Д. т. н. В. В. Кузин (🖾), к. т. н. М. А. Волосова, к. т. н. М. Ю. Федоров

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

удк 666.3:546.28'171].017:543.57+539.375 КОМБИНИРОВАННЫЙ АНАЛИЗ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПОВЕРХНОСТНОГО СЛОЯ Al₂O₃—TiC-КЕРАМИКИ С ПОКРЫТИЯМИ AIN И TIN

Приведен анализ влияния покрытий AlN и TiN на напряженно-деформированное состояние поверхностного слоя Al₂O₃-TiC-керамики при воздействии комбинированной нагрузки. Установлены закономерности распределения напряжений и расположения микроструктурных концентраторов напряжений в структурных элементах, образующих поверхностный слой этой керамики.

Ключевые слова: Al₂O₃—TiC-керамика, поверхностный слой (ПС), покрытия AlN и TiN, комбинированная нагрузка, напряженно-деформированное состояние, интенсивность напряжений, микроструктурный концентратор напряжений.

ВВЕДЕНИЕ

астоящая статья является продолжением работ [1, 2], в которых выполнен анализ напряженно-деформированного состояния поверхностного слоя (ПС) Al₂O₃-ТіС-керамики с покрытиями AlN и TiN при воздействии силовой и тепловой нагрузки соответственно. Между тем наиболее распространенный характер нагружения керамических деталей и инструментов при эксплуатации определяется совместным действием силовых и тепловых нагрузок, формирующих специфическое напряженное состояние их ПС. Уровень и распределение микронапряжений, а также расположение микроструктурных концентраторов напряжений определяют особенности разрушения ПС керамики, контактирующего с контртелом, и основную причину отказов деталей и инструментов [3]. В этой связи в настоящей работе поставлена цель — исследовать напряженно-деформированное состояние ПС Al₂O₃-TiC-керамики с покрытиями AlN и TiN в условиях совместного действия силовой и тепловой нагрузки.

Численные эксперименты выполнены в автоматизированной системе термопрочностных расчетов KS-SL v.1.0 с использованием расчетной схемы (рис. 1) [4] и метода контрольных точек (КТ) [5]. Исследовали характер изменения интенсивности напряжений σ_i в ПС Al₂O₃-TiC-

⊠ B. B. Кузин E-mail: dr.kuzinvalery@yandex.ru

Рис. 1. Расчетная схема

керамики с покрытием четырех систем (№ 1-4, см. таблицу) под действием комбинированной нагрузки, состоящей из сосредоточенной силы F = 0,02 H, $\beta = 45^{\circ}$, распределенной силы $P = 5 \cdot 10^8$ Па и теплового потока $Q = 9 \cdot 10^8$ Вт/м²; коэффициент теплоотдачи в окружающую среду $h = 1 \cdot 10^5$ Вт/(м²-град).

Система	Зерно	Межзеренная фаза	Матрица	Слой
Nº 1	Al_2O_3	MgO	Al_2O_3	AlN
Nº 2	TiC	MgO	Al_2O_3	AlN
Nº 3	Al_2O_3	MgO	Al_2O_3	TiN
<u>№</u> 4	TiC	MgO	Al_2O_3	TiN

66

ПС Al₂O₃-TiC-керамики с покрытием сформирован поверхностями структурных элементов: поверхностью зерна, примыкающей к межзеренной фазе (поверхность *C1* — KT1-KT18); поверхностью межзеренной фазы, примыкающей к зерну (*C2* — KT19-KT34); поверхностью межзеренной фазы, примыкающей к матрице (*C3* — KT35-KT50); поверхностью матрицы, примыкающей к межзеренной фазе (*C4* — KT51-КT66); поверхностями зерна, межзеренной фазы и матрицы, примыкающими к слою покрытия (*C5* — KT67-KT82); поверхностью слоя покрытия, примыкающей к зерну, межзеренной фазе и матрице (*C6* — KT83-KT98).

По результатам расчетов с использованием программного комплекса Statistica определяли статистические характеристики для σ_i в КТ каждой поверхности: наименьшие $\sigma_{\text{мин}}$, наибольшие $\sigma_{\text{макс}}$, средние $\sigma_{\text{ср}}$; $\Delta \sigma_i$ — диапазон изменения σ_i ; медиану M_e для σ_i ; стандартное отклонение *s* для σ_i .

