К. т. н. К. Г. Земляной¹ (🖾), к. т. н. Ю. И. Комоликов², К. В. Миронов³, А. А. Форшев³, Ф. П. Николаев³, Д. В. Сушников³

¹ ФГБОУ ВО «Уральский федеральный университет», Екатеринбург, Россия

³ АО ЕВРАЗ НТМК, г. Нижний Тагил, Россия

УДК 666.76.017:669.162.212

ТЕРМОМЕХАНИЧЕСКИЕ И ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ГАРНИСАЖА И ОТРАБОТАННОЙ ФУТЕРОВКИ ДОМЕННОЙ ПЕЧИ

Приведены результаты комплексного исследования теплофизических свойств 21 образца гарнисажа и футеровки, отобранных после выдувки доменной печи № 6 ЕВРАЗ НТМК. Определены открытая пористость, кажущаяся плотность, температура плавления, ТКЛР, температуропроводность и теплоемкость образцов, рассчитана их теплопроводность. Определены коэффициенты в стандартных уравнениях аппроксимации температуропроводности, теплоемкости и теплопроводности для каждого вида гарнисажа и перерожденного огнеупора.

Ключевые слова: гарнисаж, футеровка доменной печи, кажущаяся плотность, теплопроводность, теплоемкость, температуропроводность, температурный коэффициент линейного расширения (ТКЛР).

Одной из важных задач современной металлургии является разработка математических моделей и на их основе автоматизированных систем поддержки принятия решений по управлению ходом процессов в металлургических агрегатах, в том числе таких сложных, как доменная печь, с целью стабилизации процесса, оптимизации затрат энерго- и сырьевых ресурсов и получения продукции заданного качества [1–8].

Для построения качественной модели физикохимических и теплотехнических процессов, происходящих в доменной печи, необходима информация о составе, структуре и свойствах как исходных компонентов процесса — сырья, огнеупоров, газа, кокса, так и продуктов их взаимодействия — шлака, чугуна, гарнисажа [9, 10].

Настоящую работу проводили с использованием материалов, полученных после остановки ДП № 6 ЕВРАЗ НТМК для проведения технического перевооружения с 24 февраля 2018 г. [11]. После выдувки печи и ее охлаждения водой и естественной тягой футеровку и гарнисаж обрушали гидромолотом и удаляли из печи. Пробы при этом отбирали из горна, фурменной зоны и заплечиков. Всего на исследование было представлено 17 образцов гарнисажа (13 шт.) и огнеупорной футеровки

> ⊠ К. Г. Земляной E-mail: kir77766617@yandex.ru

Рис. 1. Зоны отбора проб из шахты доменной печи № 6 ЕВРАЗ НТМК

(4 шт.) после эксплуатации в условиях кампании доменной печи № 6 (рис. 1) [11].

МЕТОДЫ ИССЛЕДОВАНИЯ

Температуру плавления определяли термогравиметрическим методом на дифференциальном сканирующем дериватографе STA 449 F3 Jupiter

² ФГБУН «Институт физики металлов имени М. Н. Михеева УрО РАН», Екатеринбург, Россия

(Netzsch-Gerätebau, GmbH, Германия) с использованием программного пакета Proteus Analysis 5.2 по стандарту DIN 51004:1994 Determination of melting temperatures of crystalline materials using differential thermal analysis (Определение температур плавления кристаллических материалов с использованием дифференциального термического анализа). Погрешность метода ±3 %.

Теплоемкость c_p определяли на том же дериватографе, что и температуру плавления, по стандарту ASTM E1269–2011 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry (Метод стандартной пробы для определения теплоемкости дифференциальной сканирующей калориметрией). Стандартный образец — сапфир. Погрешность метода ±5 %.

Температуропроводность а измеряли методом лазерной вспышки на приборе LFA 457 (Netzsch, Германия) в диапазоне 300–1373 К. Образец, установленный на специальный держатель, помещали в карбидкремниевую электропечь с инертной атмосферой. Нижнюю часть образца нагревали лазерным импульсом длительностью 0,5 мс. Температуру верхней части образца регистрировали ИК-детектором на InSb. Выдержка на каждой температуре составляла 20 мин, число измерений на каждой температуре — пять.

