ОГНЕУПОРЫ В ТЕПЛОВЫХ АГРЕГАТАХ

Д. т. н. **В. Я. Дзюзер** (🖂)

ФГБОУ ВО «Уральский федеральный университет», Екатеринбург, Россия

удк 666.762.1+666.762.5]:666.1.031.2/.6 АНАЛИЗ ПАРАМЕТРОВ КАЧЕСТВА ПЛАВЛЕНОЛИТЫХ AZS-ОГНЕУПОРОВ ДЛЯ СТЕКЛОВАРЕННЫХ ПЕЧЕЙ

Выполнен комплексный анализ параметров качества плавленолитых алюмоциркониевосиликатных (AZS) огнеупоров для стекловаренных печей. Показано, что оценка качества AZS-огнеупоров по содержанию в них ZrO₂ и плотности не дает объективного представления об их эксплуатационных свойствах. Принципиальное значение имеют химический состав и поведение стеклофазы, определяющие объем и температуру начала экссудации. К числу важнейших условий получения качественных AZSогнеупоров, характеризуемых объемом выплавления 2–3 % стеклофазы и температурой начала выплавления выше 1400 °C, относят окислительную технологию плавления и содержание примесей в химическом составе огнеупора не более 0,3 %. Сформулированы условия службы AZS-огнеупоров в варочном бассейне и рабочем пространстве стекловаренных печей. Показано их влияние на протекание процесса экссудации, коррозионную стойкость огнеупоров и образование дефектов в стекле.

Ключевые слова: стекловаренная печь, плавленолитой AZS-огнеупор, экссудация стеклофазы, коррозия, дефекты стекла, рабочее пространство, варочный бассейн.

при выборе материалов для футеровки стекловаренных печей учитывают два основных технических требования. Первое из них — суммарная выработка стекломассы с 1 м² площади варочного бассейна за кампанию печи. При проектировании стеклотарных печей этот показатель должен составлять 8000-10000 т/м², что при удельном съеме стекломассы 2,5-2,8 т/(м²·сут) соответствует 8-10-летней кампании печи. Второе требование заключается в том, чтобы суммарные потери продукции от брака, в том числе обусловленного загрязнением стекла продуктами коррозии огнеупоров, не превышали 10 % от производительности печи.

Совокупность этих требований предопределяет безальтернативное применение плавленолитых алюмоциркониевосиликатных (AZS) огнеупоров для футеровки варочного бассейна и стен рабочего пространства (суперструктуры) стекловаренных печей [1, 2]. В то же время, несмотря на высокую эксплуатационную стойкость к повышенным температурам (1450–1650 °C) и химическому воздействию корродиентов, слож-

> 🖂 В. Я. Дзюзер E-mail: vdzuzer@yandex.ru

ный состав продуктов коррозии AZS-огнеупоров представляется проблемным для качества вырабатываемой стекломассы. Поэтому цель настоящей работы заключается в комплексной оценке параметров качества плавленолитых AZS-огнеупоров с учетом условий их службы на протяжении кампании печи.

При выборе плавленолитых AZS-огнеупоров, как правило, учитывают содержание диоксида циркония и плотность. Национальные стандарты и технологические регламенты производителей AZS-огнеупоров предусматривают изготовление изделий с массовым содержанием ZrO₂ 33, 36 и 41 % [4-11]. Для каждой марки огнеупоров предусмотрено три способа заливки расплава в форму: с нормальной (NC — normal cavity), с редуцированной усадочной раковиной (RC — reduced cavity) и без усадочной раковины (FC — full cut cavity). Наибольшую закрытую пористость и, как следствие, наименьшую кажущуюся плотность имеют изделия марки AZS-33 NC (3,4-3,5 т/м³), наибольшей плотностью (3,95-4,0 т/м³) характеризуются изделия марки AZS-41 FC.

Рациональная структура футеровки стекловаренной печи предусматривает применение AZS-огнеупоров с разными плотностью и содержанием ZrO₂. Как правило, для стен рабочего пространства используют блоки из AZS-33 NC толщиной 200 мм. Стены варочного бассейна выполняют палисадными брусьями (без горизонтальных швов) толщиной 250 мм. При этом используют изделия марок AZS-37 RC и AZS-41 RC, доля которых определяется удельным съемом стекломассы [1, 3].

