С. В. Трунов¹, М. В. Конев², к. т. н. И. С. Сарычев² (Ѕ), к. т. н. И. Н. Чмырев³

- ¹ ООО «ОсколПромСнаб», г. Воронеж, Россия
- ² ЗАО «Липецкметаллургпроект», г. Липецк, Россия
- ³ ФГБОУ ВО «Липецкий государственный технический университет», г. Липецк, Россия

УДК 669.18.046

К ВЫБОРУ ТЕПЛОИЗОЛИРУЮЩЕЙ СМЕСИ ДЛЯ НЕПРЕРЫВНОЙ РАЗЛИВКИ*

Рассмотрены теплоизолирующие смеси, разработанные на основе местного сырья. Определены их характеристики с помощью установок российского производства и применение их на отечественных металлургических предприятиях.

Ключевые слова: теплоизолирующие смеси (ТИС), непрерывная разливка стали, микрокремнезем, диатомит, промежуточный ковш, сталеразливочный ковш.

Технологическим регламентом непрерывной разливки стали строго установлен температурный интервал металла в сталеразливочном и промежуточном ковшах — не выше 20 °C [1].

Широко известно, что для стабилизации температуры жидкого металла, находящегося в сталеразливочных ковшах, применяют теплоизолирующие смеси (ТИС) на основе зол уноса ТЭЦ П-4-Л (насыпная плотность 1000 кг/м³) [2]; зол уноса ТЭЦ и рисовой лузги (насыпная плотность 500–1000 кг/м³) [3]; минеральной составляющей (металлургические шлаки и бой огнеупорных материалов) и углеродсодержащего материала ТИС-2А (насыпная плотность 700 кг/м³) [4]; диатомита и микрокремнезема [5]; золы рисовой лузги Glutin RS6 (RS10) (насыпная плотность 250 кг/м³) [2].

Многие производители ТИС для регулирования стоимости производимых смесей используют пылевые выбросы, оседающие на фильтрах, такие как микрокремнезем, золы уноса ТЭЦ. Микрокремнезем — это продукт выбросов при производстве ферросилиция, он представляет собой пустотелые шарики диаметром 0,1÷0,2 мкм, его

* По материалам доклада на международной научнопрактической онлайн-конференции «Современные тенденции в области применения наноматериалов при производстве огнеупорных материалов» (17.06.2020 г.).

 \bowtie

И. С. Сарычев E-mail: sari4evis@mail.ru можно отнести к наноматериалам. Микрокремнезем имеет насыпную плотность 170–180 кг/м³, он не только снижает стоимость ТИС, но и повышает их технологические свойства.

В сертификатах на ТИС указывают химический состав и насыпную плотность, но действительную эффективность ТИС определяют такие показатели, как коэффициент теплопроводности при высоких температурах, температуры спекания и плавления.

Для оценки эффективности различных видов ТИС были изготовлены теплоизолирующие смеси разного состава (табл. 1).

Коэффициент теплопроводности определяли по методике [6, 7] на опытной лабораторной установке ЗАО «Липецкметаллургпроект». Принципиальная схема установки показана на рис. 1.

Температуры спекания и плавления определяли в муфельной лабораторной печи. Образцы смесей дискретно нагревали в корундовом тигле до 1350, 1450, 1500, 1550, 1600, 1650 и 1700 °C с выдержкой 30 мин с последующим охлаждением. Насыпную плотность смесей определяли по ГОСТ 32558-2013. Результаты исследований приведены в табл. 2.

Смеси SILTIS склонны к спеканию в интервале 1350÷1450 °С, и эта склонность резко возрастает с уменьшением размера частиц компонентов смеси, так как микрокремнезем имеет размер частиц 0,1–0,2 нм, которые при перемешивании в бетоносмесителе могут дополнительно измельчаться до 0,05–0,1 нм.

