Д. т. н. В. В. Кузин (🖾), д. т. н. С. Н. Григорьев, к. т. н. М. А. Волосова

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

удк 666.3.004.9 ОСНОВЫ КОМПЬЮТЕРНОЙ ИНЖЕНЕРИИ ПОВЕРХНОСТНОГО СЛОЯ ШЛИФОВАННОЙ КЕРАМИКИ

Приведены основные положения компьютерной инженерии поверхностного слоя шлифованной керамики. Они базируются на двух расчетных схемах, математической модели, алгоритмах решения задач стационарной и неустановившейся термоупругости, автоматизированной системы термопрочностных расчетов и методике расчета горизонтальных и вертикальных перемещений, температуры, напряжений и интенсивности напряжений с использованием метода контрольных точек.

Ключевые слова: компьютерная инженерия, керамика, поверхностный слой (ПС), расчетная схема, математическая модель, стационарная и неустановившаяся термоупругость, термопрочностной расчет.

введение

окращение стоимости и времени вывода научного продукта на рынок способно обеспечить компьютерное моделирование за счет сужения области поиска на начальном этапе исследования и дополнения результатами расчетов экспериментально установленных закономерностей. Этот подход к созданию новых материалов явился основой для появления компьютерного материаловедения (KM) (computational materials science), которое к настоящему времени приобрело контуры междисциплинарного научного направления на фоне стремительного развития вычислительных систем и программного обеспечения [1]. Другой движущей силой компьютерного материаловедения является понимание материаловедами неоспоримых преимуществ от получения результатов в условиях, когда проведение натурных экспериментов затруднено или просто невозможно.

Главной задачей КМ является анализ связей в системе состав – обработка – структура – свойство, позволяющих оценить поведение металлических и композиционных материалов со сложной структурой в определенных условиях с использованием построенных моделей [2]. Исторические аспекты КМ и основные этапы его развития подробно проанализированы

> ⊠ B. B. Кузин E-mail: dr.kuzinvalery@yandex.ru

в статье [3]. Обзор новейших приложений КМ на основе квантово-механических концепций приведен в статье [4]. К настоящему времени в КМ сформировались разные подходы к решению главной задачи, среди которых наиболее перспективным следует признать парадигму «интегрированная компьютерная инженерия материалов» (integrated computational materials engineering — ICME) [5]. Совокупность принципов, ориентиров, стандартов, баз данных и наборов инструментов для ІСМЕ способна решать наиболее проблемные задачи в материаловедении. Например, использование ІСМЕ позволило изучить пластическое поведение материала, в том числе формирование остаточных напряжений, при вытягивании труб с учетом структуры материала [6].

Во многих случаях в комплексе со стандартным анализом напряжений на макроскопическом уровне требуется проанализировать микронапряжения и диффузионные явления. Для этого используются многомасштабный анализ и разные разделы физики, что обеспечивает лучшее понимание поведения и свойств материалов [7]. Пример инженерии гетерогенных материалов с наноразмерными неоднородностями, основанный на использовании вычислительных зерен (computational grains) и учитывающий границы раздела фаз, приведен в статье [8]. Эти двумерные вычислительные зерна являются математически определенным доменом конечного размера многоугольной формы, в который заделаны упругие наночастицы круглой формы. Результаты КМ с использованием этой методики позволили изучить неоднородность напряжений в вычислительных зернах с разным числом включений. Расчеты стабильных и метастабильных гетерогенных фазовых равновесий, количества фаз и их состава, температур преобразования, фазовых бинарных и многокомпонентных диаграмм, необходимые при разработке материалов и процессов, выполняются с использованием специализированного программного комплекса компании Thermo-Calc Software [9].

Авторы настоящей статьи, имеющие опыт в изучении напряженно-деформированного состояния высокоплотных керамических материалов, видят в ІСМЕ эффективный инструмент для проектирования высокоплотной керамики и глубокого анализа процессов, происходящих в керамических деталях. По мнению авторов публикации [10]. микроструктуру, пористость. дефектность, границы раздела фаз и морфологию поверхности необходимо учитывать на раннем этапе создания новой керамики, так как эти параметры влияют на большинство ее функциональных свойств. Поэтому разработка методологии ІСМЕ применительно к высокоплотным керамическим материалам является весьма актуальной задачей.

