Д. т. н. И. Д. Кащеев¹, к. т. н. К. Г. Земляной¹ (Ш), к. ф.-м. н. В. М. Устьянцев¹, С. А. Поморцев²

¹ ФГАОУ ВПО «Уральский федеральный университет», г. Екатеринбург, Россия

² ООО «Огнеупор», г. Магнитогорск, Россия

УДК 622.336:666.76.001.8

ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ ГРАФИТОВ ДЛЯ ПРОИЗВОДСТВА ОГНЕУПОРОВ. Часть 1. Физикохимические исследования графитов различных месторождений

Приведены результаты исследований микроструктуры, фазового состава и физико-химических свойств отечественных и импортных графитов для огнеупорной промышленности. Установлено, что графиты различного происхождения имеют разные морфологию поверхности, структуру кристаллической решетки и стойкость к окислению.

Ключевые слова: огнеупоры, графит, область когерентного рассеяния (OKP), стойкость к окислению.

дним из основных трендов современного рынка огнеупоров, как формованных, так и неформованных, является увеличение роли углеродсодержащих огнеупоров (от 3-5 до 95-98 мас. % углерода) [1-5]. Это обусловлено комплексом уникальных свойств углерода — высокими огнеупорностью, теплопроводностью, электропроводностью, химической стойкостью по отношению к расплавам на основе большинства металлов как в окисленной, так и в восстановленной форме, низким ТКЛР и др. При этом углерод в форме кристаллического графита и/ или технического углерода, а также коксового остатка органических связующих входит в состав матрицы огнеупорного материала, обеспечивая требуемые физико-химические и технологические свойства.

В качестве углеродсодержащих материалов в огнеупорах в настоящее время используются природные и синтетические графиты, технический углерод и органические связующие с максимально возможным коксовым остатком [1]. Наибольшее применение получил чешуйчатый графит, поскольку он наиболее устойчив к окислению [6]. Наибольшей химической стойкостью к кислороду обладает природный графит, однако он имеет низкую механическую прочность. Графит способен восстанавливать оксиды железа в шлаке, повышая вязкость и температуру их плавления [1].

Количество углерода в составе шихты огнеупорных углеродсодержащих изделий и масс определяется эксплуатационными задачами, но для уменьшения тепловых потерь, а также повышения качества металла целесообразно использовать изделия с низким содержанием углерода — до 10 мас. %. Поскольку низкоуглеродистые огнеупоры имеют пониженную термостойкость, ряд производителей вводят в состав шихты газовую и/или гибридную графитовую сажу [2], сочетая тем самым два вида углеродсодержащей составляющей — чешуйчатый графит с искусственным углеродсодержащим материалом.

На территории России разрабатывается Тайгинское месторождение кристаллического графита в Челябинской обл. Годовая производительность месторождения около 10 тыс. т графита марок ГЛ, ГТ и др. Ежегодная потребность огнеупорной промышленности в кристаллическом графите составляет примерно 30-40 тыс. т. Дефицит графита восполняется за счет импорта. Основными мировыми производителями графита являются КНР, Бразилия, Индия, Северная Корея, Канада и Норвегия (табл. 1). Основными импортерами графита в Россию до последнего времени являлись КНР (77%), Украина (20%); доля остальных составляет 3 %. Постепенно возрастают поставки графита из других стран.

В настоящей работе сравнивали физико-химические свойства используемых в огнеупорной промышленности России графитов (производства России и КНР) с графитами других поставщиков — Норвегии, Бразилии и Мадага-

Таблица 1. Мировое	производство	природ-
ного чешуйчатого г	рафита [7]	

-		
Страна	Количество, тыс. т	Доля рынка, %
KHP	420	66
Бразилия	80	13
Индия	65	10
Северная Корея	15	2
Канада	15	2
Норвегия	10	2
Украина	5	1
Мадагаскар	3	1
Зимбабве	6	1
Другие	15	2
Всего	638	100

скара. Сравнение производили исследованием физико-химических свойств самих графитов: зольного остатка, состава золы, размера и степени совершенства кристаллов (размер областей когерентного рассеяния — ОКР), стойкости к окислению. Исследованы графиты марок Falke 94100 (Бразилия), FLS 897 (Норвегия), +595 (Мадагаскар) и +592 (КНР). В качестве образца сравнения использовали графит Тайгинского месторождения ГЭ-1 по ГОСТ 17022– 81 «Графит. Типы, марки и общие технические требования».