ТКЛР образцов исследовали на дилатометре DIL 402C (Netzsch) с использованием высокочувствительного датчика — преобразователя линейного перемещения. Измерения проводили от комнатной температуры до 1100 °C в режиме непрерывного нагрева с постоянной скоростью изменения температуры 4 °С/мин.

Теплофизические свойства определяли до 1100 °С, поскольку при более высоких температурах в образцах начинаются физико-химические процессы, существенно искажающие результаты. Определения производили в защитной атмосфере (аргон) для исключения процессов окисления в исследуемых материалах.

Теплопроводность материалов рассчитывали, исходя из известной зависимости [12]:

$$\lambda(t) = a(t) \cdot c_p(t) \cdot \rho_{\text{Kajk}},\tag{1}$$

где λ(*t*) — функция теплопроводности, Вт/(м·К), от температуры,

$$\lambda(t) = a + bt + ct^2; \tag{2}$$

 $c_p(t)$ — функция теплоемкости, кДж/(кг·К), от температуры,

$$c_p(t) = a_1 + b_1(t + 273) + c_1(t + 273)^2;$$
 (3)

a(*t*) — функция температуропроводности, м²/с, от температуры

$$a(t) = a_2 + b_2 t + c_2 t^2; (4)$$

ρ_{каж} — кажущаяся плотность материала, кг/м³.

Кажущуюся плотность, открытую пористость и водопоглощение (по керосину) определяли согласно ГОСТ 2409–2014 «Огнеупоры. Метод определения кажущейся плотности, открытой и общей пористости, водопоглощения».

ПОДГОТОВКА ОБРАЗЦОВ

Образцы были представлены в виде кусковых материалов сложной формы гетерофазного состава.

Образцы гарнисажа (см. рис. 1):

Г1. Образец с отметки +7.500, район воздушной фурмы № 4. Структура образца представлена сложными агломератами из остатков огнеупора (корундомуллитокарбидкремниевого), переродившегося под воздействием железистых расплавов и железисто-углеродистой матрицы (стеклофазы), содержащей большое количество растворенных в ней микродобавок.

Г2. Образец с отметки +8.000, район воздушной фурмы № 7. Представляет собой агломерат из остатков корундомуллитокарбидкремниевого огнеупора, перерожденного под действием двух агентов печного пространства: железистоуглеродистого расплава и паров цинка.

ГЗ. Образец (чугунная пластина между блоками) с отметки +9.100, район чугунной летки № 2. Представляет собой железисто-углеродистый расплав (видимо, чугун) с растворенными в нем микропримесями и порами, занятыми железоалюмосиликатной стеклофазой.

Г4. Образец с отметки +9.100, район чугунной летки № 2. Представляет собой бикерамический материал, образовавшийся совместной кристаллизацией несмешивающихся железистоуглеродистого расплава, карбонитридов титана / ванадия и силикокальциевого стекла (шлака).

Г5. Образец из района воздушной фурмы № 5. Представляет собой бикерамический материал, образовавшийся совместной кристаллизацией несмешивающихся железисто-углеродистого расплава, карбонитридов титана / ванадия и силикокальциевого стекла (шлака).

Г6. Образец из района чугунной летки № 1. Представляет собой бикерамический материал, образовавшийся совместной кристаллизацией несмешивающихся железисто-углеродистого расплава, карбонитридов титана / ванадия и алюмосиликокальциевого стекла (шлака). В стеклофазе (шлаке) повышенное содержание оксида магния, возможна кристаллизация благородной шпинели MqO·Al₂O₃.

Г7. Образец с отметки +5.500. Представляет собой агломерат, образовавшийся при совместной кристаллизации несмешивающихся железистоуглеродистого расплава, карбонитридов титана / ванадия и силикокальциевого стекла (шлака).

Г8. Образец из зоны распара, район трещины корпуса. Представляет собой агломерат, образовавшийся при совместной кристаллизации несмешивающихся железисто-углеродистого расплава, алю-

10

мосиликокальциевого стекла (шлака) и небольшого количества карбонитридов титана / ванадия.

Г9. Образец из фурменной зоны, в районе 2-3 фурменных приборов, зона с отключенным холодильником. Образец представляет собой агломерат, образовавшийся при совместной кристаллизации несмешивающихся железисто-углеродистого расплава, алюмосиликокальциевого стекла (шлака) и небольшого количества карбонитридов титана / ванадия.

