А. Н. Николаев, д. х. н. И. Б. Баньковская, д. т. н. С. Н. Перевислов (🖂)

ФГБУН «Институт химии силикатов имени И.В. Гребенщикова РАН», Санкт-Петербург, Россия

удк 666.3:546.831.4 ВЛИЯНИЕ НАНОРАЗМЕРНЫХ ЧАСТИЦ ОКСИДОВ ЦИРКОНИЯ И АЛЮМИНИЯ НА СВОЙСТВА МАТЕРИАЛОВ НА ОСНОВЕ КОМПОЗИЦИИ Si-B₄C-ZrB₂

Изучено влияние наноразмерных частиц ZrO₂ и Al₂O₃ на физико-механические свойства (модуль упругости, предел прочности при изгибе, микротвердость), фазовый состав, а также микроструктуру материалов на основе Si-B₄C-ZrB₂. После термообработки на воздухе в электропечи реакционным путем получен боросиликатный стеклообразующий расплав, капсулирующий исходные компоненты [1]. Получены градиентные материалы, в которых поверхностный стеклокерамический слой защищает от окисления нижележащие слои. Этот подход может быть использован при получении защитных покрытий для углеродных материалов. Показано, что вводимые добавки улучшают механические свойства композиционных материалов.

Ключевые слова: карбид бора, борид циркония, оксид алюминия, диоксид циркония, стеклообразующий расплав, жаростойкие покрытия и материалы.

введение

Защитные термостойкие покрытия на осно-ве SiC и боридов переходных металлов IV группы получили наиболее активное развитие в 60-70-х гг. XX века. Стойкость до температуры 1500-1800 °C данным материалам придают образующиеся защитные стеклокерамические слои, останавливающие диффузию кислорода в объем. Такие покрытия применяются в металлургии в качестве защиты для графитовых тиглей и электродов, нагревательных элементов печей, в авиационной и космической технике для защиты кромок крыльев и носового обтекателя летательных аппаратов и др. Для повышения абразивной стойкости покрытий в материал вводят В₄С, что также может способствовать образованию защитного стеклокерамического слоя из боросиликатного стеклообразующего расплава и продуктов окисления исходных компонентов.

Добавление ZrB_2 в материал на основе B_4C значительно улучшает его спекаемость, снижает температуру спекания, повышает механические свойства и термостойкость при высоких температурах.

Керамика на основе ZrB₂ имеет высокую температуру плавления, высокую твердость и прочность, хорошую тепловую и электрическую

⊠ С. Н. Перевислов E-mail: perevislov@mail.ru проводимость, высокие жаропрочность и химическую стойкость [2, 3]. Однако материалы на основе ZrB₂ трудно уплотнить из-за сильной ковалентной связи.

В работе [4] показано, что материалы на основе ZrB_2 могут быть полностью уплотнены при спекании без добавок при 2100–2300 °С. При использовании спекающих добавок можно снизить температуру спекания до 2000 °С. Монолитный ZrB_2 характеризуется низкими механическими свойствами и плохо обрабатывается. Композиты SiC–ZrB₂ имеют большую степень уплотнения при спекании и достигают более высокого уровня механических свойств, также характеризуются лучшей стойкостью к окислению [4–8].

Улучшить физико-механические свойства композита можно разными способами, в частности введением в состав покрытия армирующих компонентов. Работа является продолжением ранее проведенных исследований [9, 10], где положено начало изучению механических свойств в данной системе. Показано, что покрытие с добавкой наноразмерных частиц Al₂O₃ имеет на 20 % большую твердость по сравнению с покрытием без добавок.

В работе [11] рассмотрен предварительно окисленный композит ZrB₂-SiC и изучено его поведение при введении 20 об. % SiC. Установлено, что боросиликатное стекло способно залечивать поверхностные трещины, что приводит к увеличению предела прочности при изгибе.

Авторы [12] изучали высокотемпературную эластичность волокнистой керамики со струк-

турой птичьего гнезда на основе боросиликатной матрицы. Показано, что данная структура при высокой пористости (83 %) обладает относительно высокой прочностью (2,25 МПа) и сохраняет устойчивость к отскоку до 1000 °С, что указывает на возможное его применение в качестве уплотнительного высокотемпературного материала.