Содержание ZrO₂ и кажущаяся плотность являются важными, но не единственными параметрами, которые следует учитывать при выборе AZS-огнеупоров. Известно, что промышленные марки AZS-огнеупоров характеризуются схожими химическим (табл. 1) и минеральным составами (табл. 2). При этом их эксплуатационные свойства могут существенно различаться, что обусловлено разным сырьем и особенностями технологического процесса. К последним прежде всего относят способ плавления шихты (окислительный, восстановительный). Окислительные условия создают дуговым режимом плавления, а восстановительные — плавлением электродами, погруженными в расплав, покрытый слоем шихты. Зарубежные производители AZS-огнеупоров используют в основном окислительный режим плавления [6-10]. В китайском национальном стандарте ЈС 493-2015 [5] допускается применение обоих способов плавки, в отечественном стандарте (ГОСТ 23053-78) способ плавления шихты не регламентируется [4].

Физико-химические свойства плавленолитых AZS-огнеупоров определяются их химическим составом, который рассматривают как основной показатель качества. Он включает базовые компоненты (ZrO_2 , Al_2O_3 , SiO_2 и Na_2O) и примеси (Fe₂O₃, TiO₂, CaO, MgO, углерод и др.). Тугоплавкие оксиды ZrO₂ и Al₂O₃ обеспечивают высокую коррозионную стойкость огнеупора, оксиды SiO₂ и Na₂O предназначены для образования стеклофазы — наиболее легкоплавкого компонента AZS-огнеупора. В состав стеклофазы входят оксиды примесей, количество которых определяется качеством сырья и технологией плавления. При использовании качественного сырья массовая доля примесей, задаваемая суммой оксидов Fe_2O_3 , TiO_2 , CaO и MgO, не превышает 0,3 % [6-10]. При производстве отечественных огнеупоров марки БК количество примесей составляет 0,65-0,8 % (см. табл. 1). Самыми нежелательными компонентами стеклофазы являются Fe₂O₃ и TiO₂, а также углерод. Появление углерода в изделиях обусловлено применением сырья с примесями углеродсодержащих соединений, использованием графитовых электродов и восстановительным режимом плавления.

Высокая коррозионная стойкость плавленолитых AZS-огнеупоров определяется их структурой, которая формируется кристаллической

таблица 1. Химический состав плавленолитых А25-огнеупоров							
Компонент	Содержание компонента, мас. %, в огнеупоре						
	ER 1681 [3]	REFEL 1532 [4]	ZIRKOSIT S32 [5]	ZDV I [6]	DY-33 [7]	БК-33 [8]	
ZrO_2	32,5	32,70	32,60	33,8	33,00	33,0	
Al_2O_3	50,9	51,00	51,15	51,0	50,45	48-50	
SiO ₂	15,0	14,90	14,80	13,6	15,00	15,0	
Na ₂ O	1,3	1,15	1,15	1,30	1,30	1,50	
Примеси	0,3	0,25	0,25	0,3	0,25	0,65	
Компонент	ER 1685 [3]	REFEL 1334S [4]	ZIRKOSIT M36 [5]	ZDV II [6]	DY-36 [7]	БК-37 [8]	
ZrO_2	36,0	36,50	36,20	36,3	37,00	37,0	
Al_2O_3	48,3	48,60	48,95	49,0	47,35	46-47	
SiO ₂	14,0	13,6	13,50	13,2	14,00	14,0	
Na ₂ O	1,4	1,05	1,05	1,20	1,40	1,40	
Примеси	0,3	0,25	0,30	0,30	0,25	0,8	
Компонент	ER 1711 [3]	REFEL 1240 [4]	ZIRKOSIT Y41 [5]	ZDV IA [6]	DY-41 [7]	БК-41 [8]	
ZrO_2	40,0	41,00	41,00	41,0	41,00	41,00	
Al_2O_3	46,7	45,55	45,38	46,0	45,75	43-44	
SiO ₂	12,0	12,20	12,30	11,7	12,00	13,0	
Na ₂ O	1,0	1,00	1,02	1,00	1,00	1,20	
Примеси	0,3	0,25	0,30	0,3	0,25	0,7	

Таблица 1. Химический состав плавленолитых AZS-огнеупоров

Таблица 2. Минеральный состав плавленолитых AZS-огнеупоров

Konnouour	Содержание компонента, мас. %, в огнеупоре						
KOMIIOHEHI	ER 1681 [3]	REFEL 1532 [4]	ZIRKOSIT S32 [5]	ZDV I [6]	DY-33 [7]		
Бадделеит	32,0	32,0	32,0	32,0	32,5		
Корунд	47,0	48,0	48,0	48,0	46,5		
Стеклофаза	21,0	20,0	20,0	20,0	21,0		
Компонент	ER 1685 [3]	REFEL 1334S [4]	ZIRKOSIT M36 [5]	ZDV II [6]	DY-36 [7]		
Бадделеит	35,5	36,0	36,0	35,0	36,5		
Корунд	43,5	51,0	46,0	46,0	43,5		
Стеклофаза	21,0	17,5	18,0	19,0	20,0		
Компонент	ER 1711 [3]	REFEL 1240 [4]	ZIRKOSIT Y41 [5]	ZDV IA [6]	DY-41 [7]		
Бадделеит	40,0	40,5	40,0	40,0	41,0		
Корунд	43,0	43,0	44,0	43,5	42,0		
Стеклофаза	17,0	16,5	16,0	16,5	17,0		