Г10, Г10.1. Образцы с отметки +9.550, район чугунной летки № 2, ~900 мм за блоком. Образец Г10 представляет собой массообменный агломерат, образовавшийся на разрушившемся первичном графите (огнеупор) и, возможно, на корундомуллитокарбидкремниевом огнеупоре при механическом и термическом (образование трещин), а также химическом воздействиях (перерождение под влиянием железисто-углеродистого расплава чугуна, кальцийсиликатного расплава шлака и паров титана / ванадия / цинка при температурах выше 1500 °С).

Образец Г10.1 представляет собой агломерат, образовавшийся из разрушившегося первичного (графит из огнеупора) и вторичного (кокс) углерода под действием высоких температур и давлений горна доменной печи. Наблюдаются отдельные зерна первичного карбида кремния, оставшиеся от футеровки, и зерна металлического цинка, конденсированного из паровой фазы.

Г11. Образец из зоны распара, нормальное охлаждение. Представляет собой агломерат, образовавшийся из разрушившегося алюмосиликатного огнеупора с первичным (сажистым) и вторичным (кокс) углеродом в порах под действием высоких температур, газовой атмосферы и давления в шахте доменной печи.

Г12. Образец из фурменной зоны, нормальное охлаждение. Представляет собой полифазный агломерат, образовавшийся из-за неполного окисления гарнисажа, состоящего из кокса, карбонитридов титана и ванадия, металлической фазы (α-Fe + Fe₃C) и шлаковой стеклофазы (кальцийсиликатное стекло).

Г13. Образец — «козловой» чугун. Представляет собой полифазный агломерат, образовавшийся совместной кристаллизацией карбонитридов титана / ванадия и титаната бария, металлической фазы (α-Fe + Fe₃C) и шлаковой стеклофазы (кальцийсиликатное стекло).

Образцы футеровки (см. рис. 1):

01. Образец — часть футеровочного блока горна. Представляет собой полифазный агломерат, образовавшийся при разрушении и перерождении корундомуллитокарбидкремниевого огнеупора под воздействием расплавов и активной газовой (паровой) фазы доменного процесса.

O2. Образец — часть графитированного блока 1-го ряда. Представляет собой перерожденный в условиях механических и химических нагрузок углеродистый огнеупор с карбидизированными зонами, поры и трещины которого заполнены новообразовавшимися металлическими (цинк) и оксидными (шлаковая стеклофаза) фазами.

ОЗ. Образец — перерожденные части углеродистого блока с отметки +9.500, район фурменного прибора № 16. Представляет собой полифазный агломерат, образовавшийся при разрушении и перерождении корундомуллитокарбидкремниевого огнеупора под воздействием расплавов и активной газовой (паровой) фазы доменного процесса.

*О4. Образец — слоистые части углеродисто*го блока с отметки +9.300, район чугунной летки № 2. Представляет собой слоистый сросток двух огнеупоров: корундо-муллитокарбидкремниевого и углеродистого (графитового), перерожденных в процессе эксплуатации в условиях доменной печи.

Из полученных материалов были изготовлены образцы для определения ТКЛР в виде балочек размерами 5-7×5-7×35-40 мм и температуропроводности в виде пластинок размерами 8-10×8-10×3-6 мм. Оставшиеся от изготовления образцов материалы были измельчены до фракции мельче 5 мм, усреднены и методом квартования уменьшены до навески массой 100 г, из которой отбирали образцы для определения температуры плавления.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Керамические свойства образцов гарнисажа и отработанной футеровки приведены в табл. 1.

Результаты определения теплоемкости c_p образца $\Gamma 1$ приведены в табл. 2 и показаны на рис. 2, температуропроводности a — соответственно в табл. 3 и на рис. 3. Итоговые результаты для расчета теплопроводности λ образца $\Gamma 1$ приведены в табл. 4.

