К. т. н. **И. Б. Опарина** (🖂), чл.-корр. РАН **А. Г. Колмаков**

ФГБУН «Институт металлургии и материаловедения имени А. А. Байкова РАН», Москва, Россия

^{удк 666.3-1:661.862.22} МЕТОДЫ ПОЛУЧЕНИЯ ПРОЗРАЧНОЙ ПОЛИКРИСТАЛЛИЧЕСКОЙ КЕРАМИКИ ИЗ ОКСИДА АЛЮМИНИЯ (Обзорная статья)

Проведен анализ основных методов получения прозрачной поликристаллической керамики из Al₂O₃: горячего прессования, горячего изостатического прессования и искрового плазменного спекания (SPS). В качестве исходного материала для получения прозрачного поликристаллического Al₂O₃ используется порошок α-Al₂O₃ высокой чистоты с нано- или субмикронным размером частиц и узким распределением по размерам. Наилучшие оптические и механические результаты могут быть получены методом многоступенчатого спекания с завершающей стадией горячего изостатического прессования. Кроме того, качество Al₂O₃-керамики улучшают спекающие добавки MgO, Y₂O₃, La₂O₃, ZrO₂.

Ключевые слова: коэффициент пропускания, горячее изостатическое прессование, твердофазное спекание, искровое плазменное спекание, прозрачность, поликристаллическая керамика.

введение

Коптическим материалам принято относить однородные материалы, прозрачные для электромагнитных волн спектрального диапазона ультрафиолетового (до 380 нм), видимого (380–780 нм) и инфракрасного (780–2000 нм) излучений: монокристаллы, стекла, поликристаллы (прозрачные керамические материалы), полимерное органическое стекло и т. д. Наибольшее распространение из них получили стекла, но в настоящее время большой интерес вызывает прозрачная поликристаллическая керамика, в первую очередь оксидная [1].

Оксидная керамика характеризуется высокой прочностью, термостойкостью, жаропрочностью, регулируемыми показателями плотности, тепло- и электропроводности, обладает уникальными технологическими и эксплуатационными свойствами. Различный компонентный состав: Al₂O₃, Y₂O₃, ZrO₂, Y₃Al₅O₁₂, MgAl₂O₄ позволяет создавать материалы с исключительным набором характеристик. Из видов оксидной керамики наиболее изученной и доступной для получения является керамика из Al₂O₃.

Цель данного обзора — систематизация и обобщение существующих методик, применяе-

⊠ И. Б. Опарина E-mail: ibo@bk.ru, ioparina@imet.ac.ru мых для получения прозрачной поликристаллической керамики из Al₂O₃.

ОСНОВНЫЕ СВОЙСТВА И ОБЛАСТИ ПРИМЕНЕНИЯ ПРОЗРАЧНОЙ АІ₂О₃-КЕРАМИКИ

С получением в 1960 г. поликристаллического прозрачного оксида алюминия [2] и изучением его оптических и механических свойств проявилось много областей его использования. В настоящее время Al₂O₃ является основным материалом керамики для высокотемпературных применений в ближней и средней инфракрасной области спектра.

Мелкозернистая керамика из α-Al₂O₃ помимо высокой прочности (до 600-800 МПа), теплопроводности, теплового расширения и высокой температуры плавления [3], достаточно высокого светопропускания, сопоставимого с MgAl₂O₄ [4-6] (рис. 1), обладает исключительной коррозионной стойкостью [7].

Al₂O₃-керамика с субмикронным размером зерен является самым твердым из всех прозрачных ударостойких материалов, *HV* 10 составляет > 20 ГПа [2, 8]. В таблице [8] приведены основные механические характеристики прозрачных материалов: сапфира, шпинели и оксида алюминия. По всем приведенным свойствам лидирует Al₂O₃, при этом его получение менее затратное. Сочетание этих свойств позволяет изготавливать изделия на основе Al₂O₃ для особых применений: прозрачной брони, обтекателей ракет и оболочек сверхзвуковых управляемых снарядов.

Рис. 1. Зависимости прозрачности от длины волны образцов из Al_2O_3 (1), шпинели Mg Al_2O_4 (2) и Y_2O_3 (3) [5]

Механические свойства сапфира, оксида алюминия и шпинели [8]

Параметр	Сапфир	Al ₂ O ₃	MgAl ₂ O ₄
Модуль Юнга, ГПа <i>HV</i> 10, ГПа Предел прочности при 4-точечном из-	~400 15–16 400–600	~400 20,5–21,5 600–700	~275 14,5–15,0 200–250
гибе, МПа Вязкость разрушения К _{Ic} , МПа/√м	2,0–2,8	~3,5	~1,8-2,2

ХАРАКТЕРИСТИКИ ПРОЗРАЧНОСТИ КЕРАМИКИ

Рассеяние света в поликристаллической керамике зависит от микроструктуры и происходит путем диффузного рассеяния на границах второй фазы, в том числе на порах или микроструктурных компонентах с различными показателями преломления. В Al₂O₃ тригональной α-модификации дополнительное рассеяние происходит за счет двулучепреломляющего расщепления пучка на границах случайно ориентированных зерен [9].