В статье [13] исследованы механические свойства керамики на основе B₄C, модифицированной Fe₃Al (0-9 мас. %), синтезированной методом искрового плазменного спекания. Предел прочности при изгибе, микротвердость и вязкость разрушения оказались выше, чем у чистого B₄C.

Авторы добиваются улучшения механических свойств композиционных материалов. В работе [14] новый композит на основе Мо с улучшенными механическими и противоокислительными свойствами изготовлен методом лазерной сварки в порошковом слое.

В статье [15] методом горячего прессования получены композиционные армированные керметы на основе SiC, TiC и TiB₂. В качестве металлического связующего использовали Ti, который вводили в состав материала на стадии перемешивания компонентов. Плотность полученных материалов в 1,5-2,0 раза ниже плотности спеченных керамометаллических материалов при соизмеримых уровнях механических свойств.

Авторы [16] синтезировали композиты на основе $Zr_3[Al(Si)]_4C_6$ с 10–40 об. % ZrB_2 –SiC (молярное отношение 2:1), которые получены путем горячего прессования при 1850 °C.

Высокочистый порошок кремния [17] используется в качестве исходного материала для экономически эффективного получения Si₃N₄. Благодаря использованию RE₂O₃ (RE = Y, La или Er) и MgO в качестве спекающих добавок получена керамика Si₃N₄ с высокой теплопроводностью и отличными механическими свойствами.

В настоящей работе использован технологичный суспензионно-обжиговый метод получения покрытий и материалов в воздушной среде. Цель работы — исследование механических свойств и структуры материалов на основе Si-B₄C-ZrB₂, армированных наноразмерными частицами ZrO₂ и Al₂O₃, синтезированных темплатным методом [18], с возможностью дальнейшего использования полученных композиционных материалов в качестве высокотемпературных покрытий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения образцов использовали коммерчески доступные порошки ZrB_2 ($d_{0.5} = 22$ мкм), B_4C ($d_{0.5}$ = 8.5 мкм) и технического Si (d = 20-80 мкм). Образцы в среднем имели массу около 4 г. Добавки наноразмерных частиц ZrO₂ и Al₂O₃ берутся в счет общей массы шихты. Исходные составы образцов и характеристика исходных компонентов представлены в табл. 1. Образцы размером 5×5×50 мм формовали при давлении 100 МПа. В качестве связующего вещества использовали 2 %-ный водный раствор карбоксиметилцеллюлозы. Термообработку проводили в электрической печи в воздушной атмосфере по температурному режиму 20-1000-1300 °C + 1300 °C 15 мин (время нагрева печи 2,5 ч в интервале 1000-1300 °C). После обжига были получены гладкие темно-серые частично остеклованные образцы.

Рентгенофазовый анализ поверхности образцов после термообработки на воздухе по указанному режиму и последующего сошлифовывания поверхности на глубину 0,5 мм проводили на дифрактометре Rigaku Smartlab 3 с использованием Си K_{α} -излучения и Ni-фильтра. Физические и механические свойства определяли на образцах с отшлифованной поверхностью.

Модуль упругости E_{ynp} измеряли с помощью определения резонансных колебаний на установке «ЗВУК-230». По измеренным резонансным частотам подсчитывали упругие характеристики материалов.

Предел прочности при изгибе $\sigma_{\rm изг}$, Па, определяли на разрывной машине Shimadzu AG-300 knx и рассчитывали в соответствии с формулой: $\sigma_{\rm изг} = 3/2 \cdot P \cdot K/(b \cdot h^2)$, где P — разрушающая нагрузка, H; K — коэффициент базы испытаний, м; b — ширина образца, м; h — высота образца, м.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Наибольший уровень о_{изг} достигнут на образцах состава 3, содержащих 15 мас. % волокон Al₂O₃ (табл. 2). Образцы с добавками волокон имеют больший *E*_{упр} (+15 %). Это было подтверждено пятью параллельными опытами.