Таблица 1. Физико-химические свойства образцов, отобранных из гарнисажа и футеровки

	•	•	17 1	
Ofnaceu	Водопо-	Кажущаяся	Открытая	Температу-
(CM DMC 1)	глощение,	ПЛОТНОСТЬ,	пористость,	ра плавле-
(см. рис. 1)	%	г/см ³	%	ния, ⁰С
	06	разцы гарнис	ажа	
Γ1	0,8	3,34	3,4	1358
Γ2	1,2	3,66	5,5	1345
ГЗ	0,8	8,17	8,0	1302
Γ4	0,7	3,66	3,1	1353*
Г5	0,0	4,94	0,0	1289*
Г6	0,2	4,76	1,0	1352
Γ7	0,5	5,58	1,1	1352*
Г8	1,8	4,03	9,4	1306*
Г9	0,9	5,83	7,0	1351*
Г10	0,0	4,81	0,0	1388*
Г10.1	2,7	4,45	15,2	>1600
Γ11	26,2	1,0	38,6	1374*
Г12	11,5	2,83	41,3	1295*
Г13	0,2	5,50	1,1	1341*
	Об	разцы футер	овки	
01	1,2	3,95	6,1	>1600
02	5,7	2,04	14,7	>1600
03	4,2	3,40	18,2	>1600
04	1,9	2,48	5,8	>1600
* Начало і	тоявления х	кидкой фазы.		

Таблица 2. Результаты определения теплоемкости образца Г1

t, °C	<i>С</i> _р , кДж/(кг·К)	t, ⁰C	<i>с</i> _{<i>p</i>} , кДж/(кг·К)
50	0,1074	600	0,4681
100	0,1199	650	0,4915
150	0,1254	700	0,5233
200	0,1356	750	0,5585
250	0,1599	800	0,5625
300	0,1828	850	0,5655
350	0,2872	900	0,5912
400	0,3646	950	0,6318
450	0,3981	1000	0,6933
500	0,4309	1050	0,7396
550	0.4465	1100	0.7145

Рис. 2. График зависимости $c_p(t)$ образца для $\Gamma 1$ (\bullet) и аппроксимация графика полиномиальным уравнением 2-й степени (...)

Общий вид уравнения зависимости c_p(t) для образца Г1:

 $c_{p}(t) = 0.0168 + 0.8 \cdot 10^{-3}(t + 273) - 0.2 \cdot 10^{-6}(t + 273)^{2}.$

Общий вид уравнения зависимости a(t) для образца Г1:

 $a(t) = 3.6809 - 3.0 \cdot 10^{-3}t + 0.7 \cdot 10^{-6}t^2.$

Таблица 3. Результаты определения температуропроводности образца Г1

	и, м /С	<i>t</i> , ⁰C	<i>а,</i> м²/с
50	3,54	600	2,12
100	3,38	700	1,88
200	3,06	800	1,82
300	2,98	900	1,69
400	2,61	1000	1,35
500	2,23	1100	1,22

Рис. З. График зависимости *a*(*t*) для образца *Г1* () и аппроксимация графика полиноминальным уравнением 2-й степени (...)

Для инженерных расчетов применяют как средние, так и истинные значения ТКЛР в процессе нагрева. В частности. для подсчета напряжений, возникающих в материале при изменении его температуры, необходимо использовать истинные коэффициенты расширения, а для подсчета изменения размеров изделия вследствие термического расширения удобно использовать средние значения [13]. ТКЛР зависит от состава и исходной структуры.

Пример определения ТКЛР образцов приведен в табл. 5, а вид дилатометрической кривой показан на рис. 4. Итоговые результаты определения ТКЛР представлены в табл. 6, 7.

Таблица 4. Данные для расчета теплопроводности образцов гарнисажа и футеровки при заданной температуре*

05			Коэффициен	т в уравнении			Кажущаяся
Ооразец	Т	теплоемкости, 1	0 ³	темпер	атуропроводнос	сти, 10 ⁻⁶	плотность,
(СМ. 140Л. 1)	<i>a</i> ₁	b_1	<i>C</i> ₁	<i>a</i> ₂	b_2	<i>C</i> ₃	кг/м ³
			Образец	гарнисажа			
Γ1	0,0168	0,8	-0,2	3,6809	-3,0	0,7	3660
Γ2	0,0842	1,3	-0,7	3,9082	-3,1	0,6	8170
ГЗ	0,5342	-2,2	-4,0	0,9894	3,9	-0,2	3660
Γ4	0,0111	2,2	-0,6	2,1065	-0,5	-0,3	4940
Γ5	0,0029	0,06	0,2	4,1046	-2,9	-0,4	4760
Г6	-0,0804	1,8	-0,8	1,4175	0,8	1,0	5580
Γ7	-0,022	0,7	-0,1	3,7829	-0,9	-0,1	4030
Г8	0,0131	0,4	0,06	1,4808	-0,3	-0,03	5830
Г9	0,0062	0,6	0,3	1,2915	-0,3	-0,03	4810
Г10	0,0527	0,5	-0,05	1,5958	0,7	0,2	4450
Γ10.1	0,7663	1,0	0,02	10,215	-6,5	-2,0	1000
Γ11	0,0012	1,0	0,2	2,0523	-0,08	-0,05	2830
Γ12	0,0243	0,4	0,9	0,3916	0,04	0,03	5500
Г13	0,6743	1,1	5,0	1,6219	1,9	0,1	3950
			Образец	футеровки			
01	0,92	0,04	0,06	3,8484	-2,1	0,02	2040
02	2,3264	-5,3	9,0	252,62	-289,6	90,0	3400
03	0,0096	1,1	0,2	1,0387	-0,2	-0,08	2480
04	0,7564	1,2	-0,2	2,783	-1,4	0,4	3340
* Выше 1100 °С	С — полиномиал	льная аппрокси	мация 2-го пор	ядка.			