Данные смеси прошли испытания на нескольких металлургических предприятиях России. Критериями оценки эффективности применения указанных ТИС служили: средняя

Таблица 1. Химический состав ТИС

Моториот	Химический состав, %							
Материал	SiO_2	Al_2O_3	CaO	Fe ₂ O ₃	K_2O	Na ₂ O	MgO	С
Диатомит фракции 3-4 мм	86,0	6,10	0,30	2,80	1,30	0,20	0,80	_
Микрокремнезем МК 85, диатомит	87,0	0,50	2,00	2,50	0,10	0,10	1,33	8,0
(30 %)*								
Микрокремнезем МК 85, фракцией	92,0	0,40	0,28	1,20	2,95	1,23	1,30	8,0
1–2 мм (гранулированный)*								
Зола рисовой лузги (ЗРЛ)	86,5	1,30	3,36	0,64	1,57	2,09	1,93	11,0
Смесь ЗРЛ и МК 85 (1)	86,0	1,01	1,91	1,10	1,12	1,57	1,72	8,0
Смесь ЗРЛ и МК 85 (2)	86,0	0,88	1,80	1,57	0,80	1,50	1,61	5,9
* TИС: SILTIS NS-SL, SILTIS MS-SL — производства ООО «Монолит».								

скорость снижения температуры в ковше; расход смеси в кг/т металла; себестоимость смеси.

После обработки плавок на установке доводки металла (УДМ) или установке печь-ковш

(УПК) производили стандартное измерение температуры металла в сталеразливочном ковше (Т1), во время разливки плавок в промежуточном ковше в начале разливки (Т2) и

Блок КИПиА регистрирующими приборами Печь с холодильником (алюминий, медь, вола) Блок питания с системой плавного пуска Ноутбук (управление, визуализация, хранение информации) Емкость пля охлажлающей волы с Блок ротаметра термостатом (с электрическим Перекачивающий насосом насос и термопарами), калориметр Емкость для (тепломер) приема охлаждающей волы

Про смо плу нун пло кой дят

Лабораторная установка для определения эффективной теплопроводности огнеупорных гранулированных материалов (при стационарном одномерном температурном поле в порошкообразных образцах и при температуре на горячей стороне до 1400 °C)

дополнительно за 3-5 мин до закрытия шиберного затвора (ТЗ). При этом в промежуточном ковше для рафинирования использовали ШОС и при испытаниях первых двух смесей (диатомит, МК 85 порошок) использовали серийные ТИС. Результаты испытаний приведены в табл. З. Влияние испытуемых ТИС на изменение химического состава стали не выявлено.

Для реализации технологии производства порошковых смесей ТИС на основе золы рисовой лузги и микрокремнезема ООО «Оскол-ПромСнаб» спроектировало, смонтировало и ввело в эксплуатацию производственную линию на промышленной площадке (с. Хлевное Липецкой обл.). В состав линии входят кран укосины для подачи сырья в питатели, шнековый вибрационный питатели, ленточный транспортер для подачи сырья в барабанную барабанная печь-смеситель.

Таблица 2. Характеристики ТИС по результатам исследований

. a o militar a marketina de la companiona de la companio								
	Наименование материала							
Показатели	диатомит фракции 3–4 мм	микрокремнезем МК 85 и диатомит (порошки)*	микрокремнезем МК 85 (гранулы 1÷2 мм)*	зола рисовой лузги	смесь ЗРЛ и МК 85 (1)	смесь ЗРЛ и МК 85 (2)		
Температура спекания, °С	1550	1350	1450	1600	1550	1500		
Температура плавле- ния, °С	1650	1500	1550	1700	1650	1600		
Коэффициент теплопроводности при 1200 °C, Вт/(м·°C)	0,160	0,180	0,175	0,045	0,063	0,087		
Насыпная плотность, кг/м ³	450	240	225	145	185	215		
* TИС: SILTIS NS-SL, SILTIS MS-SL — производства ООО «Монолит».								