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Схема деформации ПС Al₂O₃-TiC-керамики под действием комбинированной нагрузки показана на рис. 2, *а.* Видно, что деформация имеет сложный характер. Точка приложения сосредоточенной силы 0 не перемещается относительно исходного контура, сохраняя первоначальное положение под действием сосредоточенной силы. Точки, равноудаленные от нее, упруго перемещаются с характерными признаками выдавливания. Наибольшие значения вертикальных v и горизонтальных и перемещений имеет точка 1, упруго перемещающаяся по стрелке из исходного положения в точку 1¹. Результаты расчетов и и v для одинаковых КТ в ПС керамики разных систем существенно различаются.

Установлено, что поля σ_i , сформировавшиеся в ПС керамики с покрытием четырех систем под действием комбинированной нагрузки, характеризуются наибольшими значениями в локальных объемах слоя покрытия и зерна, находящихся на траектории действия сосредоточенной силы и в локальных объемах границы керамика-покрытие. В качестве примера на рис. 2, б показано поле σ_i в ПС керамики с покрытием системы № 2.

Характер изменения σ_i в разных поверхностях ПС Al_2O_3 -TiC-керамики с покрытием под действием комбинированной нагрузки показан на рис. 3. Видно, что формы кривых для поверхностей C1-C4 существенно не различаются и характеризуются одинаковым расположением КТ с минимальными и максимальными значениями σ_i (см. рис. 3, a-e). Для поверхностей C5 и C6 изменения σ_i описываются однотипными ломаными кривыми с наибольшими значениями σ_i в центральной части (см. рис. 3, ∂ и e).

Кривые изменения σ_i в КТ поверхности *C1* ПС керамики систем № 1–4 показаны на рис. 3, *а*. Видно, что кривые для всех систем имеют однотипную сглаженную форму с наибольшими значениями σ_i в КТ2 и наименьшими в КТ 11 и КТ 12. Установлено, что в поверхности *C1* ПС керамики системы № 1 σ_i изменяется от 367 ($\sigma_{\text{мин}}$) до 894 МПа ($\sigma_{\text{макс}}$) при $\Delta\sigma_i = 527$ МПа и $M_e =$ = 543,5 МПа, системы № 2 — от 420 до 907 МПа при $\Delta\sigma_i = 487$ МПа и $M_e = 562$ МПа, системы № 3 — от 329 до 761 МПа при $\Delta\sigma_i = 432$ МПа и $M_e = 480,5$ МПа, системы № 4 — от 357 до 799 МПа при $\Delta\sigma_i = 442$ МПа и $M_e = 499,5$ МПа. Наибольшими значениями $\Delta\sigma_i$ и M_e характеризуются системы № 1 и 2 соответственно, наи-

Рис. 2. Схема деформации в ПС Al₂O₃-TiC-керамики с покрытием системы № 2 (*a*) и поле σ_i под действием комбинированной нагрузки (*б*)

Рис. З. Характер изменения σ_i в поверхностях *C1* (*a*), *C2* (*b*), *C3* (*b*), *C4* (*c*), *C5* (*d*) и *C6* (*e*) Al₂O₃−TiC-керамики с покрытием систем № 1–4 (1–4) под действием комбинированной нагрузки

меньшими — система № 3. Связь систем № 1-4 характеризуется высоким коэффициентом корреляции (0,99), значимым на уровне 0,05.

Характер изменения σ_i в КТ поверхности *C2* ПС керамики систем № 1-4 показан на рис. 3, б. Видно, что имеются четыре однотипных кривых сглаженной формы. Особенностью кривых для систем № 1-4 является наибольшая σ_i в КТ19 и наименьшая σ_i в КТ27. В поверхности *C2* ПС керамики системы № 1 σ_i изменяется от 508 до 1231 МПа при $\Delta \sigma_i$ = 723 МПа и M_e = 652,5 МПа, системы № 2 — от 582 до 119 МПа при $\Delta \sigma_i$ = 537 МПа и M_e = 696 МПа, системы № 3 — от 398 до 1022 МПа при $\Delta \sigma_i$ = 624 МПа и M_e = 548,5 МПа, системы № 4 — от 444 до 942 МПа при $\Delta \sigma_i$ = 498 МПа и M_e = 569 МПа. Наибольшими значениями $\Delta \sigma_i$ и M_e характеризуются системы № 1 и 2, наименьшими — системы № 4 и 3 соответственно. Связь систем № 1-4 по σ_i характеризуется коэффициентом корреляции 0,99.