В качестве характеристики светопропускания, определяющей меру прозрачности материала, часто используют реальный линейный коэффициент пропускания *RIT* (real in-line transmission) — это безразмерная физическая величина, равная отношению величины светового потока, прошедшего через среду, к величине потока, упавшего на ее поверхность [8, 9]. Величина *RIT* экспоненциально уменьшается с увеличением толщины образца *t*:

 $RIT = (1 - R_s) \cdot \exp(-\gamma t),$

где R_s — потери на отражение; у — коэффициент полного рассеяния.

Коэффициент полного рассеяния зависит от суммарной величины пор (γ_{pore}) и размера границ зерен (γ_{gb}), на которых происходит лучепре-

ломление и отражение света: $\gamma = \gamma_{pore} + \gamma_{gb}$. Из-за двулучепреломления и трудностей изготовления нанокристаллической Al₂O₃-керамики прозрачность в области видимого диапазона длин волн ограничена [8].

ОСНОВНЫЕ МЕТОДЫ ПОЛУЧЕНИЯ Al₂O₃-КЕРАМИКИ

Для получения прозрачной поликристаллической Al₂O₃-керамики применяют разные методы: горячее прессование (ГП), горячее изостатическое прессование (ГИП), искровое плазменное спекание (ИПС, SPS — spark plasma sintering), а также варианты, сочетающие разные методы спекания. Традиционный метод получения прозрачной Al₂O₃-керамики заключается в спекании при температуре выше 1700 °C в атмосфере водорода [10, 11]. Для уменьшения пористости используют добавки MgO, La₂O₃, Y₂O₃ [12].

Как и у всех прозрачных керамик оптические свойства Al₂O₃ напрямую связаны с характеристиками исходных порошков [13] и в значительной степени зависят от размера зерна [14] и остаточной пористости [15–19]. При высоких температурах спекания образуется Al₂O₃-керамика с крупными зернами, что отрицательно отражается на механической прочности и твердости материалов. Более того, увеличение размера зерна более 410 мкм приводит к существенному рассеянию света, вызванному двулучепреломлением, и снижению *RIT* до 10 % [14].

Высокие показатели светопропускания Al_2O_3 -керамики были достигнуты при использовании метода ГИП. В работах [20, 21] зарегистрированы значения *RIT* от 51 до 64 % при длине волны $\lambda = 640$ нм на образцах толщиной 0,8 мм с размером зерна 470–580 нм. Максимальная прозрачность Al_2O_3 была достигнута в работе [14] (*RIT* = 71 % для $\lambda = 645$ нм) и работе [3] (*RIT* = 72 % для $\lambda = 640$ нм).

При применении метода ГИП температура спекания Al₂O₃ может быть снижена до 1200–1300 °C, а пористость уменьшена до 0,05 %. В работе [21] описан достаточно простой способ изготовления Al₂O₃-керамики с почти 100 %-ной относительной плотностью методом ГИП в сочетании с методом формования шликерным литьем и предварительным спеканием. Полученный образец Al₂O₃ толщиной 1 мм с размером зерна около 600 нм имел 60 % прозрачности и остаточную пористость около 0,14 %. Отмечено, что разница между экспериментальными и расчетными значениями прозрачности может быть устранена путем уменьшения показателя преломления на границе двух соседних зерен.

Качественная поликристаллическая Al₂O₃керамика была получена методом ГИП с предварительным спеканием без давления [9]. Светопропускание образцов толщиной 0,8 мм составило 70,4 % при длине волны 632,8 нм с теоретическим максимумом в инфракрасном диапазоне длин волн от 2000 до 4000 нм. Порошок Al₂O₃ измельчали в шаровой мельнице с мелющими телами в виде шариков из диоксида циркония. Порошок допировали наночастицами шпинели.

Для достижения высокого качества, т. е. высокой степени прозрачности, мелкозернистой прозрачной керамики используют несколько методов [22-24], в том числе многоступенчатый обжиг [25, 26]. Для получения наноструктурной Al₂O₃-керамики со средним размером зерен 70 нм и относительной плотностью 95 % использовали двухэтапное спекание [25]. При этом сначала синтезировали порошки α-Al₂O₃ со средним размером частиц 10 нм низкой агломерации. Авторы считают, что уплотнение и подавление роста зерен в процессе спекания достигаются за счет разной кинетики зернограничной диффузии и миграции границ зерен. Поэтому на первой стадии спекания достигалась медленная зернограничная диффузия, препятствующая росту зерна на второй стадии спекания, в процессе которой обеспечивалось активное уплотнение материала.