12

Таблица 5. Результаты определения зависимости ТКЛР (t) для образца Г1

t, ⁰C	Средний ТКЛР, 10 ⁻⁶ 1/К	t, ⁰C	Средний ТКЛР, 10 ⁻⁶ 1/К
50-100	6,23	50-100	5,12
50-200	6,61	100-200	9,02
50-300	7,83	200-300	8,36
50-400	7,78	300-400	0,34
50-500	8,16	400-500	5,96
50-600	8,79	500-600	6,12
50-700	9,60	600-700	6,81
50-800	10,64	700-800	7,15
50-900	12,57	800-900	9,32
50-1000	14,35	900-1000	8,55
50-1100	15,78	1000-1100	10,83

ЗАКЛЮЧЕНИЕ

Исследованы теплофизические и термомеханические свойства образцов гарнисажа с разных уровней и зон ДП № 6 после эксплуатации. На основании полученных данных определены коэффициенты в уравнениях аппроксимации стандартного вида, позволяющие рассчитывать и прогнозировать теплофизические свойства гарнисажа в зависимости от его вещественного состава и температуры. Предложен расчетный метод оценки теплопроводности гарнисажа в зависимости от его состава.

Учитывая ранее определенные химический и вещественный составы образцов, полученные сведения позволяют моделировать поведение гарнисажа из разных зон шахты доменной печи в процессе плавки.

Библиографический список

1. **Чистов, В. П.** Разработка экспертной системы на основе логического интеллекта для управления доменной печью / В. П. Чистов, В. Г. Лисиенко, Л. И. Леонтьев [и др.] // Наука и инженерное творчество — XXI веку: первая научнотехническая конференция РУО АИН РФ. — Екатеринбург : РУО АИН РФ, 1995. — С. 89–92.

2. *Голубев, О. В.* Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики : дис. ... канд. техн. наук : 05.13.18. — Липецк, 2003. — 158 с.

3. **Ченцов,** *А. В.* Балансовая логикостатистическая модель доменного процесса / *А. В. Ченцов, Ю. А. Чесноков, С. В. Шаврин.* — Екатеринбург : УрО РАН, 2003. — 164 с.

4. *Сучков, А. В.* Проблемы построения системы поддержки принятия решений для доменного производства / *А. В. Сучков //* Вестник Воронежского гос. техн. ун-та. — 2009. — № 10. — С. 72–81.

5. Лисиенко, В. Г. Развитие модельной поддержки экспертных систем управления энергонасыщенными объектами / В. Г. Ли-

