00, С 09 С 1/44. Способ переработки шунгита / Рожков С. С., Рожкова Н. Н. — заявл. 05.08.10; опубл. 27.04.12. ■

> Получено 09.03.21 © А. Н. Николаев, И. Б. Баньковская, Н. Н. Рожкова, 2021 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

56