Характер изменения о, в КТ поверхности СЗ ПС керамики систем № 1-4 показан на рис. З, в. На графике имеются четыре однотипных кривых для систем № 1-4. Особенностью этих кривых является наибольшая σ_i в КТЗ5 и наименьшая о, в диапазоне КТ44-КТ46. Установлено, что связь систем № 1-4 по о, характеризуется коэффициентом корреляции 0,99. В поверхности СЗ ПС керамики системы № 1 о, изменяется в диапазоне от 477 до 1216 МПа при Δσ_i = 739 МПа и M_e = 579 МПа, системы № 2 — от 531 до 1122 МПа при $\Delta \sigma_i = 591$ МПа и $M_e = 617,5$ МПа, системы № 3 — от 383 до 1008 МПа при Δσ_i = 625 МПа и М_е = 491,5 МПа, системы № 4 — от 417 до 951 МПа при Δσ_i = 534 МПа и M_e = 506 МПа. Наибольшими значениями $\Delta \sigma_i$ и M_e характеризуют-

68

ся системы № 1 и 2, наименьшими — системы № 4 и 3 соответственно.

Характер изменения о, в КТ поверхности С4 ПС керамики систем № 1-4 показан на рис. 3, г. Графики для этих систем характерны наибольшими значениями о_і в КТ51 и наименьшими в КТ59 и КТ60. В поверхности С4 ПС керамики системы № 1 о, изменяется от 361 до 853 МПа при Δσ_i = 492 МПа и M_e = 483,5 МПа, системы № 2 — от 415 до 788 МПа при Δσ_i = 373 МПа и М_е = 496 МПа, системы № 3 — от 321 до 753 МПа при $\Delta \sigma_i = 432$ МПа и $M_e = 427$ МПа, системы № 4 — от 348 до 695 МПа при Δо; = 347 МПа и $M_e = 425,5$ МПа. Наибольшими значениями $\Delta \sigma_i$ и Ме характеризуются системы № 1 и 2, наименьшими — система № 4. Наибольшим коэффициентом корреляции (0,99) для *σ*_i обладает связь систем № 2, 4, наименьшим (0,95) — связь систем № 2, 3.

Характер изменения σ_i в КТ поверхности *C5* ПС керамики систем № 1-4 показан на рис. 3, *д*. Видно, что на графиках присутствуют четыре ломаные кривые, близкие по форме к кривым с пиковыми значениями σ_i в КТ74 и КТ75. Это свидетельствует о формировании мощных структурных концентраторов напряжений в этой поверхности. Связь систем № 1, 4 по σ_i характеризуется коэффициентом корреляции 0,95, систем № 2, 3 — коэффициентом корреляции 0,98. В поверхности *C5* ПС керамики системы № 1 σ_i изменяется от 538 до 1370 МПа при Δσ_i = 832 МПа и M_e = 898,5 МПа, в системе № 2 — от 497 до 1526 МПа при $\Delta \sigma_i$ = 1029 МПа и M_e = 876 МПа, в системе № 3 — от 460 до 1203 МПа при $\Delta \sigma_i$ = 743 МПа и M_e = 790,5 МПа, в системе № 4 — от 432 до 1354 МПа при $\Delta \sigma_i$ = 922 МПа и M_e = 775 МПа. Наибольшими значениями $\Delta \sigma_i$ и M_e характеризуются системы № 2 и 1, наименьшими — системы № 3 и 4 соответственно.

Характер изменения о, в КТ поверхности С6 ПС керамики систем № 1-4 показан на рис. 3, е. Видно, что кривые имеют одинаковую форму, наименьшие значения о, располагаются на левом периферийном участке в КТ83 и КТ98, наибольшие — в центральной части кривых (КТ90, КТ91). В поверхности С6 керамики системы № 1 оі изменяется в диапазоне от 460 до 1631 МПа при Δσ_i = 1171 МПа и *M_e* = 787 МПа, системы № 2 — от 383 до 1599 МПа при Δσ_i = 1216 МПа и M_e = 777,5 МПа, системы № 3 — от 665 до 1467 МПа при Δ*σ*_i = 802 МПа и *M_e* = 862,5 МПа, системы № 4 — от 615 до 1442 МПа при Δσ_i = 827 МПа и M_e = 822 МПа. Наибольшими значениями $\Delta \sigma_i$ и M_e характеризуются системы № 2 и 3, наименьшими — системы № 3 и 2 соответственно. Наибольшим коэффициентом корреляции (0,99) для о, обладает связь систем № 1, 2, наименьшим (0,96) — связь систем № 1, 3.

