Д. т. н. Д. А. Иванов (⊠)

ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)», Москва, Россия

УДК 666.798.2.017:[620.17+548.232.2

ИЗУЧЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ И СТРУКТУРЫ СЛОИСТОГО КЕРМЕТА $AI-AI_2O_3-AI_4C_3$

Получен кермет $Al-Al_2O_3-Al_4C_3$ со слоистой структурой жидкофазным спеканием в вакууме порошковых заготовок из высокодисперсного алюминиевого порошка промышленной марки ПАП-2, состоящего из чешуйчатых частиц субмикронной толщины. Появление жидкой фазы связано с образованием эвтектического расплава Al/Al_4C_3 при 630 °C в результате взаимодействия алюминия с его карбидом. При охлаждении расплава эвтектики происходит выделение из него пластинчатых наноразмерных кристаллов Al_4C_3 , которые выполняют функцию дисперсного упрочнителя в алюминиевой матрице. Образование алюмооксидной фазы $(6-Al_2O_3)$, повышающей твердость кермета, достигается вследствие взаимодействия алюминия с остаточными молекулами кислорода воздуха в процессе спекания при разрежении в печи 10^{-5} мм рт. ст. Основные свойства полученного кермета: плотность 2,56-2,65 г/см³, предел прочности при изгибе 300-500 МПа, трещиностойкость 9-15 МПа·м¹¹². У материала состава Al 80 %, Al_4C_3 14 %, $6-Al_2O_3$ 6 % сохраняется высокий предел прочности при изгибе (200 МПа) при температуре 500 °C.

Ключевые слова: слоистый кермет, жидкофазное спекание, дисперсионное упрочнение, наноразмерные кристаллы Al_4C_3 , алюмооксидная фаза δ - Al_2O_3 .

ВВЕДЕНИЕ

Керметы, содержащие в качестве металлической фазы алюминий или его сплавы, находят широкое применение в разных областях техники благодаря комплексу полезных свойств (невысокой плотности, значительной прочности, повышенной трещиностойкости, ударной вязкости, стойкости к усталостному разрушению) [1]. Указанные керметы часто относят к классу композиционных материалов, структура которых представлена матрицей на основе алюминиевого сплава с включениями дисперсных керамических частиц — тугоплавких соединений: оксидов, карбидов, боридов, нитридов [2]. Эти керамические частицы выполняют функцию дисперсной упрочняющей фазы, способной блокировать движение дислокаций в полосах скольжения и затруднять в результате формирование зародышевой трещины в матрице.

Такие композиты могут изготавливаться как твердофазными методами, так и жидкофазными [3]. Известные твердофазные ме-

 \bowtie

Д. А. Иванов E-mail: dali 888@mail.ru тоды включают, как правило, изготовление композитной порошковой смеси из алюминиевого сплава и упрочняющего керамического компонента, ее формование, дополнительную обработку давлением и спекание [4, 5]. Жидкофазные методы базируются в основном на замешивании керамических частиц в расплав на основе алюминия [6, 7]. Кроме того, возможно формирование упрочняющих керамических частиц непосредственно в алюминиевом расплаве (in situ) путем реализации Ланксайдпроцесса [1, 8] или СВС [9, 10]. Разновидностью СВС является фильтрационное горение порошковой заготовки из алюминия или алюминиевого сплава, с помощью которого были получены керметы $Al-Al_2O_3$ и Al-MgO [11, 12].

Следует отметить, что методы in situ являются предпочтительными, поскольку позволяют получать равномерно распределенные упрочняющие керамические наночастицы в матрице, что невозможно при замешивании наночастиц в расплав в результате их агломерирования вследствие действия между ними дисперсионных сил.

В настоящей статье приведены результаты изучения физико-механических свойств и структуры слоистого кермета $Al-Al_2O_3-Al_4C_3$, полученного жидкофазным спеканием в вакууме порошковых заготовок (ПЗ) из высокодисперсного алюминиевого порошка $\Pi A\Pi$ -2, в

которых формирование наноразмерных упрочняющих керамических частиц обеспечивается по методу in situ.