Цель настоящего исследования — разработка основы компьютерной инженерии поверхностного слоя (ПС) шлифованной керамики с использованием ранее построенной микроструктурной модели. Авторы рассматривают эти основы как первый этап в создании интегрированной компьютерной инженерии высокоплотных керамических материалов.

РАСЧЕТНЫЕ СХЕМЫ

Наиболее эффективным методом исследования напряженного состояния разных конструкций является метод конечных элементов, хорошо приспособленный для машинной реализации [11]. Его преимуществами являются получение полной картины напряженно-деформированного состояния сложных конструкций, высокая точность и рациональное представление результатов расчетов, в том числе графическое изображение состояния конструкции. На основе этого метода разработаны мощные и универсальные программные средства, предполагающие подготовку объемных массивов исходных данных. Однако, по мнению авторов [12], целесообразно также создавать специализированные программные комплексы, ориентированные на решение достаточно узких задач и обеспечивающие контроль подготовки данных, численную машинную реализацию алгоритмов расчета, а также выдачу результатов в удобной форме для практического использования.

В соответствии с этими рекомендациями разработаны две расчетные схемы на базе микроструктурной модели ПС шлифованной керамики, контактирующей с упругим телом [4]. Расчетная схема № 1 предназначена для создания специализированной системы автоматизированных термопрочностных расчетов, схема № 2 - для использования в системе автоматизированного проектирования SolidWorks (приложение SOLIDWORKS Simulation). Расчетные схемы учитывают специфику контакта керамической детали с сопрягаемой деталью: расчетная схема № 1 моделирует процессы в области контактного взаимодействия (на площадке износа) [13], схема № 2 — в приконтактной области [14]. Исходя из условий контакта, для каждой схемы определены условия нагружения.

Приняли следующие допущения: рассматривается плоская задача; отсутствуют пластические деформации; керамика является бездефектной (поры и трещины не являются элементами ее структуры); ПС шлифованной керамики состоит из слоя С; переходная фаза и подповерхностный дефектный слой принадлежат керамике; слой С имеет только дефекты внешней поверхности; на границе керамики со слоем С имеются полости и трещины; ударные нагрузки заменены сосредоточенными силами. Правомерность этих допущений обоснована [15].

Рис. 1. Расчетные схемы № 1 (*a*) и 2 (б)

Расчетная схема № 1 предназначена для создания специализированной системы автоматизированных термопрочностных расчетов (рис. 1, а). Эта схема характеризует конструкцию, в которой единичное зерно круглой или эллипсоидальной формы с полудиаметрами а и *b* заделано в матрицу через межзеренную фазу толщиной б_f. На свободных внешних поверхностях зерна, матрицы и межзеренной фазы расположен слой С толщиной δ_s, на котором размещен упругий слой толщиной δ_k. На упругий слой пействует комплекс силовых и тепловых нагрузок. На внешний контур упругого слоя в произвольных точках действуют: сосредоточенная сила F, зависящая от времени и направленная под углом β к оси у; распределенная сила силовой нагрузки Р; тепловой поток Q. Учитываются конвективные потери тепла с коэффициентом теплообмена h на свободной от теплового потока части контура упругого слоя.

Расчетная схема № 2 предназначена для расчетов в приложении SOLIDWORKS Simulation (рис. 1, б). Эта схема характеризует конструкцию, в которой единичное зерно круглой или эллипсоидальной формы с полудиаметрами а и *b* заделано в матрицу через межзеренную фазу толщиной δ_f. На свободных внешних поверхностях зерна, матрицы и межзеренной фазы расположен слой *C* толщиной δ_s. На стыке зерна, межзеренной фазы, матрицы и слоя С расположены полость и трещина, являющиеся фазой пустоты; на внешней поверхности имеется дефект в форме выступа. Эта схема характеризует состояние приконтактной области, в которой отсутствует контакт с сопрягаемым телом, а тепло действует бесконтактно; по этой причине в ней отсутствуют упругий слой и комплекс силовых нагрузок. На внешний контур слоя С в произвольных точках действует только тепловой поток Q; конвективный отвод тепла с коэффициентом теплообмена h осуществляется на свободной от теплового потока части контура слоя C.

Каждый элемент в этих расчетных схемах, выполненный из однородного и изотропного материала, характеризуется плотностью ρ , модулем упругости E, коэффициентом Пуассона μ , температурным коэффициентом линейного расширения (ТКЛР) α •, теплопроводностью λ и удельной теплоемкостью C_p , причем λ и C_p зависят от температуры. Свойства базовых тугоплавких соединений для изготовления керамики приведены в табл. 1 и 2 [16]. Размеры элементов задаются на основании результатов экспериментальных исследований.