Гистограммы распределения σ_i в КТ поверхностей *C1-C6* ПС Al₂O₃-ТiС-керамики с покрытием систем № 1-4 под действием теплового потока показаны на рис. 4. Видно, что значения σ_i

Рис. 4. Гистограммы распределения о₁ в КТ поверхностей *C1–C6* Al₂O₃–TiC-керамики с покрытием систем № 1–4 (*a–г*) под действием комбинированной нагрузки

во всех поверхностях можно считать нормально распределенными, однако значения статистических характеристик для разных систем существенно различаются.

Распределение σ_i в КТ поверхностей *C1*– *C6* ПС керамики системы № 1 показано на рис. 4, *а.* Установлено, что в поверхности *C1* $\sigma_{cp} = 575,2$ МПа при s = 179,2, в поверхности *C2* $\sigma_{cp} = 738,8$ МПа при s = 235,8, в поверхности *C3* $\sigma_{cp} = 689,8$ МПа при s = 237,6, в поверхности *C4* $\sigma_{cp} = 537,8$ МПа при s = 145,5, в поверхности *C5* $\sigma_{cp} = 929,2$ МПа при s = 260,4, в поверхности *C6* $\sigma_{cp} = 828,8$ МПа при s = 336,6. Наибольшими значениями σ_{cp} и *s* в системе № 1 характеризуются поверхности *C5* и *C6* соответственно, наименьшими — поверхность *C4*. Наибольшие значения σ_{cp} и *s* выше, чем наименьшие, соответственно в 1,7 и 2,3 раза.

Распределение σ_i в КТ поверхностей C1-C6 ПС керамики системы № 2 показано на рис. 4, *б.* Установлено, что в поверхности *C1* $\sigma_{cp} = 605,8$ МПа при s = 166,5, в поверхности *C2* $\sigma_{cp} = 750,6$ МПа при s = 171,7, в поверхности *C3* $\sigma_{cp} = 697,3$ МПа при s = 185,7, в поверхности *C4* $\sigma_{cp} = 537,2$ МПа при s = 117,2, в поверхности *C5* $\sigma_{cp} = 926,3$ МПа при s = 310,3, в поверхности *C6* $\sigma_{cp} = 811,6$ МПа при s = 334,2. Наибольшими значениями σ_{cp} и sв системе № 2 характеризуются поверхности *C5* и *C6* соответственно, наименьшими — поверхность *C4*. Наибольшие значения σ_{cp} и s выше, чем наименьшие, соответственно в 1,7 и 2,9 раза.

Распределение σ_i в КТ поверхностей *C*1–*C*6 ПС керамики системы № 3 показано на рис. 4, *в*. Установлено, что в поверхности *C*1 σ_{ср} = 500,9 МПа при *s* = 148,4, в поверхности *C*2 σ_{ср} = 609,4 МПа при *s* = 201,9, в поверхности *C*3 σ_{ср} = 570,8 МПа при *s* = 202,6, в поверхности *C*4 σ_{ср} = 465,1 МПа при *s* = 129,6, в поверхности *C*5 σ_{ср} = 798,8 МПа при *s* = 229,9, в поверхности *C*6 σ_{ср} = 924,7 МПа при *s* = 234,8. Наибольшими значениями σ_{ср} и *s* в системе № 3 характеризуется поверхность *C*6, наименьшими — поверхность *C*4. Наибольшие значения σ_{ср} и *s* выше, чем наименьшие, соответственно в 2 и 1,8 раза.