и стекловидной фазами. Кристаллическая фаза представлена корундом и бадделеитом — моноклинной модификацией оксида циркония. Существенное значение для свойств огнеупора имеет характер выделения кристаллических фаз. Наиболее высокие эксплуатационные свойства AZSогнеупору обеспечивают кристаллы совместной (эвтектической) кристаллизации корунда и бадделеита. В промышленных изделиях, изготовленных методом окислительной плавки, корунд и бадделеит образуют в основном кристаллы совместного выделения. При восстановительном режиме плавления в изделиях отмечается повышенное содержание отдельных кристаллов корунда и бадделеита, что объясняет их более низкую коррозионную стойкость [12]. В качестве примера можно привести нормативную скорость коррозии огнеупора марки AZS-33: для изделий. произведенных методами окислительной и восстановительной плавки — 1,6 и 1,7 мм/24 ч соответственно [5]. Определение изотермической скорости коррозии AZS-огнеупоров выполняют по стандарту ASTM С 1223-19 [13].

Стеклофаза является матрицей, в которой распределены зерна кристаллов. Химический состав и поведение стеклофазы в значительной степени определяют эксплуатационные свойства AZS-огнеупоров. К их числу относят коррозионную и термическую стойкость, а также склонность к образованию дефектов стекла. Кроме того, стеклофаза уменьшает воздействие объемных изменений в огнеупоре при полиморфном превращении ZrO₂, предотвращая тем самым разрушение изделий при нагреве и охлаждении. Благодаря стеклофазе, заполняющей межкристаллическое пространство, плавленолитые AZS-огнеупоры не имеют открытой пористости. Коррозия изделий начинается с образования пористости в результате экссудации (выплавления) стеклофазы на поверхность огнеупора, контактирующую с высокотемпературными корродиентами. Образование новой пористости свидетельствует о том, что экссудация обусловлена гидростатическим давлением газов, содержащихся в закрытых порах и образующихся в результате окисления примесей (Fe₂O₃, TiO₂, C и др.). Величина новой пористости прямо пропорциональна объему экссудации [14]. При этом чем меньше объем выделяемой стеклофазы, тем ниже величина вновь образованной пористости и выше коррозионная стойкость огнеупора.

Экссудацию стеклофазы рассматривают как внутреннее свойство плавленолитых AZSогнеупоров, которое характеризуют объемом выделения [6, 8] и/или температурой начала выплавления [5]. Отмечено [15–17], что около 10 % от объема изделия может быть выделено посредством экссудации. Поскольку в структуре футеровки огнеупор нагревается неравномерно, то фактическое количество выделяемой стеклофазы не должно превышать 3 % его объема. Для изделий марок AZS-33, AZS-36 и AZS-41 объем выделения стеклофазы (за один тест) регламентируют величинами менее 3, 2 и 2 % соответственно [6, 8]. При этом предполагается, что содержание примесей не превышает 0,3 %, а изделия изготовлены методом окислительной плавки. Тестовые испытания AZS-огнеупора на экссудацию стеклофазы выполняют по стандарту ASTM C1223–19 [18]. По китайскому национальному стандарту JC 493–2015 [5] для изделий, полученных при окислительном режиме плавления, температура выделения стеклофазы выше 1400 °С, полученных методом восстановительной плавки — выше 1100 °С.

По внешним признакам экссудации плавленолитые AZS-огнеупоры условно подразделяют на пять классов [16]. Нулевой класс характеризуется отсутствием на поверхности изделий жидкого экссудата, первый класс — небольшим выделением экссудата и размером капель жидкости не более 3 мм. Для второго класса свойственно наличие небольшого количества капель размерами до 5 мм, для третьего — большое количество капель размерами более 5 мм. Поверхность изделий, отнесенных к четвертому классу, покрыта стекловидной пленкой. Плавленолитые AZS-огнеупоры, изготовленные окислительным методом, относятся к нулевому и первому классам; изделия, полученные восстановительным методом, соответствуют второму – четвертому классам.