МЕТОДИКА ЭКСПЕРИМЕНТА И ИССЛЕДОВАНИЯ

Для получения кермета Al-Al₂O₃-Al₄C₃ использовали промышленный алюминиевый порошок марки ПАП-2 (ГОСТ 5494) с чешуйчатой формой частиц субмикронной толщины. Частицы порошка покрыты тонким слоем стеарина (~ 3 мас. %), выполняющего функцию жировой добавки. Они имеют следующие характерные размеры: длина 10-100 мкм, ширина 5-50 мкм, толщина 250-500 нм (ранее была показана возможность получения пористой керамики на основе Al₂O₃ и кермета Al-Al₂O₃ с использованием Π A Π -2 [11, 13, 14]). Образцы для исследования изготавливали прессованием порошка ПАП-2 в стальной пресс-форме под давлением 700 МПа с последующим спеканием полученных ПЗ в вакууме при 650 °C, время изотермической выдержки варьировали от 0,5 до 8 ч.

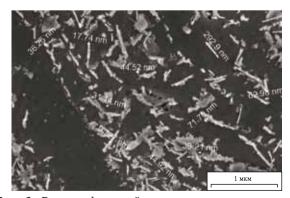
Определяли предел прочности материала при изгибе оизг сосредоточенной нагрузкой призматических образцов-балочек размерами 10×12×55 мм (ГОСТ 18228). В некоторых образцах создавали боковой надрез путем прорезания алмазным кругом на глубину, равную половине высоты (радиус кривизны вершины надреза 50 мкм), и рассчитывали предел прочности при изгибе надрезанных образцов от При этом оценивали соотношение $\sigma_{\scriptscriptstyle \rm \! M3\Gamma}/\sigma_{\scriptscriptstyle \rm \! M3\Gamma}^{\scriptscriptstyle \rm H}$ — эффективный коэффициент концентрации напряжений [15]. Кроме того, на надрезанных образцах определяли трещиностойкость K_{1c} (ГОСТ 25.506) в рамках концепций линейной механики разрушения. Испытания проводили при комнатной температуре на установке TIRATEST-2300 (Германия) при скорости деформирования 1 мм/мин. Показатели $\sigma_{\text{\tiny MST}}$ определяли также при нагреве образцов на воздухе до 500 °C, используя машину Instron 3382 (Англия), оснащенную печью с нихромовыми нагревателями.

Твердость спеченных образцов определяли по Роквеллу на приборе NEXUS 610RS (Нидерланды) и по Виккерсу на приборе MicroMet 5104 (США) при нагрузке на индентор 1 Н. Для испытаний использовали призматические образцы размерами 12×12×55 мм.

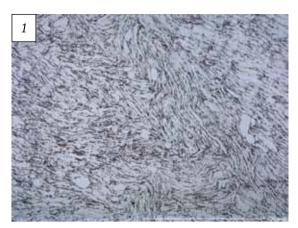
Рентгенофазовый анализ (РФА) проводили с поверхности шлифов после химического травления. Для съемки дифракционных спектров использовали дифрактометр ARL X'TRA (Швейцария). Структуру материала изучали также с поверхности шлифов на оптическом микроскопе Axio Observer. A1m (Германия) и растровом электронном микроскопе (РЭМ) Nova NanoSEM 650 (США).

Дифференциальный термический анализ (ДТА) проводили на дифференциальном сканирующем калориметре DSC 404 F3 Pegasus (Netzsch, Германия).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Установлено, что получение слоистого кермета $Al-Al_2O_3-Al_4C_3$ реализуется путем спекания ПЗ из ПАП-2 в вакууме по жидкофазному механизму. Появление жидкой фазы объясняется образованием эвтектического расплава при взаимодействии алюминия с его карбидом (эвтектика Al/Al_4C_3). Наличие такой эвтектики подтверждается нижеприведенными исследованиями и данными научно-технической литературы [16], согласно которым эвтектика возникает при значительном превалировании Al над Al_4C_3 и при температуре, близкой к температуре плавления алюминия. Образование эвтектики обеспечивается последовательным протеканием следующих химических реакций:

$$C_3H_5(C_{18}H_{35}O_2)_3 \rightarrow CH_4 + CO_2 + H_2O \text{ (map)} + C, (1)$$


$$Al + C \rightarrow Al_4C_3, \tag{2}$$

 $Al + Al_4C_3 \rightarrow Al_4C_3/Al$ (эвтектический расплав). (3)