В работе [27] для получения Al₂O₃ с высокой прозрачностью, незначительной пористостью (0,05 %) и размером зерна меньше 1 мкм использовали ступенчатый комбинированный подход. Измельченный порошок термообрабатывали сначала при 500 °C в азоте, потом при 500-900 °C на воздухе. Спекание проводили в несколько этапов: спекание (обжиг) на воздухе при 1200-1300 °C от 2 до 96 ч, ГИП при той же температуре около 2 ч, обжиг в вакууме при 1150 °C.

Плотная (более 99,5 %), высокопрочная поликристаллическая Al_2O_3 -керамика получена в работе [28]. Порошок α - Al_2O_3 с добавлением 0,4 % MnO измельчали в шаровой мельнице в среде этанола в течение 24 ч, затем прессовали в изостате при 200 МПа и спекали при 1200–1400 °С в течение 2 ч. Светопропускание образцов составило 42 % при $\lambda = 600$ нм, предел прочности при испытании на трехточечный изгиб 528 МПа.

Полупрозрачная Al_2O_3 -керамика была получена спеканием на воздухе [29]. В качестве исходного материала использовали порошок α - Al_2O_3 высокой чистоты с субмикронным размером частиц и узким распределением их по размеру. Порошок диспергировали и стабилизировали в суспензии на водной основе. Применив контролируемое спекание с последующим обжигом на воздухе при 1275 °C, получили однородные образцы со средним размером зерна 0,4 мкм. Коэффициент пропускания полученных образцов при $\lambda = 300-450$ нм был сопоставим с результатом испытаний коммерческих поликристаллических образцов.

Полупрозрачные образцы из Al₂O₃-керамики с малым размером зерна получали без прессова-

ния с предварительным формованием и последующим спеканием в среде водорода [30]. Для получения особо качественного исходного сырья проведена предварительная обработка порошка стеариновой кислотой с длительным помолом в шаровой мельнице. Образец (30–50 мм) получен без существенных пор с высоким прямым светопропусканием по сравнению с другими технологиями без прессования, ранее описанными в литературе.

В работе [31], в отличие от традиционных подходов, стеариновую кислоту вводили не только в процессе смешивания порошка в шаровой мельнице, но и в процессе предварительной обработки порошков. В результате стеариновая кислота равномерно покрывала поверхность частиц, дополнительно стимулируя химическую реакцию, протекающую в шаровой мельнице.

Для повышения прозрачности керамики в исходный порошок Al₂O₃ добавляли MgO с концентрацией: 140, 500 и 2500 ppm [26]. Перед спеканием в вакууме при 1700 °С образцы термообрабатывали при 800 °С в течение 50 ч на воздухе. Было установлено, что такая термообработка приводит к удалению остаточных пор, гомогенизации микроструктуры и снижению граничной подвижности, что значительно повышает светопропускание в видимом диапазоне длин волн (λ = 400-700 нм).

При изготовлении полупрозрачной Al₂O₃керамики был применен новый подход — использование добавок в виде химического осадка [32]. Сначала порошок Al₂O₃ смешивали с металлическими нитратами с использованием в качестве диспергатора PEG-2000. Значение pH контролировали после введения NH₃·H₂O в суспензию для осаждения Mg²⁺ и Y³⁺. По сравнению с размолом в шаровой мельнице химически осажденные допирующие элементы имели меньший размер и более гомогенно распределялись в матрице. Образцы, допированные элементами, полученными химическим осаждением, имели более высокую прозрачность.

В статье [33] для получения полупрозрачной Al₂O₃-керамики использовали добавки MgO / Y₂O₃ / La₂O₃ и технику инфильтрации (пропитки) с последующим спеканием в атмосфере водорода. Полученные таким образом образцы по сравнению с образцами, для которых порошок готовили в шаровой мельнице, имели лучшую микроструктурную гомогенность, меньший размер зерна и высокие характеристики светопередачи. Тройное допирование образцов повысило светопропускание до 36,3 % при λ = 800 нм.

Влияние олигосахаридов спирта, добавляемых к суспензии Al₂O₃, рассмотрено в работе [34]. Светопропускание керамики, полученной из суспензии с NH₄-ПМА с олигосахаридами, оказалось выше по сравнению с керамикой, полученной только из суспензии с NH₄-ПМА.