№ 10 2020 **Hobbie Ofheytopbi** ISSN 1683-4518 **7**

Таблица 3. Результаты испытаний ТИС в промежуточном ковше

	Наименование материала							
Параметры испытаний	диатомит фракции 3–4 мм	микрокремнезем МК 85 и диатомит (порошки)*	микрокремнезем МК 85 (гранулы 1÷2 мм)*	зола рисо- вой лузги	смесь ЗРЛ и МК 85 (1)	смесь ЗРЛ и МК 85 (2)		
Снижение температуры металла на участке УДМ– УНРС (Т1–Т2), °С (скорость снижения, °С/мин)	22 (0,74)	24 (0,84)	23 (0,79)	18 (0,62)	19 (0,65)	20 (0,68)		
Снижение температуры металла в промежуточном ковше (T2–T3), °C (скорость снижения, °C/мин)	10 (0,21)	12 (0,22)	10 (0,21)	10 (0,15)	7 (0,17)	9 (0,18)		
Суммарное снижение тем- пературы металла (Т1-Т3), °С (скорость снижения, °С/мин) Расход ТИС, кг/т:	38 (0,42)	39 (0,43)	37 (0,41)	37 (0,36)	35 (0,39)	36 (0,40)		
в сталеразливочном ковше	1,25	1,73	1,85	1	1,15	1,2		
в промежуточном ковше			0,8	0,35	0,4	0,5		
Относительная себестои- мость ТИС, %	40	35	45	100	75	50		
*TИС: SILTIS NS-SL, SILTIS MS-SL — производства ООО «Монолит».								

печь (перемешивание компонентов и удаление избыточной влаги), барабанный холодильник, ленточный транспортер для подачи в бункер полуавтомата фасовки, вибрационный полуавтомат фасовки, автомат — запайщик полиэтиленовых пакетов. Данная линия позволяет получать ТИС влажностью 0,5÷0,7 % при исходной влажности компонентов до 5 % с насыпной плотностью ТИС 180–230 кг/м³, что недостижимо при

применении бетономешалок (насыпная плотность достигает $380-450\ \text{кг/m}^3$).

ТИС на основе золы рисовой лузги и микрокремнезема (ООО «ОсколПромСнаб») конкурентоспособны с импортными ТИС Glutin RS6 и Glutin RS10 (насыпная плотность 250 кг/м³, коэффициент теплопроводности 0,06 Вт/(К·м) [2]), стоимость которых в разы превышает стоимость отечественных ТИС.

Библиографический список

- 1. **Тахаутдинов, Р. С.** Производство стали в кислородно-конвертерном цехе Магнитогорского металлургического комбината / Р. С. Тахаутдинов. Магнитогорск : Магнитогорский дом печати, 2001. 146 с.
- 2. **Шабловский, В. А.** Основные критерии выбора шлакообразующих и утепляющих смесей для промковша МНЛЗ / В. А Шабловский, Н. Ф. Анищенко, В. Н. Паршин [и др.] // Сб. трудов 14 международного конгресса сталеплавильщиков. Москва-Электросталь, 2016. С. 525-529.
- 3. Пат. 2308350 Российская Федерация. Теплоизолирующая смесь для защиты и теплоизоляции металла в промежуточных ковшах и сталеразливочных ковшах при непрерывной разливке стали / Куклев А. В., Топтыгин А. М., Объедков А. П., Соколова С. А., Полозов Е. Г. ; патентообладатель ООО «Корад». № 200514094/02 ; заявл. 28.12.2005 ; опубл. 20.10.2007, Бюл. № 29.
- 4. **Кривенко, А. П.** Опыт применения универсальных теплоизолирующих смесей для промежуточного ков-

ша / А. П. Кривенко, А. Н. Легченков, Ю. В. Климов // Сталь. — 2007. — № 11. — С. 13–16.

- 5. Пат. 2661981 Российская Федерация. Состав для теплоизоляции расплава металла и способ изготовления состава / Лебедев И. В., Никифорова М. П.; патентообладатель Н. П. Никифорова. № 2017118716; заявл. 30.05.2017; опубл. 20.07.2018, Бюл. № 21.
- 6. **ГОСТ 7076-99.** Приложение А «Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме». М. : Госстрой России, ГУП ЦПП, 2000.
- 7. **ГОСТ 12170-85.** Огнеупоры. Стационарный метод измерения теплопроводности изделия огнеупорные. Методы испытаний. Часть 1 : сборник. М. : ИПК Издательство стандартов, 2004. ■

Получено 07.07.2020 © С.В.Трунов, М.В.Конев, И.С.Сарычев, И.Н.Чмырев, 2020 г.