В соответствии с реакцией (1) происходит термическое разложение стеарина в вакууме с образованием углеродного остатка на поверхности чешуйчатых алюминиевых частиц в объеме ПЗ, согласно реакции (2) наблюдается синтез кристаллических частиц карбида алюминия, благодаря реакции (3) возникает эвтектический расплав. При охлаждении из него выделяются кристаллы Al и Al₄C₃. Формирующиеся пластинчатые алюмокарбидные кристаллы принадлежат к наноразмерному диапазону и являются дисперсным упрочнителем в алюминиевой матрице (рис. 1). Спеченный материал характеризуется слоистой структурой и является анизотропным (рис. 2) вследствие укладки чешуйчатых

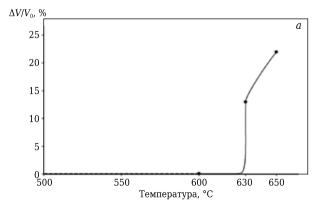
Рис. 1. Вид шлифованной поверхности спеченного образца кермета $Al(80\%) - Al_2O_3(6\%) - Al_4C_3(14\%)$: белые частицы — ребра и грани наноразмерных пластинчатых кристаллов Al_4C_3 , закристаллизованных из эвтектического расплава; темное поле — алюминий. Длина масштабной линии 1 мкм. РЭМ

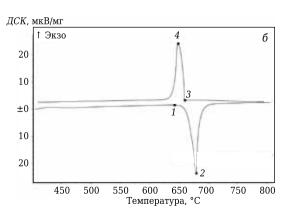
Рис. 2. Структура призматического образца кермета во взаимно перпендикулярных плоскостях 1 и 2 под оптическим микроскопом (шлиф). Длина масштабной линии 100 мкм

алюминиевых частиц по плоскостям при прессовании. Затем в результате спекания происходило жидкофазное сращивание этих частиц.

Возникновение эвтектического расплава фиксируется на кривой ДТА при 630 °С (рис. 3, б) и сопровождается значительной объемной усадкой образцов (рис. 3, а) из-за действия капиллярных сил. При нагреве выше 630 °С усадка возрастает вследствие некоторого приращения объема эвтектического расплава.

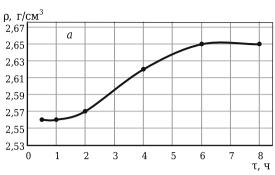
Следует отметить, что образование алюмооксидной фазы (δ -Al $_2$ O $_3$ до 8 мас. %) в составе кермета (см. таблицу) происходит вследствие взаимодействия алюминия с остаточными молекулами кислорода воздуха в процессе спекания при разрежении в печи (10^{-5} мм рт. ст.). При этом формирующиеся алюмооксидные кристаллы δ -Al $_2$ O $_3$ вносят вклад в повышение твердости кермета.

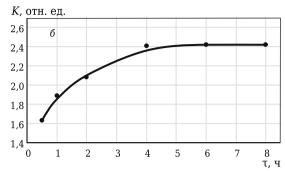

Из данных РФА также видно (см. таблицу), что увеличение изотермической выдержки т при заданной температуре спекания (650 °C) приводит к постепенному возрастанию выхода алюмокарбидной фазы (до 19 мас. %). Это свидетельствует об изотермической кинетике процесса синтеза $\mathrm{Al}_4\mathrm{C}_3$ при взаимодействии рентгеноаморфного углеродного остатка — продукта термического разложения стеарина с алюминием.