22

Улучшенные оптические свойства обусловлены уменьшением вязкости, которая регулируется введением олигосахаридов спирта.

В работе [35] сравнивали свойства керамики из прозрачного Al₂O₃, легированной Mn (1 вариант), и Cr, Eu и Er (2 вариант). Все образцы керамики были получены ГИП-спеканием с предварительным шликерным литьем. Показано, что, подобно Eu и Er, марганец сегрегирует на границах зерен из-за его относительно низкой растворимости в решетке Al₂O₃. В отличие от Cr, Eu и Er, марганец увеличивает как уплотнение, так и рост зерен. Линейный коэффициент пропускания образцов, легированных Mn, составил от 32 до 20 %. Относительно низкий коэффициент *RIT* объясняется высоким поглощением света частицами Mn и увеличенным двулучепреломлением на границе зерен.

Оптическое пропускание образцов в диапазоне длин волн 200-2500 нм уменьшалось с увеличением содержания примеси. Более интенсивное пропускание наблюдалось при 1600 нм, а также в видимом спектральном диапазоне (при 490 и 526 нм и ниже 400 нм). Обогащение границ зерен легирующими элементами (Er, Eu и Mn) и Cr, растворенными в решетке Al₂O₃, привело к измельчению зерна и последующему увеличению твердости (до 20 %) по сравнению с нелегированным Al₂O₃.

ПОЛУЧЕНИЕ ПРОЗРАЧНОЙ АІ2О3-КЕРАМИКИ МЕТОДОМ SPS

Для получения прозрачной поликристаллической Al₂O₃-керамики помимо основных методов ГИП и ГП в литературе многократно упоминается метод искрового плазменного спекания (Spark Plasma Sintering, SPS). Технология SPS основана на модифицированном методе ГП и заключается в нагреве порошкового материала путем подачи импульсного тока не на внешний нагреватель, а непосредственно на пресс-форму и заготовку с одновременным приложением давления. Благодаря возникающему эффекту плазменных микроразрядов удается реализовать быстрый предварительный нагрев, чтобы подавить рост зерна. SPS обеспечивает спекание в широком интервале скоростей нагрева, и в частности, высокоскоростной нагрев.

Спеканием SPS получают прозрачную керамику высокой плотности с мелкозернистой микроструктурой при относительно низкой температуре. Прозрачность достигается оптимизацией условий спекания, таких как скорость нагрева [36], температура спекания [17], допирование [37] и давление [38].

Для получения мелкозернистой микроструктуры прозрачной Al₂O₃-керамики предложен комбинированный метод с предварительным прессованием SPS с последующим окончательным спеканием методом горячего изостатического прессования [39]. SPS-пресинтез стабилизирует размер зерна. Мелкозернистая структура образцов с незначительным ростом зерна сохранилась во время последующей ГИП-обработки. Реальная светопередача на образцах толщиной 0,8 мм со средним размером зерна 237 нм составила 76,2 % при длине волны 632,8 нм и достигла теоретического максимума в инфракрасном диапазоне длин волн от 2000 до 4500 нм. Высокое значение величины линейной передачи в видимом диапазоне доказывает превосходство комбинированного метода SPS/ГИП.

Технология получения прозрачного Al₂O₃ с добавкой MgO подробно описана в работе [40]. Порошок Al₂O₃ чистотой 99,99 % с размером частиц 100-150 нм смешивали в этаноле с 0,03 мас. % МдО чистотой 99,97 % со средним размером частиц 17 нм, а затем спекали при одноосном давлении 50-400 МПа в вакууме в искровой плазменной установке. После выдержки в течение 20 мин для снятия остаточных напряжений образец отжигали 10 мин при 800-1000 °C. Скорость светопередачи измеряли в диапазоне длин волн 240-1600 нм на двухлучевом спектрофотометре. Максимальные значения светопропускания Al₂O₃ достигнуты при температуре спекания 1050 °C и давлении 400 МПа: для образца толщиной 1 мм *RIT* = 64 % при λ = 640 нм. Повышение давления более 400 МПа увеличивает светопропускание до 69 %, однако делает микроструктуру чувствительной к температуре спекания. В работе [40] был установлен ряд закономерностей: увеличение температуры спекания на 100 °С приводит к четырехкратному увеличению размера зерна; крупные зерна рассеивают свет и уменьшают светопропускание, рост зерен может быть подавлен за счет использования добавки MgO. При более низком давлении рост зерна менее выражен, например, при 200 МПа, размер зерна образцов, спеченных при 1100 и 1200 °С, составляет 0,14 и 0,31 мкм. С увеличением температуры от 1100 до 1200 °С при 400 МПа, коэффициент пропускания сначала увеличивается до максимума и затем уменьшается. Образцы, спеченные при 400 МПа в диапазоне 1000-1200 °С, показаны на рис. 2. Несмотря на высокое давление при 1200 °С происходит ускоренный рост зерна и пор, что делает образец непрозрачным.