Принципиальное различие качества AZSизделий, полученных методами окислительной и восстановительной плавки, заключается в содержании углерода. Окислительная плавка позволяет получать изделия с высокой степенью окисления и содержанием углерода менее 0,02 %. Последующее оксидирование поверхности расплава кислородом снижает содержание углерода до 0,003-0,006 %. В результате температура экссудации стеклофазы повышается до 1450-1500 °C [19]. При восстановительной плавке содержание углерода превышает 0,08 %. Продувка расплава кислородом несущественно влияет на содержание углерода. В то же время окисление углерода в расплаве приводит к увеличению закрытой пористости и снижению плотности изделий [12].

Следует отметить, что уровень окисления расплава и условия его затвердевания в форме влияют на компактность и однородность кристаллической структуры. Окислительная плавка позволяет получать изделия с мелкозернистой однородной кристаллической структурой. Компактная текстура замедляет процесс экссудации. При восстановительной плавке структура изделий формируется длинными кристаллами, а их текстура характеризуется присутствием в межкристаллическом пространстве дренажных каналов, облегчающих выплавление стеклофазы.

Таким образом, можно констатировать, что применение окислительной технологии плавле-

ния — важнейшее требование к производству плавленолитых AZS-огнеупоров. Не менее значимым является использование циркониевого концентрата с низким содержанием примесей, и прежде всего оксидов железа и титана. При выполнении этих условий качество изделий характеризуется объемом выплавления стеклофазы 2–3 % и температурой начала экссудации, превышающей 1400 °C.

Известно, что продукты экссудации стеклофазы и коррозии AZS-огнеупоров являются одной из основных причин образования дефектов в стекле. К числу дефектов относят нерастворимые в стекломассе кристаллические, стекловидные и газообразные включения. Количество генерируемых включений в течение кампании печи зависит не только от качества AZS-изделий в холодном состоянии, но и от условий службы огнеупоров [15, 20–24]. При этом наиболее значимым фактором является температура. Поэтому при выборе AZS-огнеупоров учитывают среднюю и максимальную (локальную) температуру (табл. 3) нагрева печных ограждений и поверхности стекломассы [25, 26].

Таблица 3. Средняя t_{ср} и максимальная t_{макс} температура нагрева конструктивных элементов стекловаренной печи

Конструктивный	t _{cp} , ⁰C	<i>t</i> _{макс} , ⁰С	t _{cp} , ⁰C	<i>t</i> _{макс} , ⁰С			
элемент стекловаренной	при удельном съеме стекломассы, т/(м²·сут)						
печи	2,0-2	5 [25]	2,5-3,0 [26]				
Свод	1477,9	1603,0	1512,6	1608,4			
Стены рабочего про-							
странства:							
продольная	1526,7	1577,3	1548,3	1596,3			
на отапливаемои							
пропольная на отво-	1434.0	1507.9	_	_			
ляшей стороне печи	1151,0	1007,5					
торцевая (у протока)	1525,9	1596,2	1553,2	1622,3			
Поверхность стекло-	1379,7	1508,7	1395,8	1513,0			
массы,							
в том числе:							
в зоне варки	1369,1	-	1404,8	-			
в зоне осветления	1415,3	-	1426,6	-			

Рис. 1. Расчетная схема теплопередачи через корродированный брус

В варочном бассейне к условиям службы огнеупоров относят также химический состав и удельный съем стекломассы. Гетерогенный процесс растворения огнеупора на границе двух фаз твердой (огнеупор) и жидкой (расплав) — лимитируется диффузией расплава к реакционной зоне и отводом продуктов коррозии в жидкую фазу. Поэтому скорость коррозии огнеупора находится в прямой зависимости от удельного съема стекломассы, увеличение которого предполагает повышение температуры и скорости стекла в поверхностном слое конвекционных потоков [3]. Влияние химического состава стекломассы на коррозию огнеупоров обусловлено высоким массовым содержанием оксидов щелочных $(Na_2O + K_2O = 13 \div 15 \%)$ и щелочноземельных металлов (CaO + MqO = 12÷14 %). Диффузия оксидов в пористую поверхность огнеупора приводит к сегрегации стеклофазы и ускоренной коррозии огнеупора.

В варочном бассейне экссудация стеклофазы и ее влияние на образование дефектов в стекле отмечаются лишь в начальный период эксплуатации печи. Химический состав продуктов экссудации приближен к составу стеклофазы в холодном изделии. Он содержит около 70 % SiO₂, 20 % Al₂O₃, 5 % Na₂O, 2 % ZrO₂ и небольшое количество других оксидов. Выплавляемая стеклофаза является прозрачной и кристально чистой после охлаждения. Она может содержать незначительное количество крошечных вторичных кристаллов или захваченные границы раздела первичных кристаллов ZrO₂. В результате проникновения стекломассы во вновь образованную пористость экссудация стеклофазы прекращается, а образование дефектов в стекле является результатом растворения огнеупора.