Важной характеристикой композиционных материалов является трещиностойкость, которую оценивали, исходя из вычисления значений K_{Ic} . Для керамики системы Si-B₄C-ZrB₂ характерно повышение значения K_{Ic} для составов 2 и 3 вследствие снижения количества исходного Si (см. табл. 1). В процессе термообработки форми-

T C 1 14	<u> </u>			
	олный состав и у	капактепистик	а исспелованных	композинии
таолица т. исл	одпын состав и л	apakiepheink	и исследованных	конпозиции

Номер состава –	Содержание компонентов, мас. %						
	Si (50 мкм, Кр-1)	ZrB ₂ (5–30 мкм, ч.)	B ₄ C (5-30 мкм, ч.)	ZrO ₂ (40–45 мкм, ч.)	Al ₂ O ₃ (40-45 мкм, ч.)		
1 [19]	70,0	20	10,0	-	-		
2	59,5	17	8,5	15	-		
3	59,5	17	8,5	-	15		

таблица 2. Физико-механические своиства образцов (средние значения из пити определении)								
Номер состава	Плотность ρ±0,02, г/см ³	$E_{ m ynp} \pm 2$, ГПа	σ _{изг} ±0,7, МПа	Критический коэффициент интенсивности напряжений $K_{1c} \pm 0,05, MПа \cdot m^{1/2}$	Твердость по Виккерсу HV±0,1, ГПа			
1	1,69	17,3	18,5	2,81	12,5			
2	1,73	28,0	24,8	4,23	13,3			
3	1,74	26,3	27,7	4,45	13,7			

руются материалы с многокомпонентной структурой. Данная структура будет более эффективной при оценке стойкости к распространению трещин [20].

В поликристаллических материалах чаше всего наблюдается интеркристаллитный механизм разрушения (трещина распространяется вдоль зерен, огибая их, увеличивая путь своего движения и повышая тем самым значение *K*_{Ic}).

Твердость материалов системы Si-B₄C-ZrB₂ определяется аддитивным вкладом твердостей входящих в них фаз. HV уменьшается при увеличении содержания Si в исходном составе образцов (см. табл. 2). Низкое значение НV образца состава 3 объясняется тем, что вместо супертвердых зерен B₄C и ZrB₂ после синтеза образуются фазы их твердых растворов в кремнии, имеющие значительно меньшую твердость.

На рентгенограммах всех образцов обнаружено присутствие двух исходных фаз — Si и ZrB₂, в образцах составов 1 и 2 фиксируется альфа-кристобалит (рис. 1). Как было показано нами ранее [2], до сошлифовывания на поверхности фиксируется, кроме исходных фаз, диок-

Рис. 1. Рентгенограммы образца составов 1 (а), 2 (б) и 3 (в) после термообработки при температуре 20–1000–1300 °С + 1300 °С 15 мин: $\Box - ZrB_2; \triangle - Si; \bigcirc -SiO_2$

сид циркония. В данной работе оксидный слой сошлифовывается и выявляется микроструктура нижележащего слоя. Карбид бора на поверхности не обнаруживается.

Изучение микроструктуры поверхности образцов после шлифовки и полировки проводили в отраженном свете на оптическом микроскопе MEIJI TECHNO-IM7200. Определение среднего размера зерна и пор проводили при анализе микроструктуры материала с помощью программы Thixomet. Средний размер пор для материала состава 3–166 мкм, средний размер частиц 15,8 мкм (рис. 2).

Микроструктура образцов всех составов гетерогенна — в стекломатрице распределены кристаллические частицы исходных компонентов и продуктов их окисления.

Библиографический список

1. **Баньковская, И. Б.** Нанотехнология капсулирования борида циркония при формировании жаростойких покрытий / И. Б. Баньковская, М. П. Сёмов, А. Е. Лапшин, Т. Г. Костырева // Физика и химия стекла. — 2005. — Т. 31, № 4. — С. 581–588.