МЕТОДЫ ИССЛЕДОВАНИЯ

Гранулометрический состав графитов определяли по ГОСТ 17818.2, зольность — по ГОСТ 17818.4. Термогравиметрические исследования (кинетика окисления графита) проводили на дифференциальном сканирующем дериватографе «STA 449 F3 Jupiter» (Netzsch-Gerätebau GmbH) с использованием программных пакетов Proteus Analysis 5.2 и Thermokinetics 3.1 Netzsch[®]. С исследуемых образцов углеродистых материалов были сняты кривые дифференциальной сканирующей калориметрии при скоростях нагрева 1,25, 2,5, 5,0, 10,0 и 20,0 °С/мин и расходе воздуха через рабочее пространство печи 50 мл/мин. В настоящей ра-

боте предложено оценивать стойкость графитов по количеству энергии, необходимой для окисления графита, путем расчета энергии активации процесса окисления [8]. Фазовый состав и параметры структуры графита определяли рентгенофазовым методом на дифрактометре «Miniflex 600» с вращающимся анодом (Си K_{α} -излучение, $\lambda = 1,541862$ Å, интервал съемки 3,00-90,00 град, шаг сканирования 0,02 град) «Rigaku – Carl Zeiss» (Япония) с программами управления и сбора данных MiniFlex Guidance и пакетом обработки данных PDXL Basic. Идентификацию дифракционных максимумов проводили с использованием банка данных JSPDS. Средний размер ОКР *L* определяли рентгенографическим методом, основанным на гармоническом анализе профиля дифракционных максимумов. Средний размер ОКР оценивали по формуле Селякова - Шерера [9]:

$$L = \frac{\lambda}{\beta \cdot \cos \theta},\tag{1}$$

где λ — длина волны рентгеновского излучения, нм; β — физическое уширение FWHM, рад.

Размер кристаллов (чешуек) графита, наличие и распределение примесей анализировали методом растровой электронной микроскопии на установке JEOL JSM 6390LA (Jeol, Япония). Условия съемки: 20 кВ, SEI, BES, рабочее состояние 10 мм. Зерновой состав и зольность графитов представлены в табл. 2.

Микроструктура графитов показана на рис. 1, из которого видно, что структура всех графитов чешуйчатая; размеры и состав чешуек приведены в табл. 3. Поверхность чешуек ступенчатая, хорошо закристаллизованная, обломанная по краям, торцы слоистые. Примеси в графитах в основном распределены между отдельными чешуйками (см. рис. 1, *е*, *ж*, *и*, *к*), и только в графите производства КНР они входят в состав чешуек (см. рис. 1, *з*). Элементный состав примесей в графитах приведен в табл. 4, из которой следует, что примеси имеют примерно одинаковый алюмосиликатный или алюмосиликатно-железистый состав. По всей

Таблица 2. Зерновой состав и зольность исследуемых графитов

Графит	Содержание, мас. %, фракции, мм						
	+0,5	+0,4	+0,3	+0,25	+0,15	_0,15	50ЛЬНОСТЬ, %
ГЭ-1	0,4	0,7	10,7	13,1	44,8	30,3	8,32
Falke 94100	9,2	20,4	43,4	8,3	13,2	5,5	2,46
+592 (KHP)	11,3	3,9	27,6	33,9	14,7	8,6	6,18
+595 (Мадагаскар)	19,7	19,5	51,8	6,3	2,7	0,0	2,85
FLS 897	6,0	6,5	50,0	16,0	16,9	4,6	2,68

Таблица 3. Химический элементный состав поверхности графитов						
Графит	Содержани	Deerson voormus seure				
	С	0	Размер частиц, мкм			
ГЭ-1	99,4960	0,5040	160–500			
Falke 94100	99,0522	0,9478	140–720			
+592 (KHP)	99,4530	0,5470	460–720			
+595 (Мадагаскар)	99,5344	0,4656	550–930			
FLS 897	99,2955	0,7045	430–1140			
* Предел детектирования пр	ои энергии 5–20 кВ составляє	ет ~0,5 ат. %; ошибка изм	иерения концентрации ±2%.			