Таким образом, исследования [40] показали, что при низкой температуре (1100 °C) величина давления оказывает незначительное влияние на рост зерна, а при повышении температуры до 1200 °C наблюдается ускоренный рост зерен. Микроструктура образца, полученного при 1100 °C и 400 МПа, показана на рис. 3.

Для получения прозрачного нанокомпозита оксид алюминия/оксид церия был применен метод SPS (1430 °C, 80 МПа, 2 мин) [41]. Обнаружено, что использование оксида церия повышает про-

Рис. 2. Фотографии образцов Al₂O₃-керамики, полученной методом SPS при 1000 (*a*), 1050 (*b*), 1100 (*b*), 1150 (*c*) °С и давлении 400 МПа [40]

Рис. 3. Микроструктура Al₂O₃, спеченного методом SPS при 1100 °С и давлении 400 МПа [40]

зрачность композита за счет того, что наночастицы оксида церия выступают в качестве своеобразной смазки, увеличивая начальную плотность порошка на 15 %. Кроме того, наночастицы оксида церия в твердом состоянии имеют низкую растворимость в зернах Al₂O₃, поскольку обнаруживают тенденцию к закреплению на границах зерен, препятствуя их росту. Этот эффект проявляется только при SPS-спекании в вакууме.

Эффекты от введения допирующих элементов, предварительной термообработки и температуры SPS-спекания были исследованы в статье [42]. Суспензию α-Al₂O₃ допировали оксидами Mg, Zr, нитратами или хлоридами La с концентрацией 150–500 ppm. Наноразмерные порошки (150 нм) высушивали и спекали SPSметодом. Прозрачность наноразмерной Al₂O₃керамики зависела главным образом от способа

Рис. 4. Фотографии образцов Al₂O₃-керамики, допированных Mg-Y-La [45]

подготовки порошка, а также допирующих веществ. Коэффициент RIT в видимом диапазоне длин волн ($\lambda = 640$ нм) образцов, допированных ZrO_2 , MgO и La₂O₃, составил 40,1, 44,1 и 48,1 % соответственно, чистого $Al_2O_3 - 30,5$ %.

Двухступенчатый метод прессования с высокой скоростью нагрева SPS позволил существенно увеличить светопропускание Al₂O₃ [43]. Порошок Al₂O₃ спекали при 1150 °C со скоростью 100 °C/мин. Прессование выполняли двумя способами. В первом случае постоянное давление 80 МПа выдерживали в течение всего времени спекания. Во втором — осуществляли двухступенчатое повышение давления: первоначальное составляло 35 МПа с последующим увеличением в течение 3 мин. Было установлено, что двухступенчатый метод наиболее предпочтителен для получения однородной плотной полупрозрачной Al₂O₃-керамики.

Поиск оптимальных условий SPS-спекания проведен в работе [44]. Попытки увеличения давления до 1 ГПа или снижения температуры до 1100 °С при 500 МПа оказались безуспешными, в обоих случаях требовалась более высокая температура спекания.

В статье [45] исследовали влияние давления и температуры, а также введения допирующих веществ оксидов Mg, Y и La (по одному или совместно с концентрацией 75–450 ppm) на величину RIT и размер зерен Al_2O_3 -керамики, полученной SPS-спеканием. В видимой области спектра $\lambda = 640$ нм образцы толщиной 0,8 мм для всех вариантов допирования имели *RIT* > 50 %. Наилучший показатель *RIT* составил 57 % для образцов, допированных одновременно тремя элементами при общей концентрации добавок 450 ppm (рис. 4).

Метод микроволнового спекания является достаточно близким к методу SPS. Однако Al₂O₃ является плохим микроволновым поглотителем. В связи с этим в работе [46] при получении прозрачной Al₂O₃-керамики использовали усовершенствованный вариант микроволнового метода, при котором вводили в качестве абсорбента порошок SiC, действующий как низкотемпературный проводник для предварительного нагрева образцов Al₂O₃. Микроволновое спекание при 1400 °С и частоте волн 2,54 ГГц позволило достичь более высокой плотности 95 % по сравнению с обычным спеканием при 1600 °С. Было обнаружено, что как при микроволновом спекании, так и при обычном проявляется одинаковый характер роста зерен. Авторы пришли к выводу, что увеличение плотности при микроволновом спекании не связано с высокой скоростью нагрева. Определяющим фактором является разница в механизмах уплотнения: энергия активации при микроволновом спекании (85±10) кДж/моль значительно ниже энергии при обычном спекании (520±14) кДж/моль.