Наибольший износ AZS-огнеупоров наблюдается в горизонтальном направлении на уровне поверхности стекломассы (glass level). В результате вертикальной ячеистой коррозии в стенах ванны на границе раздела трех фаз (газ – расплав – огнеупор) образуется полость, в которой стекломасса и огнеупор разделены относительно толстым пограничным (диффузионным) слоем. Пограничный слой непрозрачен. Он содержит продукты выплавления стеклофазы и коррозии огнеупора, в том числе кристаллы циркония и алюминия, их модификации, а также новые кристаллические фазы (нефелин, кальсилит, циркон, β-глинозем и др.) [20]. Вымывание пограничного слоя конвекционным потоком стекломассы является одной из причин образования дефектов в стекле на основе оксидов циркония и алюминия в течение всей кампании печи [17, 27].

Образование пограничного слоя обусловлено принудительным воздушным охлаждением стен ванны на уровне поверхности стекломассы (рис. 1). Расход и скорость воздуха принимают равными 1,0-1,5 м³/с на 1 пог. м и 30-50 м/с соответственно. Меньшие значения относятся к зоне варки, а большие — к высокотемпературной зоне осветления. В процессе эксплуатации печи остаточная толщина огнеупора уменьшается, что приводит к снижению температуры пограничного слоя и повышению его вязкости. В результате замедления отвода продуктов коррозии из реакционной зоны в ванну толщина пограничного слоя увеличивается. Скорость коррозии замедляется, и загрязнение стекломассы инородными включениями уменьшается.

Рассмотрим особенности коррозионного износа AZS-огнеупора в стенах варочного бассейна. На рис. 1 показано, что коррозионная полость в брусе заполнена стекломассой из варочного бассейна, которая отделена от остаточной толщины огнеупора δ_{or} пограничным слоем δ_{nor} . Износ огнеупора ($\delta_{H3} = 250 - \delta_{or}$) принят равным 25–200 мм. Толщина пограничного слоя определяется остаточной толщиной огнеупора:

$$\delta_{\rm nor} = 62.7 - 0.416\delta_{\rm or} + 0.00066\delta_{\rm or}^2. \tag{1}$$

Из формулы (1) следует, что начальное состояние бруса ($\delta_{or} = 250$ мм) характеризуется отсутствием пограничного слоя. Минимальному износу огнеупора ($\delta_{\mu_3} = 25$ мм) соответствует наименьшее значение $\delta_{nor} = 2,5$ мм, максимальному износу ($\delta_{\mu_3} = 200$ мм) соответствует $\delta_{nor} =$ = 43,6 мм.

Принимаем температуру поверхности стекломассы $t_{\rm cr} = 1426,6$ °C (см. табл. 3), температуру окружающей среды $t_{\rm okp} = 20$ °C и скорость охлаждающего воздуха $w_{\rm B} = 50$ м/с. Расчет скорости коррозии огнеупора марки AZS-41 выполняем по формуле [28]:

$$\omega = 1,104 \cdot 10^{-6} \cdot e^{8,86 \cdot 10^{-3} \cdot t_{BH}} \cdot 8,86 \cdot 10^{-3} t_{BH}$$
(2)

где ω — скорость коррозии, мм/сут; *t*_{вн} — температура внутренней поверхности огнеупора, °С.

Уравнение теплопередачи при граничных условиях I и III рода имеет вид

$$q = \frac{t_{\rm cr} - t_{\rm okp}}{\frac{\delta_{\rm nor}}{\lambda_{\rm nor}} + \frac{\delta_{\rm or}}{\lambda_{\rm or}} + \frac{1}{\alpha_{\rm Hap}}},$$
(3)

где q — плотность теплового потока, Вт/м²; $\alpha_{\text{нар}}$ — суммарный коэффициент теплоотдачи от наружной поверхности огнеупора, Вт/(м²·K); $\lambda_{\text{пог}}$ — теплопроводность пограничного слоя, Вт/(м·K), $\lambda_{\text{пог}} = 38,8 - 73,45 \cdot 10^{-3} t_{\text{ст}} + 38,5 \cdot 10^{-6} t_{\text{ст}}^2$; $\lambda_{\text{ог}}$ — теплопроводность огнеупора марки AZS-41, Вт/(м·K), $\lambda_{\text{ог}} = 4,5 - 2,3 \cdot 10^{-3} t + 1,93 \cdot 10^{-6} t^2$.

Из уравнения (3) находим

$$t_{\rm BH} = t_{\rm cT} - q \frac{\delta_{\rm nor}}{\lambda_{\rm nor}},\tag{4}$$

$$t_{\rm hap} = t_{\rm cr} - q \left(\frac{\delta_{\rm nor}}{\lambda_{\rm nor}} + \frac{\delta_{\rm or}}{\lambda_{\rm or}} \right), \tag{5}$$

Рис. 2. Влияние длительности эксплуатации печи на износ AZS-огнеупора на уровне поверхности стекломассы в ванне

где $t_{\text{нар}}$ — температура наружной поверхности огнеупора, °C.