Таблица 4. Химический элементный состав примесей в графитах

Графит	Содержание ^{*1} , мас. %						
	С	0	Al	Si	Fe	K	Mg
ГЭ-1	1,1412	29,5383	10,4220	21,2961	26,9033	4,6515	6,0276
Falke 94100	36,9453	4,7260	15,3234	29,2570	13,7483	-	-
+592 (KHP)	13,5177	13,1540	21,8483	26,0473	6,4394	17,7074	1,2920
+595 (Мадагаскар)	4,3285	47,3572	21,4992	23,9640	2,6510	_	_
FLS 897	15,9046	26,7644	12,5601	32,5771	-	1,7970	5,3232 ^{*2}

*1 Предел детектирования при энергии 5-20 кВ составляет ~0,5 ат. %; ошибка измерения концентрации ±2%.
*2 Указано содержание CaO.

вероятности, это осадочные глинистые или глиногидрослюдистые минералы, привнесенные в графит с фильтрующимися водами.

Микроструктура графита +592 (см. рис. 1, в, з) по характеру распределения примесей, отражательной способности поверхности и морфологии поверхности чешуйки (ровные, бесступенчатые края, ровная гладкая поверхность) указывает на искусственное происхождение

Рис. 1. Микроструктура (*a*–*д*) и морфология поверхности (*e*–*к*) графитов: *a*, *e* — ГЭ-1; *б*, *ж* — Falke 94100; *e*, *з* — +592 (КНР); *e*, *u* — +595 (Мадагаскар); *д*, *к* — FLS 897

чешуек, полученных из более мелких частиц размерами 50–70 мкм. Примеси располагаются непосредственно в структуре чешуек.

Фазовый состав и параметры структуры графитов показаны на рис. 2 и приведены в табл. 5, из которых следует, что графит +592 отличается по структуре от остальных. Модификация 2H (α -графит, гексагональный *P*63/*mmc*) является стабильной природной модификацией, в то время как 3R (β -графит, ромбоэдрический R(-3)m) — метастабильной и в природе в чистом виде не встречается, но может содержаться в природном графите в коли-

Материал	2ө, град	<i>d</i> , Å	FWHM [*] , град	hkl	Размер ОКР, Å	Фаза
ГЭ-1	26,5791	3,35098	0,195	0,0,2	437	Graphite-2H
	54,7067	1,67647	0,135	0,0,4		
Falke 94100	26,535	3,3565	0,177	0,0,2	480	Graphite-2H
	54,6459	1,67819	0,127	0,0,4		
Falke 9280	26,548	3,3548	0,164	0,0,2	521	Graphite-2H
	54,6575	1,67786	0,133	0,0,4		
+592 (KHP)	26,539	3,3559	0,235	0,0,3	363	Graphite-3R
	54,648	1,67812	0,213	0,0,6		
+595 (Мадагаскар)	26,567	3,3525	0,227	0,0,2	375	Graphite-2H
	54,6885	1,67698	0,163	0,0,4		
FLS 897	26,518	3,3586	0,122	0,0,2	700	Graphite-2H
	54,6521	1,67801	0,140	0,0,4		

честве до 20–30 %. Гексагональная структура является двухслойной, а ромбоэдрическая трехслойной. Высокотемпературная обработка графита превращает ромбоэдрическую структуру в гексагональную. Ромбоэдрическая структура получается при тонком помоле графита и при 1600–1800 К способна превращать-

Рис. 2. Ренгенограммы графитов: *a* — ГЭ-1; *б* — Falke 94100; *в* — +592 (КНР); *г* — +595 (Мадагаскар); *д* — FLS 897

ся в гексагональную, в то время как природная форма ромбоэдрического графита требует температуры нагрева около 3300 К [10].