Ban'kovskaya, I. B. Nanotechnology for encapsulating zirconium boride upon formation of heatresistant coating / I. B. Ban'kovskaya, M. P. Semov, A. E. Lapshin, T. G. Kostyreva // Glass Phys. Chem. (Engl. transl.). — 2005. — Vol. 31, № 4. — P. 4, 433–438.

2. **Yan**, **Y**. In situ synthesis of ultrafine ZrB_2 -SiC composite powders and the pressureless sintering behaviors / Y. Yan, H. Zhang, Z. Huang, J. Liu, D. Jiang // J. Am. Ceram. Soc. - 2008. - Vol. 91, No 4. - P. 1372-1376.

3. **Zhang, S. C.** Pressureless densification of zirconium diboride with boron carbide additions / *S. C. Zhang, G. E.*

Рис. 2. Микроструктура образцов составов 1 (*a*), 2 (б) и 3 (*в*)

ЗАКЛЮЧЕНИЕ

На основе системы Si-B₄C-ZrB₂, модифицированной наноразмерными частицами Al₂O₃ и ZrO₂, при термообработке (1000–1300 °C) на воздухе получены образцы с остеклованной поверхностью темно-серого цвета.

Полученный градиентный материал, состоящий из неокисленных исходных частиц и поверхностного оксидного слоя, в результате введения оксидных модификаторов показывает улучшение механических свойств (E_{ynp} и σ_{usr}). Полученное покрытие может использоваться в химической, аэрокосмической, металлургической отраслях и электронике. Кроме того, материал может быть использован для защиты оксидной керамики от эрозионного воздействия и придания ей темной окраски.

Hilmas, W. G. Fahrenholtz // J. Am. Ceram. Soc. — 2006. — Vol. 89, №. 5. — P. 1544–1550.

4. **Chamberlain, A. L.** Pressureless sintering of zirconium diboride / A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas // J. Am. Ceram. Soc. — 2006. — Vol. 89, № 2. — P. 450–456.

5. Zimmermann J. W. Fabrication and properties of reactively hot pressed ZrB_2 -SiC ceramics / J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, F. Monteverde, A. Bellosi // J. Eur. Ceram. Soc. — 2007. — Vol. 27, No 7. — P. 2729–2736.

6. *Monteverde, F.* Processing and properties of zirconium diboride-based composites / *F. Monteverde, A. Bellosi, S. Guicciardi* // J. Eur. Ceram. Soc. — 2002. — Vol. 22, № 3. — P. 279–288.

7. *Li*, *W*. Preparation, microstructure and mechanical properties of ZrB_2 - ZrO_2 ceramics / *W*. *Li*, *X*. *Zhang*, *C*. *Hong*, *W*. *Han*, *J*. *Han* // J. Eur. Ceram. Soc. — 2009. — Vol. 29, No. 4. — P. 779–786.

8. **Zhu, S.** Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics / S. Zhu, W. G. Fahrenholtz, G. E. Hilmas // J. Eur. Ceram. Soc. -2007. - Vol. 27, \mathbb{N} 4. - P. 2077–2083.

9. Баньковская, И. Б. Синтез и исследование жаростойких покрытий на основе композиции кремний карбид бора – борид циркония — оксид алюминия / И. Б. Баньковская, А. Н. Николаев, Д. В. Коловертнов, И. Г. Полякова // Физика и химия стекла. — 2018. — Т. 44. — С. 345-355.

10. **Николаев, А. Н.** Исследование морфологии и твердости покрытий на основе композиции Si-B₄C-ZrB₂ / *А. Н. Николаев, И. Б. Баньковская, К. Э. Пугачев, Д. В. Коловертнов* // Физика и химия стекла. — 2019. — Т. 45, № 2. — С. 196–200.

11. **Xinghong, Zhang.** Preoxidation and crack-healing behavior of ZrB_2 -SiC ceramic composite / Xinghong Zhang, Lin Xu, Shanyi Du, Wenbo Han, Jiecai Han // J. Am. Ceram. Soc. -2008. - N 91 [12] - P. 4068-4073.