Коэффициент $\alpha_{\text{нар}}$ определяем по формуле

$$\alpha_{\text{hap}} = (9,5 + 0,07t_{\text{hap}})(1 + 0,2w_{\text{B}}).$$
(6)

Учитывая температурную зависимость теплопроводности, расчет плотности теплового потока в окружающую среду выполняют методом последовательных приближений. Итерационный процесс прекращается, как только выполняется условие по заданной погрешности расчета 0,05 %. На первой итерации принимаем 1/α_{нар} = 0,06.

Результаты расчета параметров теплопередачи приведены в табл. 4, в которой τ = 25/ω — время, в течение которого происходит износ бруса на 25 мм при соответствующей скорости коррозии ω; τ₂ — суммарное время износа бруса на глубину 250 - δ_{or}.

Несмотря на приближенный характер выражения (1) и уравнения теплопроводности пограничного слоя, визуализация зависимости $\delta_{\rm H3}(\tau_{\Sigma})$, показанная на рис. 2, дает наглядное представление об особенностях коррозионного износа огнеупора в течение кампании печи. Прежде всего следует отметить, что средний износ огнеупора за 10 лет составляет 20 мм в год, что согласуется с практическими данными [17].

Наибольший износ огнеупора происходит в первый год эксплуатации печи. Он составляет около 100 мм, или 40 % начальной толщины бруса. К концу первого года толщина пограничного слоя достигает 15,2 мм. Температура на контакте пограничного слоя и огнеупора снижается на 41,4 °C, а скорость коррозии уменьшается на 30,7 %. В течение второго и третьего годов эксплуатации толщина бруса уменьшается примерно на 50 и 25 мм (20 и 10 %) соответственно. Изменение скорости растворения огнеупора обусловлено нарастанием толщины пограничного слоя и снижением его температуры. В течение трехлетней эксплуатации остаточная толщина огнеупора составляет около 75 мм (30 %). В то же время в

	•		•						
Параметр	Значение параметра при остаточной толщине бруса δ₀г, мм								
	250	225	200	175	150	125	100	75	50
<i>t</i> _{вн} , °С	1426,6	1422,1	1414,6	1403,1	1385,2	1357,6	1311,5	1227,2	1028,7
t _{нар} , °C	121,9	129,2	137,6	147,4	159,4	173,9	191,7	213,3	233,4
α _{нар} , Вт/(м²⋅К)	194,4	204,0	210,4	218,0	227,3	238,4	252,1	260,7	284,2
<i>q</i> , Вт/м ²	20229,1	22279,1	24758,3	27817,8	31665,1	36652,6	43238,3	51979,4	60719,2
ω, мм/сут	0,3406	0,3273	0,3063	0,2766	0,2360	0,1848	0,1229	0,0582	0,0100
т, сут	-	76,4	81,6	90,4	105,9	135,2	203,5	429,4	2492,8
τ_{Σ} , Cyt	_	76,4	158,0	248,4	354,3	489,5	693,0	1122,4	3615,2

Таблица 4. Параметры теплопередачи через корродированный стеновой AZS-брус

результате снижения температуры (см. табл. 4) происходят непрерывное увеличение вязкости пограничного слоя и, как следствие, снижение скорости коррозии огнеупора. Средний износ огнеупора в последующие семь лет эксплуатации составляет 3,57 мм/год.

В соответствии с динамикой износа огнеупоров в варочном бассейне (см. рис. 2) изменяется и количество продуктов коррозии, попадающих в стекломассу. Начальный период эксплуатации печи характеризуется значительным образованием дефектов в стекле. По мере износа огнеупора возрастает позитивное влияние внешнего воздушного охлаждения на скорость коррозии и выделение инородных включений в стекломассу. В конце кампании печи выделение нерастворимых в стекле продуктов коррозии становится незначительным.

Обратная тенденция наблюдается у стен рабочего пространства печи. По мере износа футеровки выделение инородных включений в стекломассу увеличивается, достигая наибольшего значения в конце кампании печи. Эта закономерность обусловлена условиями службы огнеупоров в суперструктуре, совокупность которых способствует усилению экссудации стеклофазы в течение кампании печи.