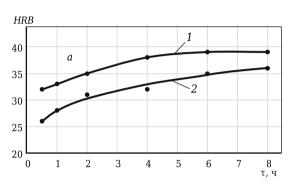

Фазовый состав материала в зависимости от режима его спекания в вакууме

Режим спекания	Содержание кристаллической фазы, мас. %		
	Al	Al ₄ C ₃	δ-Al ₂ O ₃
650 °С, т = 1 ч	89	8	3
650 °С, $\tau = 2$ ч	80	14	6
650 °С, $\tau = 4$ ч	75	18	7
650 °С, $\tau = 8$ ч	73	19	8

Иначе говоря, для полного расходования углеродного остатка, содержащегося в объеме образца, и его связывания в алюмокарбидную фазу за счет взаимодействия с алюминием требуется определенное время. По этой причине увеличение т приводит к закономерному возрастанию плотности кермета ρ от 2,56 до 2,65 г/см³ (рис. 4, a), что не является противоречием. При этом зависимость $\rho = f(\tau)$ имеет вид кривой «насыщения»: при $\tau \ge 4$ ч приращение плотности резко затормаживается, поскольку процесс синтеза алюмокарбидной фазы завершается.


Анизотропия структуры кермета определяет различие показателей твердости по Роквеллу и Виккерсу (рис. 5) призматических образцов во взаимно перпендикулярных плоскостях (см. рис. 2). Показатели твердости в плоскости 1




Рис. 3. Кривая объемной усадки ПЗ (a) и кривая ДТА (b): точка 1 — появление расплава ($630\,^{\circ}$ C); точка 2 — полное расплавление материала ($675\,^{\circ}$ C); точка 3 — начало кристаллизации ($660\,^{\circ}$ C); точка 4 — завершение кристаллизации ($640\,^{\circ}$ C)

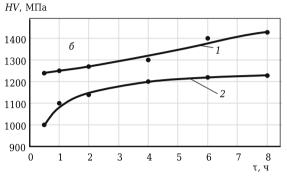
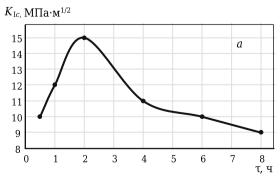
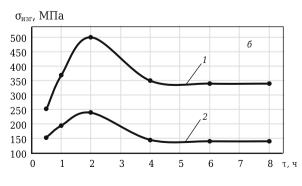

№ 7 2020 **HOBbie Otheynopbi** ISSN 1683-4518 **47**

Рис. 4. Зависимости плотности ρ (*a*) и эффективного коэффициента концентрации напряжений *K* (*б*) кермета от т при температуре спекания (650 °C)


Рис. 5. Зависимости твердости кермета по Роквеллу (a) и Виккерсу (b) от τ при температуре спекания (650 °C): 1, a — результаты испытаний в плоскостях 1 и 2 соответственно (см. рис. 2)


выше, чем в плоскости 2. Это объясняется выходом ребер и граней наноразмерных частиц $\mathrm{Al}_4\mathrm{C}_3$, кристаллизующихся из эвтектического расплава, на поверхность плоскости 1 (см. рис. 1). Увеличение показателей твердости с возрастанием т также является закономерным и связано с нарастанием количества синтезируемых кристаллов $\mathrm{Al}_4\mathrm{C}_3$.

В рамках проведенного исследования показано также, что максимальные значения прочности ($\sigma_{\text{изг}}=500\,$ МПа) и трещиностойкости ($K_{\text{1c}}=15\,$ МПа $^{\text{1/2}}$) достигаются при $\tau=2\,$ ч (рис. 6). В этом случае обеспечивается оптимальная плотность распределения армирующих кристаллов Al_4C_3 , при которой они наиболее эффективно препятствуют движению дислокаций в алюминиевой матрице, в результате чего повышается

сопротивление инициированию трещины. Кроме того, установлено, что анизотропия структуры полученного слоистого кермета не влияет на его прочностные свойства: приложение нагрузки при механических испытаниях нормально плоскости 1 или 2 (см. рис. 2) не дает существенной разницы в показателях $\sigma_{\rm изг}$ и $K_{\rm Ic}$ образцов (погрешность измерения 5-8 %). Этот факт можно объяснить армирующим действием наноразмерных кристаллов Al_4C_3 в слоистой алюминиевой матрице, что нивелировало различие в сопротивлении разрушению межслойных границ на отрыв и сдвиг при нагружении в плоскости 1 и плоскости 2 соответственно.