В этих расчетных схемах выделены границы фаз: граница $\Gamma p1$ между зерном и межзеренной фазой; граница $\Gamma p2$ между межзеренной фазой и матрицей; граница $\Gamma p3$ между зерном и межзеренной фазой (с одной стороны) и слоем C (с другой стороны). Обе расчетные схемы отражают реальную структуру и неоднородность свойств высокоплотной керамики, так как они разработаны на основе результатов комплексного исследования алмазного шлифования образцов керамики на основе Al_2O_3 , Si_3N_4 , SiC и ZrO₂.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ЕЕ ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ

С использованием расчетной схемы № 1 решена двухмерная задача теорий теплопроводности и упругости с учетом нелинейной зависимости теплопроводности и удельной теплоемкости от температуры с использованием метода конечных элементов. Нелинейная постановка задачи связана с сильной зависимостью теплофизических свойств тугоплавких соединений от температуры.

Таблица 1.					
Соединение, конструкционный материал	ρ, г/см ³	<i>Е,</i> ГПа	μ	α,10 ⁻⁶ 1/град (20-1500 °С)	
Si ₃ N ₄	3,2	300	0,25	3,2	
Y_2O_3	4,9	250	0,22	7,9	
MgO	3,4	315	0,18	13,4	
Al ₂ O ₃	4,0	380	0,24	8,5	
TiC	4,9	484	0,22	7,95	
SiC	3,158	460	0,16	5,3	
ZrO_2	5,68	180	0,20	11	

Таблица 2.

66

Соединение	λ, Вт/(м·град)	<i>С₀</i> , кДж/(кг·град)		
Si ₃ N ₄	$\lambda = 1001,7 \ T^{-0.63}$	$C_p = 1342.9 + 200.4 \cdot 10^{-3}T - 96.8 \cdot 10^5 T^{-2}$		
Y_2O_3	$\lambda = 686, 1 T^{-0.82}$	$C_p = 1088,6 + 343,3 \cdot 10^{-3}T - 92,1 \cdot 10^{5}T^{-2}$		
MgO	$\lambda = 7871, 2/(T - 125) + 3,6 \cdot 10^{-33}T^{10}$	$C_p = 1136,7 + 125,2 \cdot 10^{-3}T - 218,5 \cdot 10^{5}T^{-2}$		
Al_2O_3	$\lambda = 2100 \ T^{-0.78}$	$C_p = 1093,6 + 183,7 \cdot 10^{-3}T - 304,3 \cdot 10^{5}T^{-2}$		
TiC	$\lambda = 23,2 \ e^{0.0002T}$	$C_p = 556,7 - 8 \cdot 10^{-2}T + 4 \cdot 10^{-5}T^2 - 2 \cdot 10^{7}T^{-2}$		
SiC	$\lambda = 3239,3 T^{-0,7746}$	$C_p = 914.5 + 176.9 \cdot 10^{-3}T - 33.6 \cdot 10^{-3}T^{-2}$		
ZrO_2	$\lambda = 106,7 \ T^{-0.5578}$	$C_p = 696,7 + 75,4 \cdot 10^{-3}T - 140,7 \cdot 10^{5}T^{-2}$		

Рассмотрена изотропная пластина толщиной Δ в системе прямоугольных координат $\{x, y\}$. Уравнение нестационарной теплопроводности для этих условий имеет вид

$$\lambda(T)\left(\frac{\partial^2 T(t)}{\partial x^2} + \frac{\partial^2 T(t)}{\partial y^2}\right) - \underline{\rho c(T)}\frac{\partial T(t)}{\partial t} = 0, \qquad (1)$$

где T(t) — температура; $\lambda(T)$ — теплопроводность; ρ — плотность; c(T) — удельная теплоем-кость; t — время.

Если пренебречь подчеркнутым слагаемым в уравнении (1), то получается уравнение стационарной теплопроводности, которое должно подчиняться четырем типам граничных условий на контуре пластины.

1. Если температура известна на некоторой границе пластины, то граничное условие запишется в виде

$$T(t) = T_s(s), \tag{2}$$

где *s* — координаты точек границы.