Таблица (6. Cper	THEE 31	начени	е ТКЛ	P, 10-	1/K, 0	бразц	OB, OTC	обранн	іых из	гарни	сажа I	и отра(отан	ной фу	терові	мод их	енно
печи (см	. рис.	1)																
$t, ^{\circ}C$	$\Gamma 1$	$\Gamma 2$	$\Gamma 3$	$\Gamma 4$	$\Gamma 5$	$\Gamma 6$	$\Gamma7$	$\Gamma 8$	$\Gamma 9$	$\Gamma 10$	$\Gamma 10.1$	$\Gamma 11$	$\Gamma 12$	$\Gamma 13$	01	02	03	04
50 - 100	6,23	5,29	7,91	5,83	8,06	7,56	8,06	9,92	9,95	8,18	3,47	5,79	3,44	7,67	4,91	3,95	5,46	4,81
50-200	6,61	5,00	6,24	4,66	7,41	7,15	7,41	11,35	10,05	8,02	5,42	5,77	4,87	7,73	5,24	2,02	5,38	4,34
50-300	7,83	5,29	9,03	5,17	7,83	7,64	7,83	11,45	11,77	8,51	5,71	5,98	5,67	8,27	5,51	2,49	5,39	5,51
50 - 400	7,78	5,59	10,89	5,53	8,15	8,06	8,15	11,62	12,82	8,84	6,73	6,14	8,14	8,62	5,61	3,06	5,49	5,08
50 - 500	8,16	8,16	11,50	8,59	8,79	9,43	11,23	13,07	13, 13	10,41	7,48	7,25	8,73	10,76	6,63	3,48	6,04	5,82
50 - 600	8,79	10,23	11,63	11,31	10,84	8,98	13,08	14,61	14,72	12,28	8,31	8,32	10,53	12,51	7,54	5,64	6,79	6,57
50-700	9,60	11,58	12,68	16, 34	12, 17	10,57	15, 33	15,22	15,75	15, 11	9,12	9,55	12,38	14,22	9,99	6,19	7,53	6,78
50 - 800	10,64	11,69	13, 33	18,63	15,73	11,38	16,98	15,83	17,76	18, 43	9,34	11,71	14, 27	18,52	11,63	6,27	8,41	7,11
50 - 900	12,57	14,56	14,54	19,85	18, 12	11,92	21,03	14,58	17,79	21,97	10,76	13,86	18, 13	20,09	13,84	8,35	8,97	7,44
50 - 1000	14,35	16,81	15,11	22,11	20,64	12,08	24,41	16,05	19,21	27,43	11,58	15, 12	19,71	24,24	14,55	8,68	10,15	8,62
50-1100	15,78	18,73	17,53	24,83	22,37	13,52	28,33	18,66	19,83	28,73	12,41	17,57	22,53	27,71	16,83	9,57	11,53	9,51
Таблица 7	7. Исти	нное з	начен	ие ТКЛ	IP, 10-'	° 1/K, c	образц	0B, 0T(обрани	ных из	гарни	сажа	и отра	ботані	ной фу	терові	мод их	енной
печи (см	. рис.	1)									ı				1			
$t, ^{\circ}C$	L1	$\Gamma 2$	$\Gamma 3$	$\Gamma 4$	$\Gamma 5$	$\Gamma 6$	$\Gamma7$	$\Gamma 8$	I9	$\Gamma 10$	$\Gamma 10.1$	$\Gamma 11$	$\Gamma 12$	$\Gamma 13$	01	02	03	04
50 - 100	5,12	4,03	7,02	2,59	7,61	4,11	8,22	9,24	8,91	8,46	5,66	6,12	4,12	7,30	5,25	7,41	4,87	7,62
10-200	9,02	5,89	8,56	8,77	6,05	9,11	7,78	11,37	9,71	8,40	6,08	7,22	7,06	7,32	4,64	1, 17	4,76	0,84
20-300	8,36	5,55	13,54	7,59	8,34	7,64	7,15	11,89	8,76	9,58	4,93	7,03	10,01	11,01	5,52	0,17	4,51	5,63
30-400	0,34	2,28	11,61	4,28	7,51	5,81	8,95	13,45	11,89	8,21	5,87	6,07	20,21	9,35	5,47	0,93	6,14	10,03
40-500	5,96	4,69	12,27	5,61	7,05	5,45	10,57	13,53	14,71	8,51	6,10	4,51	20,41	6,57	5,44	4,03	7,31	8,39
50-600	6,12	5,11	12,82	6,19	6,54	6,05	11,15	14,21	14,28	8,59	6,29	5,76	24,05	8,64	4,88	2,92	8,55	3,41
60-700	6,81	5,46	12,35	6,74	6,49	6,52	11,52	14,87	14,98	9,83	6,47	7,13	27,91	9,98	5,01	3,06	8,76	5,64
70-800	7,15	6,42	11,89	8,43	5,13	7,43	13,07	15,54	19,99	11,57	7,64	8,42	31,77	11,21	5,62	2,84	9,54	3,68
80–900	9,32	6,72	6,58	9,72	8,59	7,18	13,56	16,21	12,51	10,26	7,80	8,88	15,62	13,54	4,92	4,22	10,02	6,66
90-1000	8,55	8,51	21,82	10,85	10,48	5,68	12,59	16,88	16,48	11,87	8,00	10,11	29,49	12,58	5,26	5,38	10,67	6,91
100 - 1100	10,83	12,72	23,59	12,26	12,26	4,75	15,21	17,55	20,54	13,51	8,18	12,47	33,34	15,44	6,18	7,51	11,55	8,14