Отсутствие пограничного слоя на реакционной поверхности огнеупора в сочетании с постоянной инфильтрацией паров щелочных и щелочноземельных металлов и воздействием пылевидных частиц шихты усиливает процесс сегрегации стеклофазы в огнеупоре. Следствием этого процесса является непрерывно увеличивающийся коррозионный износ огнеупоров. Если в конце десятилетней кампании печи износ огнеупоров в ванне (ниже уровня стекломассы) составляет около 50 мм, то в суперструктуре он достигает 150 мм. Поэтому продукты экссудации и коррозии суперструктуры являются более мощным и долгосрочным источником таких дефектов в стекле, как камни, пузырьки и стекловидные неоднородности (свили, шлиры, жгуты и пр.) [17, 20, 22].

Проблема образования дефектов в стекле, обусловленных экссудацией и коррозией плавленолитых AZS-огнеупоров в рабочем пространстве, особенно актуальна для стекловаренных печей с удельным съемом стекломассы более 2,5 т/(м²·сут), предназначенных для варки высококачественных стекол. Решение этой проблемы видится в использовании огнеупоров с пониженным содержанием ZrO₂ и нулевым уровнем экссудации. В качестве примера можно привести плавленолитые AZS-огнеупоры марок REFEL 1616ULX ER [29] и 2001 SLX [30].

ЗАКЛЮЧЕНИЕ

Важнейшие условия производства качественных AZS-огнеупоров для стекловаренных печей — применение окислительной технологии плавления шихты и использование сырьевых материалов, обеспечивающих содержание примесей в химическом составе изделий не более 0,25–0,3 %. Предпочтение следует отдавать производителям, гарантирующим текущий контроль уровня окисления расплава и наименьшее содержание оксидов железа и титана в готовых изделиях.

При выборе AZS-огнеупоров необходимо учитывать не только содержание в них ZrO₂ и плотность, но и параметры экссудации стеклофазы: объем и температуру начала выплавления. Различия в условиях службы огнеупоров в контакте со стекломассой и газовой средой предопределяют специфическое поведение стеклофазы при нагревании изделий. В варочном бассейне экссудация стеклофазы наблюдается в начальный период эксплуатации печи. Поэтому требования к экссудации стеклофазы заключаются в регламентировании объема 2-3 % и температуры выплавления выше 1400 °С. В стенах рабочего пространства процесс выплавления стеклофазы наблюдается в течение всей кампании печи. Поэтому ограничения по объему выплавления и температуре являются обязательными, но недостаточными с точки зрения возникновения дефектов в стекле, образующихся при стекании продуктов экссудации и коррозии в стекломассу. Для футеровки стен суперструктуры представляется предпочтительным применение плавленолитых AZS-огнеупоров с пониженным содержанием ZrO₂ и нулевым уровнем экссудации стеклофазы.

Библиографический список

1. *Dzyuzer, V. Ya.* Electrofused AZS refractories for highcapacity glass-founding furnaces / *V. Ya. Dzyuzer* // Refract. Ind. Ceram. — 2013. — Vol. 54, № 4. — P. 304–306. Дзюзер, В. Я. Электроплавленые AZSогнеупоры для высокопроизводительных стекловаренных печей / В. Я. Дзюзер // Новые огнеупоры. — 2013. — № 7. — С. 50-52.

2. *İzmirlioğlu, B.* Glass melting furnace refractories and refractory related defects / *B. İzmirlioğlu, S. Yılmaz //* Journal of Chemical Technology and Metallurgy. — 2015. — Vol. 50, № 4. — P. 404–410.

3. *Dzyuzer, V. Ya.* Use of refractories in the melting tank of a high-production-capacity glass melting furnace / *V. Ya. Dzyuzer* // Refract. Ind. Ceram. — 2019. — Vol. 59, № 5. — P. 435–440.

Дзюзер, В. Я. Служба огнеупоров в варочном бассейне высокопроизводительной стекловаренной печи / В. Я. Дзюзер // Новые огнеупоры. — 2018. — № 9. — С. 3-9.

4. **ГОСТ 23053-78.** Изделия огнеупорные бадделеитокорундовые для стекловаренных печей. Технические условия.

5. **STANDART JC 493–2015.** Fused cast AZS Refractories for glass furnace: ICS 81.080 Q44. — The general specification of building materials in China.

6. SEFPRO. Products and Services for the Glass Industry : http:// www.ru.sefpro.com.

7. RHI GLAS. Feuerfeste Werkstoffe für die Glasindustrie : http:// www.rhi.com.

8. MOTIM. Fused Cast Refractories Ltd : http://www. motim.hu.

9. ZIRCOR Electrofusion s. a. AZS Fused Cast Refractories : http://www.zircor.com.

10. Luoyang Dayang Refractory: http://www.dyrefractory.com.

11. AO «Подольские огнеупоры» : info@ podolskrefractories.com.

12. **Попов, О. Н.** Производство и применение плавленолитых огнеупоров / О. Н. Попов, П. Т. Рыбалкин, В. А. Соколов, С. Д. Иванов. — М. : Металлургия, 1985. — 256 с.