2. Если на границе происходит конвективный теплообмен, характеризуемый коэффициентом теплообмена *h*, то граничное условие запишется в виде

$$\lambda \left(\frac{\partial T(t)}{\partial x} l_x + \frac{\partial T(t)}{\partial y} l_y \right) + h \left[T(t) - T_\infty \right] = 0, \tag{3}$$

где T — температура окружающей среды; l_x , l_y — направляющие косинусы, $l_x = \sin \alpha$, $l_y = \cos \alpha$.

3. Если на границе задан поток тепла *Q*, то граничное условие запишется в виде

$$\lambda(T) \left(\frac{\partial T(t)}{\partial x} l_x + \frac{\partial T(t)}{\partial y} l_y \right) + Q = 0.$$
(4)

4. Если граница представляет собой теплоизолированный участок, то граничное условие запишется в виде

$$\frac{\partial T(t)}{\partial x}l_x + \frac{\partial T(t)}{\partial y}l_y = 0.$$
(5)

Предполагается, что начальные условия при решении уравнений нестационарной теплопроводности имеют вид

$$T(x, y, 0) = 0.$$
 (6)

Геометрические соотношения плоской задачи теории упругости имеют вид

$$\varepsilon_{11} = \frac{\partial u}{\partial x}; \ \varepsilon_{22} = \frac{\partial v}{\partial y}; \ \varepsilon_{12} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x},$$
 (7)

где ε₁₁, ε₂₂, ε₁₂ — линейные и угловая деформации; *u*, *v* — перемещения соответственно вдоль осей x и y.

Физические соотношения для плоского напряженного состояния записываются в форме

$$\sigma_{11} = E(T)/(1 - \nu^2)[\varepsilon_{11} + \nu\varepsilon_{22} - (1 + \nu)\alpha T] \quad (1 \Leftrightarrow 2), (8)$$

$$\sigma_{12} = [E(T)/2(1 + \nu)]\varepsilon_{12}, \qquad (9)$$

где σ₁₁, σ₂₂, σ₁₂ — нормальные и касательное напряжения; *E* и ν — модуль упругости и коэффициент Пуассона; α — ТКЛР.

Уравнения равновесия имеют вид:

$$\frac{\partial \sigma_{11}}{\partial x} + \frac{\partial \sigma_{12}}{\partial y} = 0; \quad \frac{\partial \sigma_{12}}{\partial x} + \frac{\partial \sigma_{22}}{\partial y} = 0.$$
(10)

Для этой математической модели разработаны двухэтапные алгоритмы решения задач стационарной и неустановившейся термоупругости. На первом этапе алгоритма решения задачи стационарной термоупругости определяются теплопроводность и температурное поле в конструкции для текущего значения теплового потока $Q_{\text{тек}}$, на втором этапе определяется напряженное состояние под действием сосредоточенной силы, распределенной силовой нагрузки и установившейся температуры $T_{\text{тек}}(x, y)$ при текущем значении Q_{тек}. На первом этапе алгоритма решения задачи неустановившейся термоупругости определяются теплопроводность для текущего значения времени t_{тек} и температурное поле в конструкции, на втором этапе определяется напряженное состояние под действием сосредоточенной силы, распределенной силовой нагрузки и $T_{\text{тек}}$ (х, у, $t_{\text{тек}}$) при заданном значении теплового потока Q.

Разработанные алгоритмы решения задачи стационарной и неустановившейся термоупругости реализованы в виде автоматизированной системы термопрочностных расчетов KS-SL v.1.0, состоящей из препроцессора, процессора, постпроцессора и оперативной базы данных. В препроцессоре этой системы формируется расчетная схема, вводятся и диагностируются исходные данные, выполняются вспомогательные расчеты, подготавливается графическая документация по исходным данным, проводится автоматическая разбивка на конечные элементы. Процессор системы осуществляет ввод и обработку исходных данных во внутреннем представлении, решение задач стационарной и неустановившейся термоупругости, а также преобразование результатов расчетов во внутреннее представление постпроцессора. Постпроцессор системы обеспечивает ввод исходных данных во внутреннем представлении, оперативное проведение вспомогательных расчетов и подготовку графической документации по результатам решений.