12. *Xue, Dong.* High-temperature elasticity of fibrous ceramics with a bird's nest structure / *Xue Dong, Jiachen Liu, Ruihua Hao* [et al.] // J. Eur. Ceram. Soc. — 2013. — Vol. 33. — P. 3477–3481.

13. **Rehman, Sahibzada Shakir.** Microstucture and mechanical properties of B_4C based ceramics with Fe₃Al as sintering aid by spark plasma sintering / Sahibzada Shakir Rehman, Wei Ji, Shahzad Ahmad Khan [et al.] // J. Eur. Ceram. Soc. -2014. - Vol. 34. - P. 2169–2175.

14. **Zhou, W.** Novel laser additive manufactured Mobased composite with enhanced mechanical and oxidation properties / W. Zhou, K. Kikuchi, N. Nomura, K. Yoshimi, A. Kawasaki // J. Alloys Compd. — 2020. — Vol. 819. — P. 152981. 15. **Rumyantsev, I. A.** Lightweight composite cermets obtained by titanium-plating / *I. A. Rumyantsev, S. N. Perevislov* // Refract. Ind. Ceram. — 2017. — Vol. 58, № 5. — P. 405–409.

Румянцев, И. А. Облегченные композиционные керметы, полученные методом титанирования / И. А. *Румянцев, С. Н. Перевислов* // Новые огнеупоры. — 2017. — № 7. — С. 54-57.

16. *Wanga, X.* Multicomponent synergistically affected mechanical properties, microstructure, and oxidation resistance of Zr-Al(Si)-C based composites / *X. Wanga, W. Ji, J. Hub, H. Liua, J. Zhang //* Ceram. Int. — 2020. — Vol. 46. — P. 545–552.

17. **Duana**, **Y**. Cost effective preparation of Si_3N_4 ceramics with improved thermal conductivity and mechanical properties / *Y*. *Duana*, *N*. *Liua*, *J*. *Zhanga*, *H*. *Zhanga*, *X*. *Lia* // J. Eur. Ceram. Soc. — 2020. — Vol. 40. — P. 298–304.

18. **Ulyanova, T. M.** Nanoparticle formation in the synthesis of nanostructured fibers and powders of refractory oxides / T. M. Ulyanova, N. P. Krut'ko // International Journal of Nanotechnology. -2006. - Vol. 3, $N \ge 1$. -P. 47–56.

19. Пат. № 2613645 Росинйская Федерация. Способ изготовления защитного покрытия и шихта для его осуществления / Баньковская И. Б., Ефименко Л. П., Коловертнов Д. В., Сазонова М. В. ; опубл. 21.03.2017. Бюл. № 9.

20. **Perevisiov, S. N.** Evaluation of the crack resistance of reactive sintered composite boron carbide-based materials / S. N. Perevisiov // Refract. Ind. Ceram. — 2019. — Vol. 60, \mathbb{N} 3. — P. 168–173.

Перевислов, С. Н. Структура, свойства и области применения графитоподобного гексагонального нитрида бора / *С. Н. Перевислов* // Новые огнеупоры. — 2019. — № 6. — С. 35-40.

> Получено 02.07.20 © А. Н. Николаев, И. Б. Баньковская, С. Н. Перевислов, 2020 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Открыт прием заявок для участия в отборе программы «УМНИК» (Фонда содействия инновациям) на площадке НИТУ «МИСиС». Станьте победителем и получите 500 тысяч рублей в течение 2-х лет на развитие своей идеи. (Участник может стать победителем программы «УМНИК» только один раз вне зависимости от места выступления и конкретного проекта). К участию в отборе программы «УМНИК» до-

пускаются граждане Российской Федерации возрастом от 18 до 30 лет включительно, у которых имеется в разработке собственный научно-инновационный проект.

Заявку на участие в конкурсе можно оставить на сайте https://umnik.fasie.ru/ до 25.10.2020.

Куратор программы «УМНИК» в НИТУ «МИСиС» Емелина Надежда Борисовна Тел. +7 (926) 569-31-35 e-mail: nadyafx@mail.ru