сиенко, В. А. Морозова, А. В. Сучков, А. В. Огаров // Автоматизация технологических производственных процессов в металлургии : межвуз. сб. науч. тр. ; под ред. Б. Н. Парсункина. — Магнитогорск : МГТУ, 2009. — С. 4–19.

6. *Иванча, Н. Г.* Совершенствование технологии, работы оборудования и систем управления доменной плавкой / *Н. Г. Иванча, И. Г. Муравьева, Ю. С. Семенов* [и др.] // Черная металлургия : Бюл. НТиЭИ. — 2017. — № 6. — С. 31–40.

7. **Муравьева, И. Г.** Интеллектуальная система поддержки принятия решений по управлению доменной плавкой / И. Г. Муравьева, Д. Н. Тогобицкая, Ю. С. Семенов [и др.] // Сб. науч. работ «Компьютерное моделирование, анализ, управление, оптимизация». — 2017. — № 1. — С. 25–30.

8. *Истомин, А. С.* Разработка логико-динамической модели с целью повышения эффективности выплавки чугуна в доменной печи : дис. ... канд. техн. наук : 05.16.02. — Екатеринбург. — 2017. — 181 с.

9. *Коверзин, А. М.* Исследование гарнисажа и футеровки в горне доменной печи № 2 АО ЕВРАЗ ЗСМК / *А. М. Ко*- *верзин, В. Г. Щипицын, А. В. Ващенко* [и др.] // Бюл. Черная металлургия. — 2018. — № 9. — С. 9–24.

10. **Курунов, И. Ф.** Исследование состава и структуры гарнисажа горна ДП № 6 НЛМК / И. Ф. Курунов, А. С. Блюзнюков, В. Н. Титов [и др.] // Бюл. Черная металлургия. — 2019. — Т. 75, № 2. — С. 166–181.

11. **Перепелицын, В. А.** Минералогия и микроструктура разновидностей гарнисажа в доменной печи № 6 АО ЕВ-РАЗ НТМК / В. А. Перепелицын, К. Г. Земляной, К. В. Миронов [и др.] // Новые огнеупоры. — 2020. — № 7. — С. 11–21.

12. Литовских, Е. Я. Теплофизические свойства огнеупоров : справ. издание / Е. Я. Литовских, Н. А. Пучкелевич. — М. : Металлургия, 1982. — 152 с.

13. Физические свойства сталей и сплавов, применяемых в энергетике : справочник ; под ред. Б. Е. Неймарк. — М.-Л. : Энергия, 1967.— 240 с. ■

Получено 13.10.20 © К. Г. Земляной, Ю. И. Комоликов, К. В. Миронов, А. А. Форшев, Ф. П. Николаев, Д. В. Сушников, 2021 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

15-я международная конференция «Advanced Carbon NanoStructures 2021» (ACNS'2021)

28.06.2021-02.07.2021 Санкт-Петербург, Россия

Организаторы:

Институт Иоффе, Санкт-Петербург, Россия Национальный исследовательский центр «Курчатовский институт», Москва, Россия Петербургский институт ядерной физики имени Б. П. Константинова, Россия Санкт-Петербургский государственный технологический институт (технический университет), Россия

Программа традиционно будет включать лекции приглашенных спикеров, устные презентации и несколько стендовых сессий. Лекции и устные презентации будут концентрироваться на последних достижениях в следующих областях:

Материалы:

- *Фуллерены
- *Углеродные нанотрубки
- *Графен
- *Наноалмазные частицы
- *Линейные атомы углерода
- *Углерод на основе карбида
- *Композиты на основе наноуглеродов

Явления:

- Синтез
- Электронные, магнитные, оптические,
- механические и транспортные свойства – Фазовые переходы

Эл. почта: info@acns2021.org Факс: +7 (812) 297 0073 Телефон: +7 (812) 292 7377