Наиболее совершенную кристаллическую структуру из исследуемых имеет графит FLS 897 производства Норвегии (самую маленькую полуширину пиков — FWHM и самый большой размер первичных идеальных кристаллов — OKP). Затем по степени совершенности следуют бразильский графит (Falke 94100), тайгинский графит (ГЭ-1), графит производства Мадагаскара +595 и графит производства КНР +592.

СЫРЬЕВЫЕ МАТЕРИАЛЫ

Таблица 6. Результаты анализа ДСК-кривых исследуемых графитов								
			Температура,	Curronwä	Croncom			
Графит	Потеря массы, %	начала потерь массы	начала теплового эффекта	максимума теплового эффекта	тепловой эффект, Дж/г	потери массы [*] , %/мин		
ГЭ-1	95,18	797,5	676,8	902,2	6446	0,78		
Falke 94100	95,55	853,2	776,9	967,0	5452	0,57		
+592 (KHP)	93,51	708,4	633,0	822,3	5772	0,97		
+595 (Мадагаскар)	97,02	913,1	861,3	1022,3	5712	0,59		
FLS 897	97,14	813,3	751,1	898,8	5900	0,62		
Falke 94100 +592 (КНР) +595 (Мадагаскар) FLS 897 * В установившемся	95,55 93,51 97,02 97,14 режиме.	853,2 708,4 913,1 813,3	776,9 633,0 861,3 751,1	967,0 822,3 1022,3 898,8	5452 5772 5712 5900	0, 0, 0, 0,		

СТОЙКОСТЬ К ОКИСЛЕНИЮ ИССЛЕДУЕМЫХ ГРАФИТОВ

Полный вид кривых дериватографического анализа исследуемых материалов при скорости нагрева 5 °С/мин показан на рис. 3 и приведен в табл. 6. В свойствах исследуемых графитов проявляется закономерность: чем выше суммарные потери массы (ниже зольность), тем выше температуры начала окисления (начала потерь массы и начала теплового эффекта). По этому при-

Рис. 3. Полный вид результатов дериватографического анализа графита при скорости нагрева 5 °С/мин: 1 — кривая потери массы (*TГ*); 2 — кривая тепловых эффектов (*ДСК*) для графита ГЭ-1 (*a*), Falke 94100 (*б*), +592 (*в*), +595 (*г*) и FLS 897 (*д*)

знаку можно составить ряд наиболее стойких к окислению графитов: +595 (Мадагаскар) → FLS 897 → Falke 94100 → ГЭ-1 Тайгинского месторождения → +592 (КНР). Суммарный тепловой эффект реакции окисления всех исследуемых графитов примерно одинаков — находится в интервале 5500–6500 кДж/г и, по-видимому, связан со структурой собственно графита и с количеством примесей в нем. Скорость потери массы наибольшая у графита +592 (0,97 °С/мин), наименьшая — у графита Falke 9280 (0,57 °С /мин).

ВЫВОДЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Анализ экспериментальных данных показывает, что при сравнительно высоком содержании углерода в графитах их физико-химические характеристики заметно различаются. Так, по размеру чешуек графиты Мадагаскара (+595) и КНР (+592) заметно выделяются среди исследуемых материалов (см. табл. 2). Известно [1], что чем крупнее чешуйки графита, тем более он устойчив к окислению. Температура начала окисления графита +595 самая высокая и составляет 913,1 °С (см. табл. 6). В этом отношении четко прослеживается взаимосвязь: чем больше тонких фракций, тем больше золы образуется при окислении графита (см. табл. 2). По всей вероятности, в тонких фракциях при измельчении горной породы сосредотачиваются примеси. Так, в графитах ГЭ-1 и +592 суммарное содержание фракций -0,25 мм составляет соответственно 75,1 и 23,3%, которым соответствует содержание золы 8,32 и 6,16 %. Графит +595, по данным табл. 2, не содержит фракций -0,15 мм. Таким образом, ограниченное содержание таких фракций способствует уменьшению образующейся золы при окислении графитов и снижению температуры начала окисления. У графитов ГЭ-1 и +592 температура начала окисления самая низкая и составляет соответственно 707,5 и 708,4 °С (см. табл. 6). С другой стороны, наличие примесей, затрудняющих процесс окисления графита, вызывает повышенный расход энергии. Суммарный тепловой эффект двух последних графитов составляет 6446 и 5772 Дж/г.