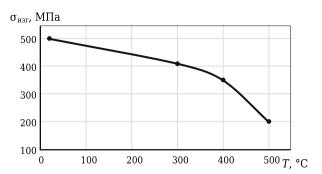
Эффективный коэффициент концентрации напряжений K ($K=\sigma_{\scriptscriptstyle \rm HST}/\sigma_{\scriptscriptstyle \rm HST}^{\scriptscriptstyle \rm H}$) при возрастании т увеличивался от 1,63 до 2,42 (см. рис. 4, б). При

Рис. 6. Зависимости K_{lc} (a) и $\sigma_{\text{изг}}$ (б) образцов от τ при температуре спекания (650° C): 1 — образцы без надреза; 2 — образцы с надрезом

этом кривая $K = f(\tau)$ по форме аналогична кривой $\rho = f(\tau)$ (см. рис. 4, a), поскольку вид обеих кривых «насыщения» определяется постепенно нарастающим процессом синтеза алюмокарбидных кристаллов. При $\tau \ge 4$ ч плотность их распределения достигает предельного значения, при котором они начинают выполнять функцию концентраторов напряжений, обусловливая тем самым повышение параметра K. В этом случае наблюдается хрупкое разрушение образцов при механических испытаниях.

Высокотемпературные испытания кермета показывают снижение его прочности при повышении температуры в исследуемом интервале (20-500 °C); для него также зафиксирован значительный показатель $\sigma_{\text{изг}}$ (200 МПа) при температуре 500 °C, близкой к температуре плавления матричного компонента (рис. 7). В данном случае снижение прочности объясняется, вероятно, развитием интенсивного поперечного скольжения дислокаций при нагреве, обеспечивающего обход барьеров — кристаллов Al₄C₃, тормозящих дислокации. Высокий показатель прочности при 500 °C связан с ограничением подвижности дислокаций в пределах объема чешуйчатых алюминиевых частиц и их эффективным торможением на межслойных границах, образующихся при жидкофазном сращивании этих частиц.

На основании полученных результатов разработанный слоистый керметный материал можно рекомендовать для использования в качестве легких нагруженных элементов конструкций, трещиностойких изделий с повышенным сопротивлением инициированию разрушения, а также различных высокотемпературных уплотнительных деталей.


ЗАКЛЮЧЕНИЕ

Получен кермет $Al-Al_2O_3-Al_4C_3$ со слоистой структурой жидкофазным спеканием в вакууме при 650 °C порошковых заготовок из высокодисперсного алюминиевого порошка промышленной марки ПАП-2, состоящего из чешуйчатых частиц субмикронной толщины.

Установлено, что появление жидкой фазы связано с образованием эвтектического расплава Al/Al_4C_3 при 630 °C в результате взаимодействия алюминия с его карбидом.

Формирование слоистой структуры кермета обеспечивается за счет укладки чешуйчатых алюминиевых частиц по плоскостям при прессовании и последующего их жидкофазного сращивания в процессе спекания.

При охлаждении расплава эвтектики происходит выделение из него пластинчатых наноразмерных кристаллов Al_4C_3 , которые выполняют функцию дисперсного упрочнителя в алюминиевой матрице.

Рис. 7. Зависимость $\sigma_{\text{изг}}$ от температуры испытания T на воздухе кермета состава Al(80 %)--Al₄C₃(14 %)--δ-Al₂O₃(6 %)

Алюмооксидная фаза (δ -Al₂O₃) образуется вследствие взаимодействия алюминия с остаточными молекулами кислорода воздуха в процессе спекания при разрежении в печи 10^{-5} мм рт. ст., увеличивая твердость кермета.