Распределение σ_i в КТ поверхностей *C1–C6* ПС керамики системы № 4 показано на рис. 4, *г.* Установлено, что в поверхности *C1* $\sigma_{cp} = 527,9$ МПа при *s* = 151,5, в поверхности *C2* $\sigma_{cp} = 612,7$ МПа при *s* = 158,5, в поверхности *C3* $\sigma_{cp} = 576$ МПа при *s* = 171,7, в поверхности *C4* $\sigma_{cp} = 460,7$ МПа при *s* = 108,6, в поверхности *C5* $\sigma_{cp} = 807,3$ МПа при *s* = 281, в поверхности *C6* $\sigma_{cp} = 885,7$ МПа

Библиографический список

1. **Кузин, В. В.** Силовой анализ напряженнодеформированного состояния поверхностного слоя Al₂O₃-TiC-керамики с покрытиями AlN и TiN / *В. В. Кузин, М. А. Волосова, М. Ю. Федоров* // Новые огнеупоры. — 2021. — № 6. — С. 64-69.

2. Кузин, В. В. Тепловой анализ напряженнодеформированного состояния поверхностного слоя при *s* = 240,2. Наибольшими значениями σ_{cp} и *s* в системе № 4 характеризуются поверхности *C6* и *C5* соответственно, наименьшими — поверхность *C4*. Наибольшие значения σ_{cp} и *s* выше, чем наименьшие, соответственно в 1,9 и 2,6 раза.

ЗАКЛЮЧЕНИЕ

Проведен комбинированный анализ напряженно-деформированного состояния ПС Al₂O₃-ТiС-керамики с покрытиями AlN и TiN. Установлено, что при одновременном действии сосредоточенной силы, распределенной силовой нагрузки и теплового потока нулевая точка ПС не изменяет первоначального положения, а точки, равноудаленные от нее, упруго перемещаются с характерными признаками выдавливания. Наибольшие напряжения зафиксированы в локальных объемах покрытия и зерна, находящихся на траектории действия сосредоточенной силы и в локальных объемах границы керамика – покрытие.

Выявлено существенное влияние покрытий AlN и TiN на характер изменения σ_i в поверхностях *C1-C6*, формирующих ПС Al₂O₃-TiC-керамики. Наиболее благоприятное напряженно-деформированное состояние под действием комбинированной нагрузки формируется в ПС керамики с покрытием TiN (системы № 3 и 4) Для этих систем фиксировали наименьшие значения показателей σ_{макс}, Δσ_i, *M*_e, σ_{ср} и s в поверхностях *C1-C5*. В поверхности *C6* для систем № 3 и 4 фиксировали наименьшие значения σ_{макс}, Δσ_i и s.

Наименее благоприятное напряженнодеформированное состояние создается в ПС керамики системы № 1, что подтверждается наибольшими значениями $\sigma_{\text{макс}}$, $\Delta \sigma_i$, M_e , $\sigma_{\text{ср}}$ и *s* в поверхностях *C2*, *C3* и *C4*. В поверхностях *C1* и *C5* наибольшие значения аналогичных показателей отмечены у керамики системы № 2. Установлено, что у этих систем в поверхности *C6* зафиксированы наименьшие значения M_e и $\sigma_{\text{ср}}$. Выявлено также образование микроструктурных концентраторов напряжений на границе покрытий AlN и TiN с исходной керамикой.

* * *

Настоящая работа финансируется в рамках государственного задания Министерства науки и высшего образования Российской Федерации, проект № 0707-2020-0025.

Al₂O₃-ТіС-керамики с покрытиями AlN и TiN / *В. В. Кузин, М. А. Волосова, М. Ю. Федоров* // Новые огнеупоры. — 2021. — № 7. — С. 57-62.

3. *Kuzin, Valery V.* A new generation of ceramic tools / *Valery V. Kuzin, Sergey N. Grigor'ev, David R. Burton* [et al.] // Proc. of the 10th International Conference on Manufacturing Research ICMR-2012. — 2012. — P. 523–528.

4. *Kuzin, V. V.* Basic framework for computer-aided engineering of polished ceramic surface layers / V. V. *Kuzin, S. N. Grigor'ev, M. A. Volosova //* Refract. Ind. Ceram. -2020. - Vol. 61, $\mathbb{N} \ge 3$. - P. 349–354.

Кузин, В. В. Основы компьютерной инженерии поверхностного слоя шлифованной керамики / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. — 2020. — № 6. — С. 64–69.

5. *Kuzin, V.* Method of investigation of the stressstrain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35. ■

> Получено 24.07.21 © В. В. Кузин, М. А. Волосова, М. Ю. Федоров, 2021 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