ЗАКЛЮЧЕНИЕ

Применяемые методики изготовления поликристаллической прозрачной керамики из оксида алюминия требуют дорогостоящего оборудования и высокочистых порошков-прекурсоров. Получение Al₂O₃ высокой прозрачности при обычном твердофазном спекании имеет ряд сложностей. Так, помимо устранения пористости — главного условия для достижения максимальной прозрачности, важно исключить условия, влияющие на увеличение размера зерна и подвижности границ зерен. С целью уплотнения и удаления пористости прозрачной керамики вводят специальные добавки, например оксиды Mg,

Библиографический список

1. **Опарина, И. Б.** Получение оптически прозрачной ударостойкой керамики методами порошковой металлургии / И. Б. Опарина, А. Г. Колмаков, М. А. Севостьянов, А. С. Лысенков // Материаловедение. — 2018. — № 9. — С. 30–40.

2. Pat. 3026210 US. Transparent alumina and method of preparation / Coble R. L. - 20.03.1962.

3. *Krell, A.* Transmission physics and consequences for materials selection, manufacturing, and applications / *A. Krell, T. Hutzler, J. Klimke //* J. Eur. Ceram. Soc. — 2009. — Vol. 29. — P. 207–221.

4. **Krell, A.** Transparent sintered corundum with high hardness and strength / *A. Krell, P. Blank, H. W. Ma* [et al.] // J. Am. Ceram. Soc. — 2003. — Vol. 86, № 1. — P. 12–18.

5. **Suárez**, **M**. Sintering to transparency of polycrystalline ceramic materials, sintering of ceramics — new emerging techniques / *M*. *Suárez*, *A*. *Fernández*, *R*. *Torrecillas*, *J*. *Menéndez*; ed. by Dr. Arunachalam Lakshmanan // InTech. — 2012. — P. 527–552. Available from: http://www.intechopen.com/books/sintering-of-ceramics-new-emerging-techniques/sintering-to-transparencyof-polycrystalline-ceramic-materials. DOI: 10.5772/35309.

6. **Tokariev**, **O**. Micro- and macro-mechanical testing of transparent MgAl₂O₄ spinel / O. Tokariev // Schriften des Forschungszentrums Julich Reihe Energie & Umwelt. Energy & Environment, Band V. -2013. -Vol. 215. -P. 99.

7. *Nagaoka, T.* Hot corrosion of Al_2O_3 and SiC ceramics by KCl-NaCl molten salt / *T. Nagaoka, K. Kita, N. Kondo //* Journal of the Ceramic Society of Japan. — 2015. — Vol. 123, $N \otimes 8$. — P.685-689.

8. **Krell, A.** Advanced spinel and sub-µm Al_2O_3 for transparent armour applications / A. Krell, J. Klimke, T. Hutzler // J. Eur. Ceram. Soc. — 2009. — Vol. 29. — P. 275–281.

9. *Trunec, M.* Polycrystalline alumina ceramics doped with nanoparticles for increased transparency / *M. Trunec, K. Maca, R. Chmelik //* J. Eur. Ceram. Soc. — 2015. — Vol. 35. — P. 1001–1009.

10. Wei, G. C. Sintering of translucent alumina in a nitrogene hydrogen gas atmosphere / G. C. Wei, W. H. Rhodes // J. Am. Ceram. Soc. — 2000. — Vol. 83, No 7. — P. 1641–1648.

11. *Mao, X. J.* Transparent polycrystalline alumina ceramics with orientated optical axes / *X. J. Mao, S. W.*

Y, Lа или редкоземельные элементы, которые растворяются в основной фазе с образованием твердого раствора с Al₂O₃, применяют также предварительную термообработку порошка-прекурсора в инертном газе. Высокая степень прозрачности достигается применением многоступенчатых комбинированных режимов, например предварительным спеканием образцов без давления для удаления пористости с последующим горячим изостатическим допрессовыванием. ***

Работа выполнена в рамках государственного задания № 075-00328-21-00.

Wang, S. Shimai, J. K. Guo // J. Am. Ceram. Soc. — 2008. — Vol. 91, № 10. — P. 3431–3433.

12. **Качаев, А. А.** Оптически прозрачная керамика (обзор) / А. А. Качаев, Д. В. Гращенков, Ю. Е. Лебедева [и др.] // Стекло и керамика. — 2016. — № 4. — С. 3–10.

13. *Meng, F. C.* Rapid densification of nano-grained alumina by high temperature and pressure with a very high heating rate / *F. C. Meng, Z. Y. Fu, J. Y. Zhang* [et al.] // J. Am. Ceram. Soc. — 2007. — Vol. 90, № 4. — P. 1262–1264.