Увеличение изотермической выдержки т от 0,5 до 8,0 ч при температуре спекания приводит к постепенному возрастанию выхода алюмокарбидной фазы (от 3 до 19 мас. %), что указывает на изотермическую кинетику процесса синтеза Al_4C_3 при взаимодействии рентгеноаморфного углеродного остатка — продукта термического разложения стеарина — с алюминием. Зафиксировано, что увеличение т приводит к возрастанию плотности кермета (от 2,56 до 2,65 г/см³), при этом анизотропия структуры слоистого кермета определяет различие показателей твердости (по Роквеллу и Виккерсу) призматических образцов во взаимно перпендикулярных плоскостях и не влияет на показатели механических свойств.

Максимальные значения прочности ($\sigma_{\rm изг} = 500~{\rm M}\Pi{\rm a}$) и трещиностойкости ($K_{1c} = 15~{\rm M}\Pi{\rm a}\cdot{\rm m}^{1/2}$) кермета достигались при спекании по режиму (650 °C, $\tau = 2$ ч) за счет формирования оптимальной плотности распределения армирующих кристаллов ${\rm Al}_4{\rm C}_3$ в алюминиевой матрице.

Эффективный коэффициент концентрации напряжений K при возрастании τ увеличивается от 1,89 до 2,42. При этом плотность распределения армирующих кристаллов Al_4C_3 достигает предельного значения при $\tau \geq 4$ ч. В этом случае они становятся концентраторами напряжений, обеспечивая хрупкое разрушение образцов при механических испытаниях.

Предел прочности при изгибе кермета (Al 80 %, Al₄C₃ 14 %, δ-Al₂O₃ 6 %) при температуре 500 °С, близкой к температуре плавления матричного компонента, составил 200 МПа. Такой высокий показатель прочности можно объяснить ограничением подвижности дислокаций в пределах объема чешуйчатых алюминиевых частиц и их эффективным торможением на межслойных границах, образующихся при жидкофазном сращивании этих частиц.

Разработанный слоистый кермет может найти применение в качестве легких трещино-

стойких изделий с повышенным сопротивлением инициированию разрушения.

* * *

Исследования выполнены в рамках базовой части государственного задания вузам № 11.7568.2017/Б4 с использованием оборудования ресурсного центра коллективного пользования «Авиационно-космические материалы и технологии» МАИ.

Библиографический список

- 1. **Иванов,** Д. А. Композиционные материалы / Д. А. Иванов, А. И. Ситников, С. Д. Шляпин. М. : Юрайт, 2019. 253 с.
- 2. **Шарма, П.** Микроструктура и свойства гибридных композитов AA6082 / (SiC+графит) / П. Шарма, В. Дарба, С. Шарма [и др.] // Новые огнеупоры. 2018. № 9. С. 40-46.
- 3. *Луц, А. Р.* Алюминиевые композиционные сплавы сплавы будущего / *А. Р. Луц, И. А. Галочкина.* Самара : Самар. гос. техн. ун-т, 2013. 82 с.
- 4. **Dinesh, K.** Properties and characterization of $Al-Al_2O_3$ composites processed by casting and powder metallurgy routes (review) / K. Dinesh, A. Geeta, P. Rajesh // Intern. Jour. of latest trends in engineering and technology. 2013. Vol. 2, No. 4. P. 486-496.
- 5. **Кузмич, Ю. В.** Механическое легирование / Ю. В. Кузмич, И. Г. Колесникова, В. И. Серба, Б. М. Фрейдин. Апатиты: изд-во Кольского научного центра РАН, 2004. 179 с.
- 6. **Косников, Г. А.** Литейные наноструктурные композиционные алюмоматричные сплавы / Г. А. Косников, В. А. Баранов, С. Ю. Петрович, А. В. Калмыков // Литейное производство. 2012. № 2. С. 4–9.
- 7. *Mazahery, A.* Development of high-performance A356/nano-Al₂O₃ composites / *A. Mazahery, H. Abdizaden, H. R. Baharvandi* // Mater. Sci. Eng. 2009. A 518. P. 61–64.
- 8. **Иванов,** Д. А. Особенности структуры керамических композиционных материалов, полученных методом направленной реакционной пропитки / Д. А. Иванов, И. В. Литвинцева, Г. Е. Вальяно, Л. В. Фатеева // Огнеупоры и техническая керамика. 2000. № 8. С. 14-20.
- 9. *Kandalova, E. G.* In situ synthesis of Al/TiC in aluminum melt / *E. G. Kandalova, L. Peijie, V. I. Nikitin* // Mater. Lett. 2003. № 1. P. 1434–1436.
- 10. *Луц, А. Р.* Самораспространяющийся высокотемпературный синтез алюминиевых сплавов / *А. Р. Луц, А. Г. Макаренко.* — Самара : СамГТУ, 2008. — 175 с.