Отсутствие аналитических решений для рассматриваемых задач и невозможность получения экспериментальных результатов не позволили сравнить с ними результаты численных расчетов. Поэтому для обоснования достоверности алгоритмов и проверки точности расчетов применили традиционные способы при использовании метода конечных элементов [12]. В результате этого установлено, что все итерационные процессы в задачах стационарной и неустановившейся термоупругости сходятся (для достижения относительной погрешности ε = 10⁻⁶, заложенной в алгоритмы, необходимо 10-12 итераций); доказано 100 %-ное выполнение принципа симметрии; выявлено равенство между суммой проекций реакций в опорах (неподвижных узлах) и суммой проекций внешних нагрузок на осях х и у при решении задач стационарной и неустановившейся термоупругости; показано 100 %-ное совпадение результатов расчета температур в определенном узле, полученных решением задач стационарной и неустановившейся теплопроводности; установлена высокая точность расчетов температур (до 7,1 %) и интенсивности напряжений (до 2 %) при разной дискретизации конструкции.

МЕТОДИКА ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

Рассчитывали горизонтальные u и вертикальные v перемещения, температуру T, напряжения σ_{11} , σ_{22} , σ_{12} и интенсивность напряжений σ_i ($\sigma_i = \sqrt{\sigma_{11}^2 - \sigma_{11}\sigma_{22} + \sigma_{22}^2 + 4\sigma_{12}^2}$), причем значения перемещений определяли в узлах, а температуры и напряжений — в конечных элементах. Для анализа перемещений, температуры и напряжений в ПС шлифованной керамики использовали метод контрольных точек (КТ) [17]. Под КТ понимали фиксированные узлы или конечные элементы конструкции. Выделенные КТ располагались (рис. 2) в поверхности зерна, примыкающей к межзеренной фазе (поверхность C1), в поверхности межзеренной фазы, примы

Рис. 2. Расположение КТ в расчетных схемах № 1 (*a*) и 2 (б)

кающей к зерну (поверхность C2), в поверхности межзеренной фазы, примыкающей к матрице (поверхность C3), в поверхности матрицы, примыкающей к межзеренной фазе (поверхность C4), в поверхностях зерна, межзеренной фазы и матрицы, примыкающих к слою C (поверхность C5), и в поверхности слоя C, примыкающей к зерну, межзеренной фазе и матрице (поверхность C6).

В расчетной схеме № 1 (см. рис. 2, *a*) в поверхности *C1* выделены КТ1-КТ18, в поверхности *C2* КТ19-КТ34, в поверхности *C3* КТ35-КТ50, в поверхности *C4* КТ51-КТ66, в поверхности *C5* КТ67-КТ82 и в поверхности *C6* КТ83-КТ98. В расчетной схеме № 2 (см. рис. 2, *б*) в поверхности *C1* выделены КТ1-КТ12, в поверхности *C2* КТ13-КТ22, в поверхности *C3* КТ23-КТ34, в поверхности *C4* КТ35-КТ44, в поверхности C5 КТ45-КТ54 и в поверхности *C6* КТ55-КТ66. Для графического отображения перемещений в расчетной схеме № 1 использовали КТ0, расположенную на внешнем контуре слоя *C* на границе с упругим слоем (на рис. 1, *a* не показан).

ЗАКЛЮЧЕНИЕ

Приведены разработанные основные положения компьютерной инженерии поверхностного слоя шлифованной керамики, включающие две расчетные схемы, математическую модель, алгоритмы решения задачи стационарной и неустановившейся термоупругости, автоматизированную систему термопрочностных расчетов KS-SL v.1.0, методику численных экспериментов, основанную на использовании метода KT.

Расчетная схема № 1 предназначена для создания специализированной системы автоматизированных термопрочностных расчетов, схема № 2 — для использования в системе автоматизированного проектирования SolidWorks (приложение SOLIDWORKS Simulation). Для каждой расчетной схемы определены условия нагружения, учитывающие специфику контакта между керамической и сопрягаемой деталями. Каждый элемент в этих расчетных схемах выполнен из однородного и изотропного материала и характеризуется плотностью, модулем упругости, коэффициентом Пуассона, ТКЛР, теплопроводностью и удельной теплоемкостью.

Сиспользованием расчетной схемы № 1 решена двухмерная задача теорий теплопроводности и упругости с учетом нелинейной зависимости теплопроводности и теплоемкости от температуры с использованием метода конечных элементов. Разработанные алгоритмы решения задачи стационарной и неустановившейся термоупругости реализованы в виде автоматизированной системы термопрочностных расчетов горизонтальных и вертикальных перемещений, температуры, напряжений и интенсивности напряжений. Предложен к использованию метод КТ, которые выделили в поверхностях основных структурных элементов керамики.