14. Apetz, R. Transparent alumina: a light-scattering model / R. Apetz, M. P. B. van Bruggen // J. Am. Ceram. Soc. -2003. - Vol. 86, N 3. - P. 480-486.

15. *Kim, B. N.* Spark plasma sintering of transparent alumina / *B. N. Kim, K. Hiraga, K. Morita, H. Yoshida //* Scripta Mater. — 2007. — Vol. 57, № 7. — P. 607–610.

16. *Kim, B. N.* Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina / *B. N. Kim, K. Hiraga, K. Morita, H. Yoshida* // J. Eur. Ceram. Soc. — 2009. — Vol. 29, № 2. — P. 323–327.

17. *Kim, B. N.* Microstructure and optical properties of transparent alumina / *B. N. Kim, K. Hiraga, K. Morita* [et al.] // Acta Mater. — 2009. — Vol. 57, № 5. — P. 1319–1326.

18. **Krell, A.** Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina / A. Krell, J. Klimke // J. Am. Ceram. Soc. — 2006. — Vol. 89, \mathbb{N} 6. — P. 1985–1992.

19. *Jiang, D.* Optically transparent polycrystalline Al₂O₃ produced by spark plasma sintering / *D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini* [et al.] // J. Am. Ceram. Soc. — 2008. — Vol. 91, № 1. — P. 151–154.

20. **Bernard-Granger, G.** Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material / *G. Bernard-Granger, C. Guizard, A. Addad //* J. Am. Ceram. Soc. — 2008. — Vol. 91. — P. 1703–1706.

21. **Petit**, J. Sintering of alpha-alumina for highly transparent ceramic applications / J. Petit, P. Dethare, A. Sergent [et al.] // J. Eur. Ceram. Soc. — 2011. — Vol. 31, № 11. — P. 1957–1963.

22. *Zhoua, C.* Translucent Al₂O₃ ceramics produced by an aqueous tape casting method / *C. Zhoua, B. Jianga, J. Fanb* [et al.] // Ceram. Int. — 2016. — Vol. 42. — P. 1648–1652.

23. *Ashikaga, T.* Effect of crystallographic orientation on transparency of alumina prepared using magnetic

alignment and SPS / T. Ashikaga, B. Kim, H. Kiyono, T. S. Suzuki // J. Eur. Ceram. Soc. — 2018. — Vol. 38, № 7. — P. 2735–2741.

24. **Drdlikova, K.** Luminescent Eu³⁺-doped transparent alumina ceramics with highhardness / K. Drdlikova, R. Klement, H. Hadraba [et al.] // J. Eur. Ceram. Soc. — 2017. — Vol. 37. — P. 4271-4277.

25. *Li*, *J. G.* Densification and grain growth of Al_2O_3 nanoceramics during pressureless sintering / *J. G. Li*, *Y. P. Ye* // J. Am. Ceram. Soc. — 2006. — Vol. 89, N $_{\rm P}$ 1. — P. 139-143.

26. *Kim, D. S.* Improvement of translucency in Al_2O_3 ceramics by two-step sintering technique / *D. S. Kim, J. H. Lee, R. J. Sung* [et al.] // J. Eur. Ceram. Soc. — 2007. — Vol. 27, Nº 13–15. — P. 3629–3632.

27. *Hayashi, K.* Transmission optical properties of polycrystalline alumina with submicron grains / *K. Hayashi, O. Kobayashi, S. Toyoda, K. Morinaga* // Materials Transactions JIM. — 1991. — Vol. 32, № 11. — P. 1024–1029.

28. **Nagashima**, **M**. Fabrication and optical characterization of high-density Al_2O_3 doped with slight MnO dopant / *M*. *Nagashima*, *K*. *Motoike*, *M*. *Hayakawa* // Journal of the Ceramic Society of Japan. — 2008. — Vol. 116, $N \ge 5$. — P. 645–648.

29. **Godlinski, D.** Transparent alumina with submicrometer grains by float packing and sintering / D. Godlinski, M. Kuntz, G. Grathwohl // J. Am. Ceram. Soc. — 2002. — Vol. 85, № 10. — P. 2449–2456.

30. *Liu, W.* Fabrication of injection moulded translucent alumina ceramics via pressureless sintering / *W. Liu, T. Z. Bo, Z. P. Xie* [et al.] // Advances in Applied Ceramics. — 2011. — Vol. 110, \mathbb{N} 4. — P. 251–254.

31. *Liu, W.* Injection molding of surface modified powders with high solid loadings: a case for fabrication of translucent alumina ceramics / *W. Liu, Z. P. Xie, T. Z. Bo, X. F. Yang //* J. Eur. Ceram. Soc. — 2011. — Vol. 31, $N_{\rm P}$ 9. — P. 1611–1617.