13. **ASTM C 621-09 (2018).** Standard Test Method for Isothermal Corrosion Resistance of Refractories to Molten Glass.

14. *Walrod, D.* How furnace operation affects AZS glassy phase exudation / *D. Walrod* // Glass Ind. — 1990. — Vol. 71, № 8. — P. 19–27.

15. *Heidrich, R.* Fused cast AZS glassy phase exudation: intrinsic or pathologic property? / *R. Heidrich, A. Gupta //* RHI Bulletin. -2011. $-N \ge 2$. -P. 24–28.

16. *Fleischmann, B.* Glassy phase segregation from AZS blocks / *B. Fleischmann* // Glass Science and Technology. — 2005. — Vol. 78, № 6. — P. 295–300.

17. *Canaguier, J.* How to reduce corrosion on fused-cast AZS /*J. Canaguier* // 16th Conference on the Electric Glass Melting. — Prague : Czech Glass Society, 2016. — 36 p.

18. **ASTM C 1223–19.** Standard Test Method for Testing of Glass Exudation from AZS Fusion-Cast Refractories.

19. https://www.diytrade.com/china/pd/9843042/AZS_refractory_Glass_refractory.html.

20. Selkregg, K. Investigation of defects in high-quality glasses / K. Selkregg, A. Gupta // 64th Conference on Glass Problems : Ceramic Engineering and Science Proceedings. -2008. -Vol. 25, No 1. -P. 13-32.

21. *Van Dijk, F. A. G.* Glass defects originating from glass melt/fused cast AZS refractory interaction / *F. A. G. van Dijk.* — Eindhoven : Technische Universitet Eindhoven, 1994. — 188 p.

22. *Simurka, P.* Corrosion of AZS refractories — source of defects in tableware glass / *P. Simurka, J. Kraxner, P. Vrabel, T. Pauco //* 76th Conference on Glass Problems. — 2016 (may). — P. 89–102.

23. *Selkregg, K.* Characterization of glass defects arising in today's evolving glass technologies / *K. Selkregg* // RHI Bulletin. — 2014. — № 2. — P. 19–26.

24. *Walrod, D. A.* Study of the driving force behind AZS glass phase exudation / *D. A. Walrod* // // Proceedings of the 49th Conference on Glass Problems: Ceramic Engineering and Science Proceedings. — 2008. — Vol. 10, N_{\odot} 3/4. — P. 338–347.

25. **Дзюзер, В. Я.** Проектирование энергоэффективных стекловаренных печей / В. Я. Дзюзер, В. С. Швыдкий. — М. : Теплотехник, 2009. — 340 с.

26. **Dzyuzer, V. Ya.** Boundary conditions for designing the lining of a glass-founding furnace with innovative parameters to improve technical efficiency / V. Ya. Dzyuzer, V. S. Shvydkii // Refract. Ind. Ceram. — 2016. — Vol. 56, \mathbb{N} 6. — P. 597–600.

Дзюзер, В. Я. Граничные условия для расчета футеровки стекловаренной печи с инновационными параметрами технической эффективности / В. Я. Дзюзер, В. С. Швыдкий // Новые огнеупоры. — 2015. — № 12. — С. 9–12.

27. *Бах, Х.* Виды брака в производстве стекла / *Х. Бах,* Ф. Г. К. Баукке, Р. Брюкнер [и др.]; под ред. Г. Иебсена-Марведеля, Р. Брюкнера; сокр. пер. с нем. Л. Г. Вайбурт [и др.]; под ред. Н. Н. Рохлина. — М.: Стройиздат, 1986. — 648 с.

28. **Озеров, Н. А.** Математическое моделирование высокотемпературной коррозии огнеупоров варочного бассейна стекловаренных печей / Н. А. Озеров, Б. А. Семенов, В. Н. Лункин // Изв. вузов. Проблемы энергетики. — 2010. — № 7/8. — С. 88-93.

29. *Heidrich, R.* REFEL 1616ULX — an ultra-low exudation fused cast product for the super-structure of glass melting furnaces / *R. Heidrich, A. Gupta, S. Postrach, M. Dietrich //* RHI Bulletin. — 2014. — \mathbb{N} 2. — P. 16—17.

30. *Cabodi, I.* ER 2001 SLX — very low exudation AZS product for glass furnace superstructures / *I. Cabodi, M. Gaubil, C. Morand //* Refractories Worldforum. — 2011. — Vol. 3, № 2. — P. 83–86.

Получено 01.04.21 © В. Я. Дзюзер, 2021 г.