- 11. *Ivanov, D. A.* Investigation of the formation of a fine-crystalline alumina coating on the surface of a blank aluminum powder coating test panel as a result of its filtration combustion / *D. A. Ivanov, A. I. Sitnikov, G. E. Val yano, S. D. Shlyapin //* Refract. Ind. Ceram. 2018. Vol. 59, Ne 1. P. 42–47.
- **Иванов,** Д. А. Изучение процесса формирования мелкокристаллического алюмооксидного покрытия на поверхности алюминиевой порошковой заготовки в результате ее фильтрационного горения / Д. А. Иванов, А. И. Ситников, Г. Е. Вальяно, С. Д. Шляпин // Новые огнеупоры. 2018. № 1. С. 43–48.
- 12. **Vasin, A. A.** Stady of cermet synthesis from powders prepared by chemical dispersion of Al–Mg (20 wt. %) alloy / A. A. Vasin, V. P. Tarasovskii, A. Yu. Omarov, V. V. Rybalchenko // Refract. Ind. Ceram. 2015. Vol. 56, N = 3. P. 310–314.
- **Васин, А. А.** Исследование процесса синтеза керметов из порошков, полученных химическим диспергированием Al-Mg (20 мас. %) сплава / А. А. Васин, В. П. Тарасовский, А. Ю. Омаров, В. В. Рыбалченко // Новые огнеупоры. 2015. № 6. С. 62-65.
- 13. **Ivanov, D. A.** Preparation of porous ceramic based on Al_2O_3 as a result of zonal compaction during sintering of powder workpieces of very fine aluminum powder PAP-2 combustion products / D. A. Ivanov, A. I. Sitnikov, G. E. Val'yano, T. I. Borodina, S. D. Shlyapin // Refract. Ind. Ceram. 2019. Vol. 59, No 5. P. 459–465.
- **Иванов,** Д. А. Получение пористой керамики на основе Al_2O_3 в результате зонального уплотнения при спекании порошковых заготовок из высокодисперсных продуктов сгорания алюминиевого порошка ПАП-2 / Д. А. Иванов, А. И. Ситников, Г. Е. Вальяно, Т. И. Бородина, С. Д. Шляпин // Новые огнеупоры. 2018. № 9. С. 28–34.
- 14. *Ivanov, D. A.* Structure and physicomechanical properties of porous ceramic based on Al_2O_3 prepared using a filtration combustion method / *D. A. Ivanov, S. D. Shlyapin, G. E. Val'yano, L. V. Fedorova //* Refract. Ind. Ceram. 2018. Vol. 58, № 5. P. 538–541.
- **Иванов**, **Д. А.** Структура и физико-механические свойства пористой керамики на основе Al_2O_3 , полученной с использованием метода фильтрационного горения / Д. А. Иванов, С. Д. Шляпин, Г. Е. Вальяно, Л. В. Федорова // Новые огнеупоры. 2017. № 9. С. 40–43.
- 15. **Степин, П. А.** Сопротивление материалов / П. А. Степин. М.: Интеграл-Пресс, 1997. 320 с.
- 16. **Мондольфо, Л. Ф.** Структура и свойства алюминиевых сплавов / Л. Ф. Мондольфо. М. : Металлургия, 1979. 640 с. \blacksquare

Получено 09.04.20 © Д. А. Иванов, 2020 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

ICSOBA 2020 — 38-я Международная конференция и выставка Международного комитета по изучению бокситов, глинозема и алюминия

12-16 октября 2020 г.

г. Цзинань, Китай

https://icsoba.org/