Библиографический список

1. *Кащеев, И. Д.* Оксидноуглеродистые огнеупоры / *И. Д. Кащеев.* — М. : Интермет Инжиниринг, 2000. — 265 с.

2. Аксельрод, Л. М. Развитие производства огнеупоров в мире, России, новые технологии / Л. М. Аксельрод // Новые огнеупоры. — 2011. — № 3. — С. 106–119.

3. *Аксельрод, Л. М.* Развитие огнеупорной отрасли — отклик на запросы потребителей / Л. М. *Аксельрод* // Новые огнеупоры. — 2013. — № 3. — С. 107–122.

4. *Смирнов, А. Н.* Основные тенденции развития рынка огнеупорных материалов [Электронный ресурс]. Режим доступа : http://steellab.com.ua/ news/2014/01/01.php. Дата доступа 26.06.2014 г.

5. **Baaske**, **A.** Refractory Raw Materials — Developments, Trands, Availability / A. Baaske, R. Dubers, J. Fandrich [et al.] // Refractories Worldforum. — 2012. — Vol. 4, № 1. — P. 27–34.

6. **Соловушкова, Г. Э.** Состояние дел и тенденции развития производства и использования углеродсодержащих и бескислородных огнеупоров, применяемых в черной металлургии / *Г. Э. Соловушкова* // Огнеупоры. — 1991. — № 4. — С. 35–40.

Состояние поверхности и присутствие на ней посторонних включений имеет важное значение для службы огнеупорных изделий, содержащих в своем составе графит. Химический анализ поверхности графитов показывает содержание на ней и между чешуйками алюмосиликатных материалов (линии Al и Si). Соотношение концентраций элементов Al и Si (по интенсивности) у графитов Falke 94100, +592, +595 одинаковое (Al : Si ≈ 1 : 1), в то время как у графитов ГЭ-1 и FLS 897 интенсивность линий Si намного выше, чем линий Al. Как правило, элементам Al и Si сопутствуют в небольшом количестве элементы Na и K, которые, вероятно, входят в состав алюмосиликатных примесей.

Результаты рентгеноструктурного анализа графитов (см. табл. 5) показывают, что исследуемые графиты представлены двумя структурными разновидностями: гексагональным (модификация 2H) и ромбоэдрическим (модификация 3R), которые различаются способом упаковки слоев графита. Наиболее совершенную кристаллическую решетку имеет графит FLS 897, спектр которого демонстрирует наименьшую полуширину рентгеновских линий (FWHM) и наибольший размер первичных кристаллов (ОКР), что видно из табл. 5. По окисляемости графиты располагаются в ряд: +595 \rightarrow FLS 897 \rightarrow Falke 94100 \rightarrow ГЭ-1 \rightarrow $\rightarrow +592.$

7. Мировой рынок графита [Электронный ресурс] : Дальграфит 2015 г. URL: http://dalgraphite.com/ru/ graphite-market, свободный. — Загл. с экрана. — Яз. рус., англ.

8. **Земляной, К. Г.** Исследование возможности оценки технологических свойств графита / К. Г. Земляной, И. Д. Кащеев, В. М. Устьянцев // Новые огнеупоры. — 2015. — № 3. — С. 101–108.

Zemlyanoi, K. G. Study of the feasibility of evaluating the processing properties of graphite / K. G. Zemlyanoi, I. D. Kashcheev, V. M. Ust'yantsev // Refractories and Industrial Ceramics. -2015. - Vol. 56, No 2. - P. 144–150.

9. Рентгенография в физическом металловедении ; под ред. Ю. А. Багаряцкого. — М. : Науч.-техн. издво лит-ры по черн. и цв. металлургии, 1961. — 368 с.

10. **Шумпов, С. В.** Физика углеродистых материалов / С. В. Шумпов. — М. : Металлургия, 1972. — 256 с. ■

> Получено 14.08.15 © И. Д. Кащеев, К. Г. Земляной, В. М. Устьянцев, С. А. Поморцев, 2015 г.