32. *Liu, W.* Novel preparation of translucent alumina ceramics induced by doping additives via chemical precipitation method / *W. Liu, Z. P. Xie, G. W. Liu, X. F. Yang //* J. Am. Ceram. Soc. -2011. - Vol. 94, Ne 10. - P. 3211–3215.

33. *Liu, G. W.* Fabrication of translucent alumina ceramics from pre-sintered bodies infiltrated with sintering additive precursor solutions / *G. W. Liu, Z. P. Xie, W. Liu* [et al.] // J. Eur. Ceram. Soc. -2012. -Vol. 32, $N \ge 4$. -P. 711-715.

34. **Hotta, Y.** Effect of oligosaccharide alcohol addition to alumina slurry and translucent alumina produced by slip casting / Y. Hotta, T. Tsugoshi, T. Nagaoka [et al.] // J. Am. Ceram. Soc. — 2003. — Vol. 86, № 5. — P. 755–760.

35. **Drdlikova, K.** Optical and mechanical properties of mn-doped transparent alumina and their comparison with selected rare earth and transient metal doped aluminas / *K. Drdlikova, D. Drdlik, H. Hadraba* [et al.] // J. Eur. Ceram. Soc. — 2020. — Vol. 40, № 14. — P. 4894–4900.

36. *Kim, B. N.* Spark plasma sintering of transparent alumina / *B. N. Kim, K. Hiraga, K. Morita, H. Yoshida //* Scripta Mater. — 2007. — Vol. 57. — P. 607–610.

37. *Kim, B. N.* Light scattering in MgO-doped alumina fabricated by spark plasma sintering / *B. N. Kim, K. Hiraga, K. Morita* [et al.]// Acta Mater. — 2010. — Vol. 58. — P. 4527–4535.

38. **Grasso, S.** Highly transparent pure alumina fabricated by high-pressure spark plasma sintering / S. *Grasso, B. N. Kim, C. Hu* [et al.] // J. Am. Ceram. Soc. — 2010. — Vol. 93, \mathbb{N} 9. — P. 2460–2462.

39. *Trunec, M.* Transparent alumina ceramics densified by a combinational approach of spark plasma sintering and hot isostatic pressing / *M. Trunec, J. Klimke, Z. J. Shen* // J. Eur. Ceram. Soc. — 2016. — Vol. 36. — P. 4333-4337.

40. *Kim, B.-N.* High-pressure spark plasma sintering of MgO-doped transparent alumina / *B.-N. Kim, K. Hiraga, S. Grasso* [et al.]. // Journal of the Ceramic Society of Japan. — 2012. — Vol. 120, № 3. — P. 116–118.

41. *Alvarez-Clemares, I.* Transparent alumina/ceria nanocomposites by spark plasma sintering / *I. Alvarez-Clemares, G. Mata-Osoro, A. Fernandez* [et al.] // Advanced Engineering Materials. — 2010. — Vol. 12, № 11. — P. 1154–1160.

42. **Roussel**, **N**. Effects of the nature of the doping salt and of the thermal pre-treatment and sintering temperature on spark plasma sintering of transparent alumina / *N*. *Roussel*, *L*. *Lallemant*, *B*. *Durand* [et al.] // Ceram. Int. — 2011. — Vol. 37, Ne 8. — P. 3565–3573.

43. **Grasso, S.** Effects of pressure application method on transparency of spark plasma sintered alumina / S. Grasso, C. F. Hu, G. Maizza [et al.] // J. Am. Ceram. Soc. — 2011. — Vol. 94, $N \leq 5$. — P. 1405–1409.

44. **Ghanizadeh, S.** Improved transparency and hardness in α -alumina ceramics fabricated by high-pressure SPS of nanopowders / *S. Ghanizadeh, S. Grasso, P. Ramanujam* [et al.] // Ceram. Int. — 2017. — Vol. 43. — P.275–281.

45. *Stuer, M.* Transparent polycrystalline alumina using spark plasma sintering: effect of Mg, Y and La doping / *M. Stuer, Z. Zhao, U. Aschauer, P. Bowen* // J. Eur. Ceram. Soc. — 2010. — Vol. 30, № 6. — P. 1335–1343.

46. **Brosnan, K. H.** Microwave sintering of alumina at 2,45 GHz / K. H. Brosnan, G. L. Messing, D. K. Agrawal // J. Am. Ceram. Soc. — 2003. — Vol. 86, № 8. — P. 1307–1312.

Получено 25.02.21

© И.Б. Опарина, А.Г. Колмаков, 2021 г.