* * *

Настоящая работа финансируется в рамках государственного задания Министерства науки и высшего образования Российской Федерации, проект № 0707-2020-0025.

Библиографический список

1. **Огородникова, О. М.** О проблемах интеграции вычислительного материаловедения в цифровое машиностроение / О. М. Огородникова // Информационные технологии в проектировании и производстве. — 2014. — № 2. — С. 30-34.

2. **Bostanabad, Ramin.** Computational microstructure characterization and reconstruction: review of the stateof-the-art techniques / Ramin Bostanabad, Yichi Zhang, Xiaolin Li [et al.] // Progress in Materials Science. — 2018. — Vol. 95. — P. 1–41.

3. *He, Bing*. Cluster expansion method and its application in computational materials science / *Bing He, Qu Wu, Tao Song* [et al.] // Computational Materials Science. — 2016. — Vol. 125. — P. 243–254.

4. *Hafner, J.* Atomic-scale computational materials science / *J. Hafner* // Acta Materialia. — 2000. — Vol. 48, № 11. — P. 71–92.

5. *Wang, William Yi.* Integrated computational materials engineering for advanced materials: A brief review / *William Yi Wang, Jinshan Li, Weimin Liu* [et al.] // Computational Materials Science. — 2019. — Vol. 158. — P. 42–48.

6. *Foadian, Farzad.* Integrated computational material engineering model development for tube drawing process / *Farzad Foadian, Adele Carradó, Heinz Günther Brokmeier* [et al.] // Procedia Manufacturing. — 2018. — Vol. 15. — P. 287–293.

7. **De Borst, René.** Challenges in computational materials science: Multiple scales, multi-physics and evolving discontinuities / *René de Borst* // Computational Materials Science. — 2008. — Vol. 43, № 1. — P. 1–15.

8. *Wang, Junbo.* Mathematical computational grains for direct numerical simulations of nanocomposites with a large number of nano-inclusions, using parallel

computations / Junbo Wang, Cheng Chen, Peng Yan [et al.] // Extreme Mechanics Letters. — 2020. — Vol. 36. — Art. 100656.

9. Andersson, J.-O. Thermo-Calc & DICTRA, computational tools for materials science / J.-O. Andersson, T. Helander, L. Höglund [et al.] // Calphad. — 2002. — Vol. 26, \mathbb{N} 2. — P. 273–312.

10. **Sturm, Saso.** Microstructure characterization of advanced ceramics. Chapter 8 / Saso Sturm, Boštjan Jančar / Advanced Ceramics for Dentistry ; ed. by James Zhijian Shen and Tomaž Kosmač. — Waltham, MA: Butterworth-Heinemann, 2014. — P. 151–172.

11. **Хечумов, Р. А.** Применение метода конечных элементов к расчету конструкций / *Р. А. Хечумов, Х. Кепплер, В. И. Прокопьев.* — М. : АСВ, 1994. — 353 с.

12. **Мяченков, В. И.** Расчеты машиностроительных конструкций методом конечных элементов : справочник / В. И. Мяченков, В. П. Мальцев, В. П. Майборода и др. ; под общ. ред. В. И. Мяченкова. — М. : Машиностроение, 1989. — 520 с.

13. **Кузин, В. В.** Изменение структуры поверхностного слоя керамических изделий при эксплуатации. Часть 1 / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. — 2020. — № 2. — С. ??-??.

14. **Кузин, В. В.** Изменение структуры поверхностного слоя керамических изделий при эксплуатации. Часть 2 / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. — 2020. — № 3. — С. 50-55.

15. **Кузин, В. В.** Микроструктурная модель поверхностного слоя керамики после алмазного шлифования, учитывающая его реальную структуру и условия контактного взаимодействия с упругим телом / *В. В. Кузин, С. Н. Григорьев, М. А. Волосова* // Новые огнеупоры. — 2020. — № 5. — С. 59-64.

16. **Кузин, В. В.** Инструменты с керамическими режущими пластинами / *В. В. Кузин.* — М. : Янус-К, 2006. — 160 с.

17. *Kuzin, V.* Method of investigation of the stressstrain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35. ■

> Получено 07.05.20 © В. В. Кузин, С. Н. Григорьев, М. А. Волосова, 2020 г.

Advanced Materials 2020 Nov 24-25, 2020 Vancouver, Canada

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